期刊文献+
共找到108篇文章
< 1 2 6 >
每页显示 20 50 100
A new rope-sheave traction contact force model incorporating complex geometric features developed through parameter identification methods
1
作者 Yunting HAN Hui HU +1 位作者 Haoran SUN Xi SHI 《Applied Mathematics and Mechanics(English Edition)》 2025年第10期1983-2006,共24页
The complex geometrical features of mechanical components significantly influence contact interactions and system dynamics.However,directly modeling contact forces on surfaces with intricate geometries presents consid... The complex geometrical features of mechanical components significantly influence contact interactions and system dynamics.However,directly modeling contact forces on surfaces with intricate geometries presents considerable challenges.This study focuses on the helically twisted wire rope-sheave contact and proposes a contact force model that incorporates complex geometric features through a parameter identification approach.The model's impact on contact forces and system dynamics is thoroughly investigated.Leveraging a point contact model and an elliptic integral approximation,a loss function is formulated using the finite element(FE)contact model results as the reference data.Geometric parameters are subsequently determined by optimizing this loss function via a genetic algorithm(GA).The findings reveal that the contact stiffness increases with the wire rope pitch length,the radius of principal curvature,and the elliptic eccentricity of the contact zone.The proposed contact force model is integrated into a rigid-flexible coupled dynamics model,developed by the absolute node coordinate formulation,to examine the effects of contact geometry on system dynamics.The results demonstrate that the variations in wire rope geometry alter the contact stiffness,which in turn affects dynamic rope tension through frictional energy dissipation.The enhanced model's predictions exhibit superior alignment with the experimental data,thereby validating the methodology.This approach provides new insights for deducing the contact geometry from kinetic parameters and monitoring the performance degradation of mechanical components. 展开更多
关键词 complex contact geometry contact force modeling parameter identification helical wire rope rigid-flexible couple dynamics modeling
在线阅读 下载PDF
Body-force modeling considering induced upstream effects for a transonic compressor with total temperature distortion 被引量:1
2
作者 Jiahui QIU Chen YANG +2 位作者 Wenqiang ZHANG Min ZHANG Juan DU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期7-19,共13页
To numerically study the impact of total temperature distortion on a transonic compressor with reduced computational costs,a Body-Force Model(BFM)is developed.Firstly,the interactions between the distorted flow and th... To numerically study the impact of total temperature distortion on a transonic compressor with reduced computational costs,a Body-Force Model(BFM)is developed.Firstly,the interactions between the distorted flow and the compressor are analyzed using full-annulus Unsteady Reynolds-Averaged Navier-Stokes(URANS)results and the orbit method.It is found that the induced swirl distortion and the mass flux nonuniformity are intensified in the compressor upstream flow field.A correction factor is thus added to the BFM to account for the effect of the induced swirl,which is crucial for the accurate representation of distortion transfer in the intake.Then,steady simulations with large-amplitude 180circumferential total temperature distortion are performed using the developed BFM.It is shown that the distorted compressor map simulated with the BFM matches well with URANS results.The circumferential phase shift of total temperature and the generation of the additional total pressure distortion across the rotor are in line with the time-averaged URANS flow field.The compressor upstream effects on the distorted inflow can also be exactly captured.All above-mentioned results demonstrate the BFM developed in this paper can effectively capture the distorted flow features inside the compressor,and significantly reduce the computational costs by five orders of magnitude compared with URANS. 展开更多
关键词 Upstream effect Orbit method Induced swirl distortion Body force model Correction factor Time-averaged URANS
原文传递
Comparisons of Wave Force Model Effects on the Structural Responses and Fatigue Loads of a Semi-Submersible Floating Wind Turbine
3
作者 HAN Yanqing LE Conghuan +1 位作者 ZHANG Puyang XU Shengnan 《Journal of Ocean University of China》 CAS CSCD 2024年第1期69-79,共11页
The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a ... The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a semi-submersible floating wind turbine(SFWT)were conducted.Simulations were performed by employing the Morison equation(ME)with linear or second-order wave kinematics and potential flow theory(PFT)with first-or second-order wave forces.A comparison of regular waves,irregular waves,and coupled wind/waves analyses with the experimental data showed that many of the simulation results and experimental data are relatively consistent.However,notable discrepancies are found in the response amplitude operators for platform heave,tower base bending moment,and tension in mooring lines.PFT models give more satisfactory results of heave but more significant discrepan-cies in tower base bending moment than the ME models.In irregular wave analyses,low-frequency resonances were captured by PFT models with second-order difference-frequency terms,and high-frequency resonances were captured by the ME models or PFT models with second-order sum-frequency terms.These force models capture the response frequencies but do not reasonably predict the response amplitudes.The coupled wind/waves analyses showed more satisfactory results than the wave-only analyses.However,an important detail to note is that this satisfactory result is based on the overprediction of wind-induced responses. 展开更多
关键词 floating wind turbine wave force model potential flow theory Morison equation second-order wave forces
在线阅读 下载PDF
An extended social force model on unidirectional flow considering psychological and behavioral impacts of hazard source
4
作者 邓凯丰 李梦 +1 位作者 胡祥敏 陈涛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期567-576,共10页
An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the ped... An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the pedestrians,which may further alter their behavioral patterns.This effect is especially significant in narrow spaces,such as corridors and alleys.This study aims to integrate a non-spreading hazard source into the social force model following the results from a previous experiment and simulation,and to simulate unidirectional pedestrian flows over various crowd densities and clarity–intensity properties of the hazard source.The integration include a virtual repulsion force from the hazard source and a decay on the social force term.The simulations reveal(i)that the hazard source creates virtual bottlenecks that suppress the flow,(ii)that the inter-pedestrian push forms a stabilisation phase on the flow-density curve within medium-to-high densities,and(iii)that the pedestrians are prone to a less orderly and stable pattern of movement in low clarity–intensity scenarios,possibly with lateral collisions passing the hazard source. 展开更多
关键词 EVACUATION social force model hazard source unidirectional pedestrian flow
原文传递
A numerical simulation strategy for a compressor’s underlying axisymmetric characteristic and its application in body force model
5
作者 Shijie LIU Tianyu PAN Qiushi LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期79-90,共12页
Accurate prediction of the aerodynamic response of a compressor under inlet distortion is crucial for next-generation civil aircraft,such as Boundary Layer Ingestion(BLI)silent aircraft.Therefore,research on the Body ... Accurate prediction of the aerodynamic response of a compressor under inlet distortion is crucial for next-generation civil aircraft,such as Boundary Layer Ingestion(BLI)silent aircraft.Therefore,research on the Body Force(BF)model plays a significant role in achieving this objective.However,distorted inlet airflow can lead to varying operating conditions across different spatial locations of the compressor,which may cause some regions to operate outside the stability boundary.Consequently,the accuracy of BF model simulations might be compromised.To address this issue,this paper proposes a numerical simulation strategy for acquiring the steady axisymmetric three-dimensional flow field of a compressor operating at low mass flow rates,which is known as the Underlying Axisymmetric Pressure Rise Characteristic(UAPRC).The proposed simulation accounts for two different rotor speeds of a transonic compressor and identifies initial positions in the flow field where deterioration occurs based on prior experimental investigations.Moreover,simulation results are incorporated into the BF model to replicate hub instability observed in experiments.Obtained results demonstrate that this strategy provides valid predictions of the UAPRC of the compressor,thereby addressing the limitations associated with the BF model. 展开更多
关键词 Compressor partial instability Performance at low mass flow rates Underlying axisymmetric pressure rise characteristic Novel simulation strategy Body force model
原文传递
Cutting Force Modeling Considering Wiper Edge Cutting Effect During Face Milling of 316H Stainless Steel and Experimental Verifiction
6
作者 Xiuru Li Quanwei Yang +4 位作者 Yu Liu Zhaocheng Wei Jiang Guo Minjie Wang Shengxian Liu 《Chinese Journal of Mechanical Engineering》 CSCD 2024年第6期131-146,共16页
Wiper tools are revered for their capacity to simultaneously achieve high-quality and high-efficient machining.Nonetheless,the cutting mechanism of wiper tools remains unclear,and the cutting force prediction model of... Wiper tools are revered for their capacity to simultaneously achieve high-quality and high-efficient machining.Nonetheless,the cutting mechanism of wiper tools remains unclear,and the cutting force prediction model of wiper tools has not been reported,leading to severe wear of the bottom wiper edge and unstable cutting in machining processes.In this study,the cutting mechanism of wiper tools is systematically analyzed,and the mechanistic cutting force model considering the wiper edge cutting effect was established.The cutting force coefficients were calibrated by the cutting force separation method,which can quickly calibrate the cutting force coefficients for the flank cutting region dominated by the shear effect,the bottom cutting region dominated by the shear effect,and the bottom wiper region dominated by plough effect.Compared with measured cutting forces,the maximum average absolute errors in the predicted forces are 9.2%,7.6%,and 9.3%in the x,y,and z directions,respectively.Furthermore,the feed rate and the length of the wiper edge were primary determinants of the bottom-edge cutting forces.This study provides theoretical guidance and technical support for the wear mechanism and design of wiper tools. 展开更多
关键词 Wiper edge Mechanistic cutting force model Shear effect Plough effect Cutting force separation method
在线阅读 下载PDF
Analysis to the Driving Force Model and Driving Factor on the Utilized Changes of Cultivated Land in Gonghe County 被引量:14
7
作者 俞文政 刘丹 +1 位作者 祁英香 史军 《Agricultural Science & Technology》 CAS 2009年第4期178-182,共5页
Using gradually regression analysis to establish the driving force model of utilized change of cultivated land in Gonghe County, and using path analysis, correlation analysis, partial correlation analysis and system d... Using gradually regression analysis to establish the driving force model of utilized change of cultivated land in Gonghe County, and using path analysis, correlation analysis, partial correlation analysis and system dynamics method to inspect the effect of driving changing on cultivated land change under different change situations. Driving factors, action mechanism and process of utilized change of cultivated land were analyzed from the county territory scale level. At last, some corresponding policies and measures were put forward. 展开更多
关键词 Gonghe County Utilized Change of cultivated land Driving force model Driving factors
在线阅读 下载PDF
Analysis to the Driving Force Model and Drives Factor on the Utilized Changes of Cultivated Land in Qinghai Lake Area 被引量:5
8
作者 赤旦多杰 淡乐蓉 《Agricultural Science & Technology》 CAS 2009年第6期150-154,共5页
Using path analysis, correlation analysis, partial correlation analysis and system dynamics method to study the driving force of cultivated land in Qinghai Lake Area, and using gradually regression analysis to establi... Using path analysis, correlation analysis, partial correlation analysis and system dynamics method to study the driving force of cultivated land in Qinghai Lake Area, and using gradually regression analysis to establish the driving force model of utilized change of cultivated land. Driving factors, action mechanism and process of utilized change of cultivated land were analyzed, and the differences during all factors were compared. The study provides some decision basis for sustainable utilization and management of land resources in Qinghai Lake Area. 展开更多
关键词 Qinghai Lake Area Utilized change of cultivated land Driving force model Driving factors
在线阅读 下载PDF
Milling Force Model for Aviation Aluminum Alloy: Academic Insight and Perspective Analysis 被引量:20
9
作者 Zhenjing Duan Changhe Li +13 位作者 Wenfeng Ding Yanbin Zhang Min Yang Teng Gao Huajun Cao Xuefeng Xu Dazhong Wang Cong Mao Hao Nan Li Gupta Munish Kumar Zafar Said Sujan Debnath Muhammad Jamil Hafiz Muhammad Ali 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第1期54-88,共35页
Aluminum alloy is the main structural material of aircraft,launch vehicle,spaceship,and space station and is processed by milling.However,tool wear and vibration are the bottlenecks in the milling process of aviation ... Aluminum alloy is the main structural material of aircraft,launch vehicle,spaceship,and space station and is processed by milling.However,tool wear and vibration are the bottlenecks in the milling process of aviation aluminum alloy.The machining accuracy and surface quality of aluminum alloy milling depend on the cutting parameters,material mechanical properties,machine tools,and other parameters.In particular,milling force is the crucial factor to determine material removal and workpiece surface integrity.However,establishing the prediction model of milling force is important and difficult because milling force is the result of multiparameter coupling of process system.The research progress of cutting force model is reviewed from three modeling methods:empirical model,finite element simulation,and instantaneous milling force model.The problems of cutting force modeling are also determined.In view of these problems,the future work direction is proposed in the following four aspects:(1)high-speed milling is adopted for the thin-walled structure of large aviation with large cutting depth,which easily produces high residual stress.The residual stress should be analyzed under this particular condition.(2)Multiple factors(e.g.,eccentric swing milling parameters,lubrication conditions,tools,tool and workpiece deformation,and size effect)should be considered comprehensively when modeling instantaneous milling forces,especially for micro milling and complex surface machining.(3)The database of milling force model,including the corresponding workpiece materials,working condition,cutting tools(geometric figures and coatings),and other parameters,should be established.(4)The effect of chatter on the prediction accuracy of milling force cannot be ignored in thin-walled workpiece milling.(5)The cutting force of aviation aluminum alloy milling under the condition of minimum quantity lubrication(mql)and nanofluid mql should be predicted. 展开更多
关键词 MILLING Aluminum alloy force model Empirical model Finite element model Instantaneous milling force model
在线阅读 下载PDF
Study on Model Tests and Hydrodynamic Force Models for Free Spanning Submarine Pipelines Subjected to Earthquakes 被引量:3
10
作者 李明高 李昕 +2 位作者 董汝博 周晶 关炯 《China Ocean Engineering》 SCIE EI 2010年第2期305-320,共16页
A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model ... A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model tests are carried out to consider the effects of exciting wave directions and types. Based on the experimental results, two hydrodynamic force models derived from Morisen equation and Wake model are presented respectively. By use of hydrodynamic force models suitable for free spanning submarine pipelines under earthquakes, diseretized equations of motion are obtained and finite element models are established to analyze dynamic response of free spanning submarine pipeline subjected to multi-support seismic excitations. The comparison of numerical results with experimental results shows that the improved Morison and Wake hydrodynamic force models could satisfactorily predict dynamic response on the free spanning submarine pipelines subjected to earthquakes. 展开更多
关键词 free spanning submarine pipelines model tests hydrodynamic force models dynamic response analysis earthquke
在线阅读 下载PDF
Simulation based on a modified social force model for sensitivity to emergency signs in subway station 被引量:3
11
作者 蔡征宇 周汝 +2 位作者 崔银锴 王妍 蒋军成 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期175-183,共9页
The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation mo... The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation model is explored in this work by combining the improved social force model with the view radius using the Vicsek model. The pedestrians are divided into two categories based on different force models. The first category is sensitive pedestrians who have normal responses to emergency signs. The second category is insensitive pedestrians. By simulating different proportions of the insensitive pedestrians, we find that the escape time is directly proportional to the number of insensitive pedestrians and inversely proportional to the view radius. However, when the view radius is large enough, the escape time does not change significantly, and the evacuation of people in a small view radius environment tends to be integrated. With the improvement of view radius conditions, the escape time changes more obviously with the proportion of insensitive pedestrians. A new emergency sign layout is proposed, and the simulations show that the proposed layout can effectively reduce the escape time in a small view radius environment. However, the evacuation effect of the new escape sign layout on the large view radius environment is not apparent. In this case, the exit setting emerges as an additional factor affecting the escape time. 展开更多
关键词 modified social force model emergency evacuation insensitive pedestrians emergency signs layout
原文传递
A modified streamwise body force model of fan with distorted inflow for rapid propulsion-airframe integrated simulation 被引量:2
12
作者 Zhiping LI Yafei ZHANG +1 位作者 Tianyu PAN Jian ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期202-213,共12页
Streamwise Body Force Model(SBFM)could be used to simulate the force of blade on the airflow,resulting in rapid propulsion-airframe integrated simulation.However,when subjected to inlet distortion,the upstream flow fi... Streamwise Body Force Model(SBFM)could be used to simulate the force of blade on the airflow,resulting in rapid propulsion-airframe integrated simulation.However,when subjected to inlet distortion,the upstream flow field of fan stage is redistributed,which causes inaccurate prediction of fan stage performance.As inspired by the upstream influence of compressor,this paper aims to present a modification strategy for SBFM method to predict the compressor performance under circumferential inlet distortion without any knowledge of compressor geometry.Based on the linearized motion equation,the Upstream Influence Model(UIM)is introduced to predict the upstream flow field redistribution.Then the theoretical Mach number at Aerodynamic Interface Plane(AIP)position is calculated and selected to determine the corresponding body force coefficients based on the functional relationship between body force coefficients and Mach number,thus the upstream influence of compressor could be accurately quantified and the Modified Streamwise Body Force Model(MSBFM)could be established.Two studied cases are calculated with different methods and the upstream flow fields are analyzed.The prediction error of MSBFM method for compressor adiabatic efficiency is less than 3%,and the calculation efficiency is improved 20 times under the condition of ensuring computing accuracy.The MSBFM method has the potential for rapid propulsion-airframe integrated simulation. 展开更多
关键词 Integrated simulation Streamwisebody force model Circumferential inletdistor-tion Upstream influence model Compressorperformance
原文传递
Force modeling for needle insertion into soft tissue based on mechanical properties and geometric parameters 被引量:2
13
作者 宿志亮 Jiang Shan +1 位作者 Wang Xingji Yan Yu 《High Technology Letters》 EI CAS 2014年第3期295-300,共6页
The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a serie... The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a series of experiments are conducted to acquire data from needle soft- tissue interaction process.In order to build a more accurate insertion force model,the interaction force between a surgical needle and soft tissue is divided into three parts:stiffness force,friction force,and cutting force.The stiffness force is modeled on the basis of contact mechanics model.The friction force model is presented using a modified Winkler' s foundation model.The cutting force is viewed as a constant depending on a given tissue.The proposed models in the paper are established on the basis of the mechanical properties and geometric parameters of the needle and soft tissue.The experimental results illustrate that the force models are capable of predicting the needle-tissue interaction force.The force models of needle insertion can provide real-time haptic feedback for robot-assisted procedures,thereby improving the accuracy and safety of surgery. 展开更多
关键词 force modeling needle insertion soft tissue mechanical properties geometric parameters
在线阅读 下载PDF
Design and Grasping Force Modeling for a Soft Robotic Gripper with Multi-stem Twining 被引量:1
14
作者 Yu Shan Yanzhi Zhao +3 位作者 Hongnian Yu Changlei Pei Zhaopeng Jin Yue Sun 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2123-2134,共12页
To improve the grasping power of soft robots,inspired by the scene of intertwined and interdependent vine branches safely clinging to habitats in a violent storm and the phenomenon of large grasping force after being ... To improve the grasping power of soft robots,inspired by the scene of intertwined and interdependent vine branches safely clinging to habitats in a violent storm and the phenomenon of large grasping force after being entangled by aquatic plants,this paper proposes a soft robotic gripper with multi-stem twining.The proposed robotic gripper can realize a larger contact area of surrounding or containing object and more layers of a twining object than the current twining gripping methods.It not only retains the adaptive advantages of twining grasping but also improves the grasping force.First,based on the mechanical characteristics of the multi-stem twining of the gripper,the twining grasping model is developed.Then,the force on the fiber is deduced by using the twining theory,and the axial force of the gripper is analyzed based on the equivalent model of the rubber ring.Finally,the torsion experiments of fibers and the grasping experiments of the gripper are designed and conducted.The torsion experiment of fibers verifies the influence of a different number of fiber ropes and fiber torque on the grasping force,and the grasping experiment reflects the large load of the gripper and the high adaptability and practicability under different tasks. 展开更多
关键词 Soft robotic gripper Multi-stem twining ADAPTABILITY Grasping force model
在线阅读 下载PDF
Assessment of force models on finite-sized particles at finite Reynolds numbers 被引量:1
15
作者 Ruyang LI Weixi HUANG +1 位作者 LihaoZHAO ChunxiaoXU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第6期953-966,共14页
Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method(IBPM)in the turbulent open-channel flow by direct numerical simulation(DNS).The accuracy of the particle surfac... Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method(IBPM)in the turbulent open-channel flow by direct numerical simulation(DNS).The accuracy of the particle surface force models is investigated in comparison with the total force obtained via the fully-resolved method.The results show that the steady-state resistance only performs well in the streamwise direction,while the fluid acceleration force,the added-mass force,and the shear-induced Saffman lift can effectively compensate for the large-amplitude and high-frequency characteristics of the particle surface forces,especially for the wall-normal and spanwise components.The modified steady-state resistance with the correction effects of the acceleration and the fluid shear can better represent the overall forces imposed on the particles,and it is a preferable choice of the surface force model in the Lagrangian point-particle method. 展开更多
关键词 finite-sized particle immersed boundary projection method(IBPM) force model Saffman lift
在线阅读 下载PDF
Simulation of Crowd Motion Based on Boids Flocking Behavior and Social Force Model 被引量:2
16
作者 ZHANG Xuguang ZHU Yanna 《Instrumentation》 2021年第1期29-42,共14页
In the process of crowd movement,pedestrians are often affected by their neighbors.In order to describe the consistency of adjacent individuals and collectivity of a group,this paper learns from the rules of the flock... In the process of crowd movement,pedestrians are often affected by their neighbors.In order to describe the consistency of adjacent individuals and collectivity of a group,this paper learns from the rules of the flocking behavior,such as segregation,alignment and cohesion,and proposes a method for crowd motion simulation based on the Boids model and social force model.Firstly,the perception area of individuals is divided into zone of segregation,alignment and cohesion.Secondly,the interactive force among individuals is calculated based upon the zone information,velocity vector and the group information.The interactive force among individuals is the synthesis of three forces:the repulsion force to avoid collisions,the alignment force to keep consistent with the velocity direction,and the attractive force to get close to the members of group.In segregation and alignment areas,the repulsion force and alignment force among pedestrians are limited by visual field factors.Finally,the interactive force among individuals,the driving force of destination and the repulsion force of obstacles work together to drive the behavior of crowd motion.The simulation results show that the proposed method can not only effectively simulate the interactive behavior between adjacent individuals but also the collective behavior of group. 展开更多
关键词 Collective Behavior Crowd Motion Simulation Social force model Boids model
原文传递
Mesh Force Modelling and Parametric Studies for Compound Oscillatory Roller Reducer
17
作者 Changxu Wei Chaosheng Song +2 位作者 Caichao Zhu Chengcheng Liang Long Hu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期151-167,共17页
A compound oscillatory roller reducer(CORR)with a first-stage gear transmission and a second-stage oscillatory roller transmission is presented.The transmission principle of oscillatory roller transmission is introduc... A compound oscillatory roller reducer(CORR)with a first-stage gear transmission and a second-stage oscillatory roller transmission is presented.The transmission principle of oscillatory roller transmission is introduced,and the tooth profile equation of the inner gear is derived.The analytical model of mesh force considering the installation errors and manufacturing errors is proposed.Then,parametric studies considering different errors on the mesh force are conducted.Results show that the design parameters are significant factors for mesh force.The mesh force is reduced by 17%as the eccentricity of disk cam increases from 2.5 mm to 4 mm.When the radius of the movable roller increases from 7 mm to 20 mm,the mesh force decreases by 8%.As the radius of disk cam increases from 125 mm to 170 mm,the mesh force is decreased by 26.5%.For the impacts of errors,the mesh force has a noticeable fluctuation when these errors exist including the manufacturing error of disk cam,the installation error of disk cam and the manufacturing error of movable roller change.The prototype of the reducer is manufactured and preliminary run-in test proved the feasibility of the transmission principle. 展开更多
关键词 Compound oscillatory roller reducer Kinematic principle Mesh force modelling Misalignments Parametric study
在线阅读 下载PDF
Quasi-Monte Carlo Approximations for Exponentiated Quadratic Kernel in Latent Force Models
18
作者 Qianli Di 《Open Journal of Modelling and Simulation》 2022年第4期349-390,共42页
In this project, we consider obtaining Fourier features via more efficient sampling schemes to approximate the kernel in LFMs. A latent force model (LFM) is a Gaussian process whose covariance functions follow an Expo... In this project, we consider obtaining Fourier features via more efficient sampling schemes to approximate the kernel in LFMs. A latent force model (LFM) is a Gaussian process whose covariance functions follow an Exponentiated Quadratic (EQ) form, and the solutions for the cross-covariance are expensive due to the computational complexity. To reduce the complexity of mathematical expressions, random Fourier features (RFF) are applied to approximate the EQ kernel. Usually, the random Fourier features are implemented with Monte Carlo sampling, but this project proposes replacing the Monte-Carlo method with the Quasi-Monte Carlo (QMC) method. The first-order and second-order models’ experiment results demonstrate the decrease in NLPD and NMSE, which revealed that the models with QMC approximation have better performance. 展开更多
关键词 Latent force model COVID-19 Quasi-Monte Carlo Approximations
在线阅读 下载PDF
Cast-rolling force model in solid-liquid cast-rolling bonding(SLCRB) process for fabricating bimetal clad strips 被引量:8
19
作者 Jun-peng ZHANG Hua-gui HUANG +2 位作者 Ri-dong ZHAO Miao FENG Kai MENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期626-635,共10页
Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below t... Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below the kiss point(KP). The deformation resistance of the liquid zone was ignored. Then, the calculation model was derived. A 2D thermal-flow coupled simulation was established to provide a basis for the parameters in the model, and then the rolling forces of the Cu/Al clad strip at different rolling speeds were calculated. Meanwhile, through measurement experiments, the accuracy of the model was verified. The influence of the rolling speed, the substrate strip thickness, and the material on the rolling force was obtained. The results indicate that the rolling force decreases with the increase of the rolling speed and increases with the increase of the thickness and thermal conductivity of the substrate strip. The rolling force is closely related to the KP height. Therefore, the formulation of reasonable process parameters to control the KP height is of great significance to the stability of cast-rolling forming. 展开更多
关键词 bimetal clad strip solid−liquid cast-rolling bonding rolling force calculation model kiss point thermal−flow coupled simulation
在线阅读 下载PDF
Cutting force model and damage formation mechanism in milling of 70wt%Si/Al composite 被引量:5
20
作者 Guolong ZHAO Lianjia XIN +3 位作者 Liang LI Yang ZHANG Ning HE Hans Nørgaard HANSEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期114-128,共15页
High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many appl... High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many applications in terms of radar communication, aerospace and automobile industry. However, rapid tool wear resulted from high cutting force and hard abrasion, and damaged machined surfaces are the main problem in machining Si/Al composite. This work aims to reveal the mechanisms of milling-induced damages of 70wt% Si/Al composites. A cutting force analytical model considering the characteristics of both the primary silicon particles and the cutting-edge radius was established. Milling experiments were conducted to verify the validity of the model. The results show that the analytical model exhibits a good consistency with the experimental results, and the error is about 10%. The cutting-edge radius has significant effects on the cutting force, surface roughness and damage formation. With the increase in the cutting-edge radius, both the cutting force and the surface roughness decrease firstly and then increase. When the cutting-edge radius is 27 μm, the surface roughness(Sa) reaches the minimum of 2.3 μm.Milling-induced surface damages mainly contain cracks, pits, scratches, matrix coating and burrs.The damage formation is dominated by the failure mode of primary silicon particles, which includes compressive breakage, intragranular fracture, particle pull-out, and interface debonding. In addition, the high ductility of aluminium matrix leads to matrix coating. This work provides guidance for tool selection and damage inhibition in high-efficiency and high-precision machining of high mass fraction Si/Al composites. 展开更多
关键词 posite Cutting force analytical model Cutting-edge radius Surface quality Damage formation mechanism
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部