Hybrid reactive power compensation(HRPC)combines step-controlled shunt reactors and series compensation,and will be employed in ultra-high-voltage(UHV)power systems.The single-phase auto-reclosure characteristics of s...Hybrid reactive power compensation(HRPC)combines step-controlled shunt reactors and series compensation,and will be employed in ultra-high-voltage(UHV)power systems.The single-phase auto-reclosure characteristics of secondary arcs in systems with HRPC require further investigation.In this paper,both the arc-recalling voltage and subsidiary variations in arc current are investigated with and without HRPC.The frequency components of the secondary arc current and variations in arcing time are analyzed for various influential factors,such as the neutral reactor,arc resistance,fault location,degrees of compensation of HRPC,and the length of the transmission line.The non-dominated sorting genetic algorithm II(NSGA-II)and support vector machine regression are combined to create a multi-variable dependent forecasting algorithm to predict the characteristics of the secondary arc in UHV systems with HRPC.This paper provides a theoretical reference for optimizing the parameters of HRPC,and for developing adaptive auto-reclosure schemes and protection equipment.展开更多
To generate a test set for a given circuit (including both combinational and sequential circuits), choice of an algorithm within a number of existing test generation algorithms to apply is bound to vary from circuit t...To generate a test set for a given circuit (including both combinational and sequential circuits), choice of an algorithm within a number of existing test generation algorithms to apply is bound to vary from circuit to circuit. In this paper, the genetic algorithms are used to construct the models of existing test generation algorithms in making such choice more easily. Therefore, we may forecast the testability parameters of a circuit before using the real test generation algorithm. The results also can be used to evaluate the efficiency of the existing test generation algorithms. Experimental results are given to convince the readers of the truth and the usefulness of this approach.展开更多
Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune...Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune genetic algorithm was applied to optimizing the weight from input layer to hidden layer, from hidden layer to output layer, and the threshold value of neuron nodes in hidden and output layers. Finally, training the related data of the increasing rate of power consumption from 1980 to 2000 in China, a nonlinear network model between the increasing rate of power consumption and influencing factors was obtained. The model was adopted to forecasting the increasing rate of power consumption from 2001 to 2005, and the average absolute error ratio of forecasting results is 13.521 8%. Compared with the ordinary neural network optimized by genetic algorithm, the results show that this method has better forecasting accuracy and stability for forecasting the increasing rate of power consumption.展开更多
Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid mo...Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid model in combination of least squares support vector machine(LSSVM) model with fruit fly optimization algorithm(FOA) and the seasonal index adjustment is constructed to predict monthly electricity consumption. The monthly electricity consumption demonstrates a nonlinear characteristic and seasonal tendency. The LSSVM has a good fit for nonlinear data, so it has been widely applied to handling nonlinear time series prediction. However, there is no unified selection method for key parameters and no unified method to deal with the effect of seasonal tendency. Therefore, the FOA was hybridized with the LSSVM and the seasonal index adjustment to solve this problem. In order to evaluate the forecasting performance of hybrid model, two samples of monthly electricity consumption of China and the United States were employed, besides several different models were applied to forecast the two empirical time series. The results of the two samples all show that, for seasonal data, the adjusted model with seasonal indexes has better forecasting performance. The forecasting performance is better than the models without seasonal indexes. The fruit fly optimized LSSVM model outperforms other alternative models. In other words, the proposed hybrid model is a feasible method for the electricity consumption forecasting.展开更多
Budgeting planning plays an important role in coordinating activities in organizations. An accurate sales volume forecasting is the key to the entire budgeting process. All of the other parts of the master budget are ...Budgeting planning plays an important role in coordinating activities in organizations. An accurate sales volume forecasting is the key to the entire budgeting process. All of the other parts of the master budget are dependent on the sales volume forecasting in some way. If the sales volume forecasting is sloppily done, then the rest of the budgeting process is largely a waste of time. Therefore, the sales volume forecasting process is a critical one for most businesses, and also a difficult area of management. Most of researches and companies use the statistical methods, regression analysis, or sophisticated computer simulations to analyze the sales volume forecasting. Recently, various prediction Artificial Intelligent (AI) techniques have been proposed in forecasting. Support Vector Regression (SVR) has been applied successfully to solve problems in numerous fields and proved to be a better prediction model. However, the select of appropriate SVR parameters is difficult. Therefore, to improve the accuracy of SVR, a hybrid intelligent support system based on evolutionary computation to solve the difficulties involved with the parameters selection is presented in this research. Genetic Algorithms (GAs) are used to optimize free parameters of SVR. The experimental results indicate that GA-SVR can achieve better forecasting accuracy and performance than traditional SVR and artificial neural network (ANN) prediction models in sales volume forecasting.展开更多
Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regressi...Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regression (SVR) is a very useful precipitation prediction model. In this paper, a novel parallel co-evolution algorithm is presented to determine the appropriate parameters of the SVR in rainfall prediction based on parallel co-evolution by hybrid Genetic Algorithm and Particle Swarm Optimization algorithm, namely SVRGAPSO, for monthly rainfall prediction. The framework of the parallel co-evolutionary algorithm is to iterate two GA and PSO populations simultaneously, which is a mechanism for information exchange between GA and PSO populations to overcome premature local optimum. Our methodology adopts a hybrid PSO and GA for the optimal parameters of SVR by parallel co-evolving. The proposed technique is applied over rainfall forecasting to test its generalization capability as well as to make comparative evaluations with the several competing techniques, such as the other alternative methods, namely SVRPSO (SVR with PSO), SVRGA (SVR with GA), and SVR model. The empirical results indicate that the SVRGAPSO results have a superior generalization capability with the lowest prediction error values in rainfall forecasting. The SVRGAPSO can significantly improve the rainfall forecasting accuracy. Therefore, the SVRGAPSO model is a promising alternative for rainfall forecasting.展开更多
[Objective] The research aimed to study forecast models for frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River based on SVR optimized by particle swarm optimization algori...[Objective] The research aimed to study forecast models for frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River based on SVR optimized by particle swarm optimization algorithm. [Method] Correlation analysis and cause analysis were used to select suitable forecast factor combination of the ice regime. Particle swarm optimization algorithm was used to determine the optimal parameter to construct forecast model. The model was used to forecast frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River. [Result] The model had high prediction accuracy and short running time. Average forecast error was 3.51 d, and average running time was 10.464 s. Its forecast effect was better than that of the support vector regression optimized by genetic algorithm (GA) and back propagation type neural network (BPNN). It could accurately forecast frozen and melted dates of the river water. [Conclusion] SVR based on particle swarm optimization algorithm could be used for ice regime forecast.展开更多
For the deficiency that the traditional single forecast methods could not forecast electronic equipment states, a combined forecast method based on the hidden Markov model(HMM) and least square support vector machin...For the deficiency that the traditional single forecast methods could not forecast electronic equipment states, a combined forecast method based on the hidden Markov model(HMM) and least square support vector machine(LS-SVM) is presented. The multi-agent genetic algorithm(MAGA) is used to estimate parameters of HMM to overcome the problem that the Baum-Welch algorithm is easy to fall into local optimal solution. The state condition probability is introduced into the HMM modeling process to reduce the effect of uncertain factors. MAGA is used to estimate parameters of LS-SVM. Moreover, pruning algorithms are used to estimate parameters to get the sparse approximation of LS-SVM so as to increase the ranging performance. On the basis of these, the combined forecast model of electronic equipment states is established. The example results show the superiority of the combined forecast model in terms of forecast precision,calculation speed and stability.展开更多
A forecasting system of patent application counts is studied in this paper. The optimization model proposed in the research is based on support vector machines (SVM), in which cross-validation algorithm is used for ...A forecasting system of patent application counts is studied in this paper. The optimization model proposed in the research is based on support vector machines (SVM), in which cross-validation algorithm is used for preferences selection. Results of data simulation show that the proposed method has higher forecasting precision power and stronger generalization ability than BP neural network and RBF neural network. In addi- tion, it is feasible and effective in forecasting patent application counts.展开更多
Based on the tropical cyclone(TC) observations in the western North Pacific from 2000 to 2008, this paper adopts the particle swarm optimization(PSO) algorithm of evolutionary computation to optimize one comprehensive...Based on the tropical cyclone(TC) observations in the western North Pacific from 2000 to 2008, this paper adopts the particle swarm optimization(PSO) algorithm of evolutionary computation to optimize one comprehensive classification rule, and apply the optimized classification rule to the forecasting of TC intensity change. In the process of the optimization, the strategy of hierarchical pruning has been adopted in the PSO algorithm to narrow the search area,and thus to enhance the local search ability, i.e. hierarchical PSO algorithm. The TC intensity classification rule involves core attributes including 12-HMWS, MPI, and Rainrate which play vital roles in TC intensity change. The testing accuracy using the new mined rule by hierarchical PSO algorithm reaches 89.6%. The current study shows that the novel classification method for TC intensity change analysis based on hierarchic PSO algorithm is not only easy to explain the source of rule core attributes, but also has great potential to improve the forecasting of TC intensity change.展开更多
A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ...A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate.展开更多
The present paper discusses the application of localized linear models for the prediction of hourly PM10 concentration values. The advantages of the proposed approach lies in the clustering of the data based on a comm...The present paper discusses the application of localized linear models for the prediction of hourly PM10 concentration values. The advantages of the proposed approach lies in the clustering of the data based on a common property and the utilization of the target variable during this process, which enables the development of more coherent models. Two alternative localized linear modelling approaches are developed and compared against benchmark models, one in which data are clustered based on their spatial proximity on the embedding space and one novel approach in which grouped data are described by the same linear model. Since the target variable is unknown during the prediction stage, a complimentary pattern recognition approach is developed to account for this lack of information. The application of the developed approach on several PM10 data sets from the Greater Athens Area, Helsinki and London monitoring networks returned a significant reduction of the prediction error under all examined metrics against conventional forecasting schemes such as the linear regression and the neural networks.展开更多
The paper introduces the application of fuzzy algorithm in inventory control, analyzes ordering strategy for components which are used for manufacturing product in order to reduce the cost in inventory. The authors, t...The paper introduces the application of fuzzy algorithm in inventory control, analyzes ordering strategy for components which are used for manufacturing product in order to reduce the cost in inventory. The authors, taking an electronic rectifier as example, build up model of product demand and inventory control, adopt fuzzy logical technique for inference forecast, discuss effect with different membership functions on inventory control result, bring suitable membership function for the forecast quantity order in inventory, and demonstrate the approach of inventory control based on fuzzy algorithm.展开更多
Shuibuya control basin in upper reaches of Qingjiang River,Hubei Province was taken as the case. By combining grouping Z-I relation with ground meteorological rainfall station,rainfall estimation by radar was calibrat...Shuibuya control basin in upper reaches of Qingjiang River,Hubei Province was taken as the case. By combining grouping Z-I relation with ground meteorological rainfall station,rainfall estimation by radar was calibrated,and actual average surface rainfall in the basin was calculated.By combining genetic algorithm with neural network,the corrected AREM rainfall forecast model was established,to improve rainfall forecast accuracy by AREM. Finally,AREM rainfall forecast models before and after correction were input in Xin'an River hydrologic model for flood forecast test. The results showed that the corrected AREM rainfall forecast model could significantly improve forecast accuracy of accumulative rainfall,and decrease range of average relative error was more than 60%. Hourly rainfall forecast accuracy was improved somewhat,but there was certain difference from actual situation. Average deterministic coefficient of AREM flood forest test before and after correction was improved from -32. 60% to 64. 38%,and relative error of flood peak decreased from 39. 00% to 25. 04%. The improved effect of deterministic coefficient was better than relative error of flood peak,and whole flood forecast accuracy was improved somewhat.展开更多
Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communit...Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles). The optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the opti- mization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results also indicate that the algorithm is easy to imnlement and practieal for real-time wave forecasting.展开更多
文摘Hybrid reactive power compensation(HRPC)combines step-controlled shunt reactors and series compensation,and will be employed in ultra-high-voltage(UHV)power systems.The single-phase auto-reclosure characteristics of secondary arcs in systems with HRPC require further investigation.In this paper,both the arc-recalling voltage and subsidiary variations in arc current are investigated with and without HRPC.The frequency components of the secondary arc current and variations in arcing time are analyzed for various influential factors,such as the neutral reactor,arc resistance,fault location,degrees of compensation of HRPC,and the length of the transmission line.The non-dominated sorting genetic algorithm II(NSGA-II)and support vector machine regression are combined to create a multi-variable dependent forecasting algorithm to predict the characteristics of the secondary arc in UHV systems with HRPC.This paper provides a theoretical reference for optimizing the parameters of HRPC,and for developing adaptive auto-reclosure schemes and protection equipment.
基金This work was supported by National Natural Science Foundation of China (NSFC) under the grant !No. 69873030
文摘To generate a test set for a given circuit (including both combinational and sequential circuits), choice of an algorithm within a number of existing test generation algorithms to apply is bound to vary from circuit to circuit. In this paper, the genetic algorithms are used to construct the models of existing test generation algorithms in making such choice more easily. Therefore, we may forecast the testability parameters of a circuit before using the real test generation algorithm. The results also can be used to evaluate the efficiency of the existing test generation algorithms. Experimental results are given to convince the readers of the truth and the usefulness of this approach.
基金Project(70373017) supported by the National Natural Science Foundation of China
文摘Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune genetic algorithm was applied to optimizing the weight from input layer to hidden layer, from hidden layer to output layer, and the threshold value of neuron nodes in hidden and output layers. Finally, training the related data of the increasing rate of power consumption from 1980 to 2000 in China, a nonlinear network model between the increasing rate of power consumption and influencing factors was obtained. The model was adopted to forecasting the increasing rate of power consumption from 2001 to 2005, and the average absolute error ratio of forecasting results is 13.521 8%. Compared with the ordinary neural network optimized by genetic algorithm, the results show that this method has better forecasting accuracy and stability for forecasting the increasing rate of power consumption.
基金National Social Science Foundation of China(No.18AGL028)Social Science Foundation of the Higher Education Institutions Jiangsu Province,China(No.2018SJZDI070)Social Science Foundation of the Jiangsu Province,China(Nos.16ZZB004,17ZTB005)
文摘Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid model in combination of least squares support vector machine(LSSVM) model with fruit fly optimization algorithm(FOA) and the seasonal index adjustment is constructed to predict monthly electricity consumption. The monthly electricity consumption demonstrates a nonlinear characteristic and seasonal tendency. The LSSVM has a good fit for nonlinear data, so it has been widely applied to handling nonlinear time series prediction. However, there is no unified selection method for key parameters and no unified method to deal with the effect of seasonal tendency. Therefore, the FOA was hybridized with the LSSVM and the seasonal index adjustment to solve this problem. In order to evaluate the forecasting performance of hybrid model, two samples of monthly electricity consumption of China and the United States were employed, besides several different models were applied to forecast the two empirical time series. The results of the two samples all show that, for seasonal data, the adjusted model with seasonal indexes has better forecasting performance. The forecasting performance is better than the models without seasonal indexes. The fruit fly optimized LSSVM model outperforms other alternative models. In other words, the proposed hybrid model is a feasible method for the electricity consumption forecasting.
文摘Budgeting planning plays an important role in coordinating activities in organizations. An accurate sales volume forecasting is the key to the entire budgeting process. All of the other parts of the master budget are dependent on the sales volume forecasting in some way. If the sales volume forecasting is sloppily done, then the rest of the budgeting process is largely a waste of time. Therefore, the sales volume forecasting process is a critical one for most businesses, and also a difficult area of management. Most of researches and companies use the statistical methods, regression analysis, or sophisticated computer simulations to analyze the sales volume forecasting. Recently, various prediction Artificial Intelligent (AI) techniques have been proposed in forecasting. Support Vector Regression (SVR) has been applied successfully to solve problems in numerous fields and proved to be a better prediction model. However, the select of appropriate SVR parameters is difficult. Therefore, to improve the accuracy of SVR, a hybrid intelligent support system based on evolutionary computation to solve the difficulties involved with the parameters selection is presented in this research. Genetic Algorithms (GAs) are used to optimize free parameters of SVR. The experimental results indicate that GA-SVR can achieve better forecasting accuracy and performance than traditional SVR and artificial neural network (ANN) prediction models in sales volume forecasting.
文摘Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regression (SVR) is a very useful precipitation prediction model. In this paper, a novel parallel co-evolution algorithm is presented to determine the appropriate parameters of the SVR in rainfall prediction based on parallel co-evolution by hybrid Genetic Algorithm and Particle Swarm Optimization algorithm, namely SVRGAPSO, for monthly rainfall prediction. The framework of the parallel co-evolutionary algorithm is to iterate two GA and PSO populations simultaneously, which is a mechanism for information exchange between GA and PSO populations to overcome premature local optimum. Our methodology adopts a hybrid PSO and GA for the optimal parameters of SVR by parallel co-evolving. The proposed technique is applied over rainfall forecasting to test its generalization capability as well as to make comparative evaluations with the several competing techniques, such as the other alternative methods, namely SVRPSO (SVR with PSO), SVRGA (SVR with GA), and SVR model. The empirical results indicate that the SVRGAPSO results have a superior generalization capability with the lowest prediction error values in rainfall forecasting. The SVRGAPSO can significantly improve the rainfall forecasting accuracy. Therefore, the SVRGAPSO model is a promising alternative for rainfall forecasting.
基金Supported by National Nature Science Fund Item,China (51009065)Key Science and Technology Research Plan Program in Henan Province,China(112102110033)
文摘[Objective] The research aimed to study forecast models for frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River based on SVR optimized by particle swarm optimization algorithm. [Method] Correlation analysis and cause analysis were used to select suitable forecast factor combination of the ice regime. Particle swarm optimization algorithm was used to determine the optimal parameter to construct forecast model. The model was used to forecast frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River. [Result] The model had high prediction accuracy and short running time. Average forecast error was 3.51 d, and average running time was 10.464 s. Its forecast effect was better than that of the support vector regression optimized by genetic algorithm (GA) and back propagation type neural network (BPNN). It could accurately forecast frozen and melted dates of the river water. [Conclusion] SVR based on particle swarm optimization algorithm could be used for ice regime forecast.
文摘For the deficiency that the traditional single forecast methods could not forecast electronic equipment states, a combined forecast method based on the hidden Markov model(HMM) and least square support vector machine(LS-SVM) is presented. The multi-agent genetic algorithm(MAGA) is used to estimate parameters of HMM to overcome the problem that the Baum-Welch algorithm is easy to fall into local optimal solution. The state condition probability is introduced into the HMM modeling process to reduce the effect of uncertain factors. MAGA is used to estimate parameters of LS-SVM. Moreover, pruning algorithms are used to estimate parameters to get the sparse approximation of LS-SVM so as to increase the ranging performance. On the basis of these, the combined forecast model of electronic equipment states is established. The example results show the superiority of the combined forecast model in terms of forecast precision,calculation speed and stability.
基金Sponsored by "985" Philosophy and Social Science Innovation Base of the Ministry of Education of China (107008200400024)
文摘A forecasting system of patent application counts is studied in this paper. The optimization model proposed in the research is based on support vector machines (SVM), in which cross-validation algorithm is used for preferences selection. Results of data simulation show that the proposed method has higher forecasting precision power and stronger generalization ability than BP neural network and RBF neural network. In addi- tion, it is feasible and effective in forecasting patent application counts.
基金National Natural Science Foundation of China(41201045)Jiangsu Qing Lan Project(2016)Natural Science Foundation of Jiangsu Province(BK20151458)
文摘Based on the tropical cyclone(TC) observations in the western North Pacific from 2000 to 2008, this paper adopts the particle swarm optimization(PSO) algorithm of evolutionary computation to optimize one comprehensive classification rule, and apply the optimized classification rule to the forecasting of TC intensity change. In the process of the optimization, the strategy of hierarchical pruning has been adopted in the PSO algorithm to narrow the search area,and thus to enhance the local search ability, i.e. hierarchical PSO algorithm. The TC intensity classification rule involves core attributes including 12-HMWS, MPI, and Rainrate which play vital roles in TC intensity change. The testing accuracy using the new mined rule by hierarchical PSO algorithm reaches 89.6%. The current study shows that the novel classification method for TC intensity change analysis based on hierarchic PSO algorithm is not only easy to explain the source of rule core attributes, but also has great potential to improve the forecasting of TC intensity change.
基金supported by the National Defense Preliminary Research Program of China(A157167)the National Defense Fundamental of China(9140A19030314JB35275)
文摘A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate.
文摘The present paper discusses the application of localized linear models for the prediction of hourly PM10 concentration values. The advantages of the proposed approach lies in the clustering of the data based on a common property and the utilization of the target variable during this process, which enables the development of more coherent models. Two alternative localized linear modelling approaches are developed and compared against benchmark models, one in which data are clustered based on their spatial proximity on the embedding space and one novel approach in which grouped data are described by the same linear model. Since the target variable is unknown during the prediction stage, a complimentary pattern recognition approach is developed to account for this lack of information. The application of the developed approach on several PM10 data sets from the Greater Athens Area, Helsinki and London monitoring networks returned a significant reduction of the prediction error under all examined metrics against conventional forecasting schemes such as the linear regression and the neural networks.
文摘The paper introduces the application of fuzzy algorithm in inventory control, analyzes ordering strategy for components which are used for manufacturing product in order to reduce the cost in inventory. The authors, taking an electronic rectifier as example, build up model of product demand and inventory control, adopt fuzzy logical technique for inference forecast, discuss effect with different membership functions on inventory control result, bring suitable membership function for the forecast quantity order in inventory, and demonstrate the approach of inventory control based on fuzzy algorithm.
基金Supported by the Science and Technology Development Key Fund of Hubei Provincial Meteorological Bureau(2015Z02)
文摘Shuibuya control basin in upper reaches of Qingjiang River,Hubei Province was taken as the case. By combining grouping Z-I relation with ground meteorological rainfall station,rainfall estimation by radar was calibrated,and actual average surface rainfall in the basin was calculated.By combining genetic algorithm with neural network,the corrected AREM rainfall forecast model was established,to improve rainfall forecast accuracy by AREM. Finally,AREM rainfall forecast models before and after correction were input in Xin'an River hydrologic model for flood forecast test. The results showed that the corrected AREM rainfall forecast model could significantly improve forecast accuracy of accumulative rainfall,and decrease range of average relative error was more than 60%. Hourly rainfall forecast accuracy was improved somewhat,but there was certain difference from actual situation. Average deterministic coefficient of AREM flood forest test before and after correction was improved from -32. 60% to 64. 38%,and relative error of flood peak decreased from 39. 00% to 25. 04%. The improved effect of deterministic coefficient was better than relative error of flood peak,and whole flood forecast accuracy was improved somewhat.
基金supported by the European Commission within FP7-THEME 6(Grant No.244104)the Natural Environment Research Council(NERC)of the UK(Grant No.NE/J005541/1)the Ministry of Science and Technology(MOST)of Taiwan(Grant No.MOST 104-2221-E-006-183)
文摘Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles). The optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the opti- mization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results also indicate that the algorithm is easy to imnlement and practieal for real-time wave forecasting.