Early adequate fluid loading was the corner stone of hemodynamic optimization for sepsis and septic shock. Meanwhile, recent recommended protocol for fluid resuscitation was increasingly debated on hemodynamic stabili...Early adequate fluid loading was the corner stone of hemodynamic optimization for sepsis and septic shock. Meanwhile, recent recommended protocol for fluid resuscitation was increasingly debated on hemodynamic stability vs risk of overloading. In recent publications, it was found that a priority was often given to hemodynamic stability rather than organ function alternation in the early fluid resusci- tation of sepsis. However, no safety limits were used at all in most of these reports. In this article, the rationality and safety of early aggressive fluid loading for septic patients were discussed. It was concluded that early aggressive fluid loading improved hemodynamics transitorily, but was probably traded off with a follow-up organ function impairment, such as worsening oxygenation by reduction of lung aeration, in a part of septic patients at least. Thus, a safeguard is needed against unnecessary excessive fluids in early aggressive fluid loading for set)tic patients.展开更多
The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching...The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal deficiencies.展开更多
The Initial Imperfection Amplified Criterion is applied toinvestigate the geometric nonlinear dynamic buckling of staticallypreloaded ring-stiffened cylindrical shells under axial fluid-solidimpact. Tak- ing account o...The Initial Imperfection Amplified Criterion is applied toinvestigate the geometric nonlinear dynamic buckling of staticallypreloaded ring-stiffened cylindrical shells under axial fluid-solidimpact. Tak- ing account of the effects of large deformation andinitial geometric imperfection, the governing equations are obtainedby the Galerkin method and solved by the Runge-Kutta method. Theeffects of static preloading (uniform external radial pressure) onthe buckling features and the load-carrying ability of ring-stiffenedcy- lindrical shells against axial impact are discussed.展开更多
In this paper, the effect of angle inclination at the interface of a viscous fluid and thermoelastic micropolar honeycomb solid due to inclined load is investigated. The inclined load is assumed to be a linear combina...In this paper, the effect of angle inclination at the interface of a viscous fluid and thermoelastic micropolar honeycomb solid due to inclined load is investigated. The inclined load is assumed to be a linear combination of normal load and tangential load. Laplace transform with respect to time variable and Fourier transform with respect to space variable are applied to solve the problem. Expressions of stresses, temperature distribution, and pressures in the transformed domain are obtained by introducing potential functions. The numerical inversion technique is used to obtain the solution in the physical domain. The frequency domain expressions for steady state are also obtained with appropriate change of variables. Graphic representations due to the response of different sources and changes of angle inclination are shown. Some particular cases are also discussed.展开更多
A theoretical model is developed to predict the sound radiation ability of a cylindrical thin elastic shell of finite length, covered with a damp layer and terminated with infinite cylindrical rigid baffles. This shel...A theoretical model is developed to predict the sound radiation ability of a cylindrical thin elastic shell of finite length, covered with a damp layer and terminated with infinite cylindrical rigid baffles. This shell is immersed in a heavy fluid extending up to infinity, and excited by a constant point load continuously traveling along the circumferential direction. A frequency-domain representation of the rotating load and three equations of the vibroacoustic coupling problem are given. The equations are solved by means of modal analysis method and asymptotic expansion method. Also, a mathematical expression of modal amplitude of shell radial displacement is obtained. The sound radiation ability of this kind of shell is evaluated and the corresponding numerical results are given.展开更多
Using the model data for surface mass changes of the atmosphere, ocean, soil moisture and snow depth, the vertical crustal displacements of 25 ficual stations in China were calculated according to the loading theory. ...Using the model data for surface mass changes of the atmosphere, ocean, soil moisture and snow depth, the vertical crustal displacements of 25 ficual stations in China were calculated according to the loading theory. From the spectral analysis of the results, we can see that the periods of displacements are 12 months and the semi-periods are 6 months. The results also show that the maximum seasonal displacements can reach 20 mm and even larger. The covariance analyses and significance tests show that the coefficients of 96 percent of the stations are significant at the 0.1 significance level. The results show that one of the reasons of the vertical crustal displacements is the changing surface fluid loads.展开更多
So far the magneto-rheological(MR) effect mechanism of MR damper has not been known completely, especially in the impact load,and the problem becomes more complicated and difficult for analyzing.A set of characteristi...So far the magneto-rheological(MR) effect mechanism of MR damper has not been known completely, especially in the impact load,and the problem becomes more complicated and difficult for analyzing.A set of characteristic tests and parameters' identification are made to the MR damper by the experimental platform. The dynamical model of the damper is constructed based on the Bingham plastic model,and the buffer control strategy of aircraft undercarriage based on MR technology is established.Finally,the fuzzy control algorithm is applied to the process of automatic control for landing buffer of aircraft undercarriage.The simulation results show that the proposed MR damper pulley buffer can effectively recognize the impact energy.The research has a better application in the engineering.展开更多
The influeuce of temperature on rheological characteristics of lubricants is analyzed. The constitutive equation, which describes the non-Newtonian properties of lubricants caused by thermal effect, is founded and cou...The influeuce of temperature on rheological characteristics of lubricants is analyzed. The constitutive equation, which describes the non-Newtonian properties of lubricants caused by thermal effect, is founded and coupled with equations or continuity and momentum of fluid to calculate the load carrying capacity of thrust bearings. The results or numerical solution show that lubricants have ultimate shear strength as a result or nou-Newtonian effect of temperature, and the thermal effect plays an.important role in load carrying capacity of thrust bearings The mechanism of film failure in thrust bearings is investigated initially’ Theoretlcal bases for predicting the lubrication situatlon and improving the design of thrust bearings are provided in this paper.展开更多
The elasto-gravitational deformation response of the Earths solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical ...The elasto-gravitational deformation response of the Earths solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical behaviors of the fluid outer core (FOC), is discussed. The internal load Love numbers, which are formulized in a general form in this study, are employed to describe the Earths deformation. The preliminary reference Earth model (PREM) is used as an example to calculate the internal load Love numbers on the Earths surface, CMB and ICB, respectively. The characteristics of the Earths deformation variation with the depth and the perturbation periods on the boundaries of the FOC are also investigated. The numerical results indicate that the internal load Love numbers decrease quickly with the increasing degree of the spherical harmonics of the displacement and depend strongly on the perturbation frequencies, especially on the high frequencies. The results, obtained in this work, can be used to construct the boundary conditions for the core dynamics of the long-period oscillations of the Earths fluid outer core.展开更多
In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer fluid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder ...In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer fluid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder are obtained by use of the method of eigenfunction expansions. The hydrodynamic loads on the vertically floating cylinder in a two-layer fluid inelude not only the surge, heave and pitch exciting forces due to the incident wave of the surface-wave mode, but also those due to the incident wave of the internal-wave mode. This is different from the case of a homogenous fluid. Some given examples show that, for a two-layer fluid system with a small density difference, the hydrodynamic loads for the surface-wave mode do not differ significantly from those due to surface waves in a single-layer fluid, but the hydrodynamic loads for the internal-wave mode are important over a wide range of frequencies. Moreover, also considered are the free surface and interface elevations generated by the diffraction wave due to the incident wave of the surface-wave and interhal-wave modes, and transfer of energy between modes.展开更多
In this paper, the effect of green water impact on a flexible structure is studied based on three-step computational fluid dynamics(CFD)–boundary element method(BEM)–finite element method(FEM) approach. The impact d...In this paper, the effect of green water impact on a flexible structure is studied based on three-step computational fluid dynamics(CFD)–boundary element method(BEM)–finite element method(FEM) approach. The impact due to shipping of water on the deck of the vessel is computed using commercial CFD software and used as an external force in coupled BEM-FEM solver. Other hydrodynamic forces such as radiation, diffraction, and Froude-Krylov forces acting on the structure are evaluated using 3 D time domain panel method. To capture the structural responses such as bending moment and shear force, 1 D finite element method is developed. Moreover, a direct integration scheme based on the Newmark–Beta method is employed to get the structural velocity,displacement, etc., at each time step. To check the effect of the green water impact on the structure, a rectangular barge without forward speed is taken for the analysis. The influence is studied in terms of bending moment, shear force, etc. Results show that the effect of green water impact on the bow region can be severe in extreme seas and lead to various structural damages. Similarly,it is also verified that vessel motion affects green water loading significantly and therefore one must consider its effect while designing a vessel.展开更多
Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been iden...Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been identified as another important factor of land subsidence,but researches in this sector have lagged.The effect of a single building load on land subsidence was neglected in many cases owing to the narrow scope and the limited depth of the additional stress in stratum.However,due to the superposition of stresses between buildings,the additional stress of cluster loads is greater than that of a single building load under the same condition,so that the land subsidence caused by cluster loads cannot be neglected.Taking Shamen village in the north of Zhengzhou,China,as an example,a finite-difference model based on the Biot consolidation theory to calculate the land subsidence caused by cluster loads was established in this paper.Cluster loads present the characteristics of large-area loads,and the land subsidence caused by cluster loads can have multiple primary consolidation processes due to the stress superposition of different buildings was shown by the simulation results.Pore water migration distances are longer when the cluster loads with high plot ratio are imposed,so that consolidation takes longer time.The higher the plot ratio is,the deeper the effective deformation is,and thus the greater the land subsidence is.A higher plot ratio also increases the contribution that the deeper stratigraphic layers make to land subsidence.Contrary to the calculated results of land subsidence caused by cluster loads and groundwater recession,the percentage of settlement caused by cluster loads in the total settlement was 49.43%and 55.06%at two simulated monitoring points,respectively.These data suggest that the cluster loads can be one of the main causes of land subsidence.展开更多
A novel numerical method to lubricate a conventional finite diameterconical-cylindrical bearing with a non-Newtonian lubricant, while adhering to the power-law model,is presented. The elastic deformation of bearing an...A novel numerical method to lubricate a conventional finite diameterconical-cylindrical bearing with a non-Newtonian lubricant, while adhering to the power-law model,is presented. The elastic deformation of bearing and varied viscosity of lubrication due to thepressure distribution of film thickness are also considered. Simulation results indicate that thenormal load carrying capacity is more pronounced for higher values of flow behavior index n, highereccentricity ratios and larger misalignment factors. It is found that the viscosity-pressure to theeffect of lubricant viscosity is significant.展开更多
BACKGROUND Acute pancreatitis(AP)is a potentially life-threatening complication of pancreaticoduodenectomy that increases morbidity and mortality in patients.Interleukin-17A(IL-17a)the potential preoperative marker fo...BACKGROUND Acute pancreatitis(AP)is a potentially life-threatening complication of pancreaticoduodenectomy that increases morbidity and mortality in patients.Interleukin-17A(IL-17a)the potential preoperative marker for predicting postoperative outcomes.The purpose of this study is to retrospectively assess the prognostic value of preoperative IL-17a level in prediction of AP and related postoperative pancreatic fistula(POPF)following pancreaticoduodenectomy.AIM To retrospectively assess the prognostic value of preoperative IL-17a levels in predicting AP and related POPF following pancreaticoduodenectomy.METHODS Retrospective analysis of pancreaticoduodenectomies performed on patients 150 patients between 2017 and 2023.Clinical data including pre-operative IL-17a levels were collected.The primary composite outcomes were postoperative AP and postoperative pancreatic(PP),and the predictive performances of IL-17a levels and fluid load status for postoperative complications were evaluated by statistical analysis.RESULTS A total of 150 patients were included,and 26 patients(17.3%)developed postoperative AP and 34 patients(22.7%)developed PP.Preoperative IL-17a was a risk factor for postoperative AP(P=0.03).Furthermore,excessive intraoperative fluid load was a significantly associated(P=0.01)with PP.The model(IL-17a levels+fluid load status)was highly accurate.CONCLUSION Preoperative IL-17a levels and intravascular volume status may serve as useful predictors of AP and subsequent PP following PD.These parameters provide means to evaluate preoperative risk and may guide clinical decision making to enhance postoperative recovery.展开更多
文摘Early adequate fluid loading was the corner stone of hemodynamic optimization for sepsis and septic shock. Meanwhile, recent recommended protocol for fluid resuscitation was increasingly debated on hemodynamic stability vs risk of overloading. In recent publications, it was found that a priority was often given to hemodynamic stability rather than organ function alternation in the early fluid resusci- tation of sepsis. However, no safety limits were used at all in most of these reports. In this article, the rationality and safety of early aggressive fluid loading for septic patients were discussed. It was concluded that early aggressive fluid loading improved hemodynamics transitorily, but was probably traded off with a follow-up organ function impairment, such as worsening oxygenation by reduction of lung aeration, in a part of septic patients at least. Thus, a safeguard is needed against unnecessary excessive fluids in early aggressive fluid loading for set)tic patients.
基金supported by grants from NIH (P30GM103333 and RO1AR054385 to LW)China CSC fellowship (to LF)DOD W81XWH-13-1-0148 (to XLL)
文摘The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal deficiencies.
基金the National Natural Sciences Foundation of China(No.19802017)
文摘The Initial Imperfection Amplified Criterion is applied toinvestigate the geometric nonlinear dynamic buckling of staticallypreloaded ring-stiffened cylindrical shells under axial fluid-solidimpact. Tak- ing account of the effects of large deformation andinitial geometric imperfection, the governing equations are obtainedby the Galerkin method and solved by the Runge-Kutta method. Theeffects of static preloading (uniform external radial pressure) onthe buckling features and the load-carrying ability of ring-stiffenedcy- lindrical shells against axial impact are discussed.
文摘In this paper, the effect of angle inclination at the interface of a viscous fluid and thermoelastic micropolar honeycomb solid due to inclined load is investigated. The inclined load is assumed to be a linear combination of normal load and tangential load. Laplace transform with respect to time variable and Fourier transform with respect to space variable are applied to solve the problem. Expressions of stresses, temperature distribution, and pressures in the transformed domain are obtained by introducing potential functions. The numerical inversion technique is used to obtain the solution in the physical domain. The frequency domain expressions for steady state are also obtained with appropriate change of variables. Graphic representations due to the response of different sources and changes of angle inclination are shown. Some particular cases are also discussed.
文摘A theoretical model is developed to predict the sound radiation ability of a cylindrical thin elastic shell of finite length, covered with a damp layer and terminated with infinite cylindrical rigid baffles. This shell is immersed in a heavy fluid extending up to infinity, and excited by a constant point load continuously traveling along the circumferential direction. A frequency-domain representation of the rotating load and three equations of the vibroacoustic coupling problem are given. The equations are solved by means of modal analysis method and asymptotic expansion method. Also, a mathematical expression of modal amplitude of shell radial displacement is obtained. The sound radiation ability of this kind of shell is evaluated and the corresponding numerical results are given.
文摘Using the model data for surface mass changes of the atmosphere, ocean, soil moisture and snow depth, the vertical crustal displacements of 25 ficual stations in China were calculated according to the loading theory. From the spectral analysis of the results, we can see that the periods of displacements are 12 months and the semi-periods are 6 months. The results also show that the maximum seasonal displacements can reach 20 mm and even larger. The covariance analyses and significance tests show that the coefficients of 96 percent of the stations are significant at the 0.1 significance level. The results show that one of the reasons of the vertical crustal displacements is the changing surface fluid loads.
基金the National Natural Science Foundation of China(No.61074090)the Program for Liaoning Excellent Talents in University of China (No.LR2011005)the Innovation Funds of Aviation Industry Corporation of China(No.cxy2011SH)
文摘So far the magneto-rheological(MR) effect mechanism of MR damper has not been known completely, especially in the impact load,and the problem becomes more complicated and difficult for analyzing.A set of characteristic tests and parameters' identification are made to the MR damper by the experimental platform. The dynamical model of the damper is constructed based on the Bingham plastic model,and the buffer control strategy of aircraft undercarriage based on MR technology is established.Finally,the fuzzy control algorithm is applied to the process of automatic control for landing buffer of aircraft undercarriage.The simulation results show that the proposed MR damper pulley buffer can effectively recognize the impact energy.The research has a better application in the engineering.
文摘The influeuce of temperature on rheological characteristics of lubricants is analyzed. The constitutive equation, which describes the non-Newtonian properties of lubricants caused by thermal effect, is founded and coupled with equations or continuity and momentum of fluid to calculate the load carrying capacity of thrust bearings. The results or numerical solution show that lubricants have ultimate shear strength as a result or nou-Newtonian effect of temperature, and the thermal effect plays an.important role in load carrying capacity of thrust bearings The mechanism of film failure in thrust bearings is investigated initially’ Theoretlcal bases for predicting the lubrication situatlon and improving the design of thrust bearings are provided in this paper.
文摘The elasto-gravitational deformation response of the Earths solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical behaviors of the fluid outer core (FOC), is discussed. The internal load Love numbers, which are formulized in a general form in this study, are employed to describe the Earths deformation. The preliminary reference Earth model (PREM) is used as an example to calculate the internal load Love numbers on the Earths surface, CMB and ICB, respectively. The characteristics of the Earths deformation variation with the depth and the perturbation periods on the boundaries of the FOC are also investigated. The numerical results indicate that the internal load Love numbers decrease quickly with the increasing degree of the spherical harmonics of the displacement and depend strongly on the perturbation frequencies, especially on the high frequencies. The results, obtained in this work, can be used to construct the boundary conditions for the core dynamics of the long-period oscillations of the Earths fluid outer core.
基金This project was financially supported by the National Natural Science Foundation of China(Grant No.10572092)the High Technology Research and Development Programof China(863Program,Grant Nos.2006AA09Z352 and 2006AA09196-6)
文摘In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer fluid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder are obtained by use of the method of eigenfunction expansions. The hydrodynamic loads on the vertically floating cylinder in a two-layer fluid inelude not only the surge, heave and pitch exciting forces due to the incident wave of the surface-wave mode, but also those due to the incident wave of the internal-wave mode. This is different from the case of a homogenous fluid. Some given examples show that, for a two-layer fluid system with a small density difference, the hydrodynamic loads for the surface-wave mode do not differ significantly from those due to surface waves in a single-layer fluid, but the hydrodynamic loads for the internal-wave mode are important over a wide range of frequencies. Moreover, also considered are the free surface and interface elevations generated by the diffraction wave due to the incident wave of the surface-wave and interhal-wave modes, and transfer of energy between modes.
基金supported by Naval Research Board,India under Project No.NRB-344/HYD/14-15
文摘In this paper, the effect of green water impact on a flexible structure is studied based on three-step computational fluid dynamics(CFD)–boundary element method(BEM)–finite element method(FEM) approach. The impact due to shipping of water on the deck of the vessel is computed using commercial CFD software and used as an external force in coupled BEM-FEM solver. Other hydrodynamic forces such as radiation, diffraction, and Froude-Krylov forces acting on the structure are evaluated using 3 D time domain panel method. To capture the structural responses such as bending moment and shear force, 1 D finite element method is developed. Moreover, a direct integration scheme based on the Newmark–Beta method is employed to get the structural velocity,displacement, etc., at each time step. To check the effect of the green water impact on the structure, a rectangular barge without forward speed is taken for the analysis. The influence is studied in terms of bending moment, shear force, etc. Results show that the effect of green water impact on the bow region can be severe in extreme seas and lead to various structural damages. Similarly,it is also verified that vessel motion affects green water loading significantly and therefore one must consider its effect while designing a vessel.
基金National Key R&D Program of China:Effectively Utilized and Optimized Surface Water and Groundwater in the Fault Basin(2016YFC0502502)China Geology Survey(DD20190356&DD20189262)+1 种基金Chinese Academy of Geological Sciences(YKWF201628)National Natural Science Foundation of China(No.41272301)
文摘Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been identified as another important factor of land subsidence,but researches in this sector have lagged.The effect of a single building load on land subsidence was neglected in many cases owing to the narrow scope and the limited depth of the additional stress in stratum.However,due to the superposition of stresses between buildings,the additional stress of cluster loads is greater than that of a single building load under the same condition,so that the land subsidence caused by cluster loads cannot be neglected.Taking Shamen village in the north of Zhengzhou,China,as an example,a finite-difference model based on the Biot consolidation theory to calculate the land subsidence caused by cluster loads was established in this paper.Cluster loads present the characteristics of large-area loads,and the land subsidence caused by cluster loads can have multiple primary consolidation processes due to the stress superposition of different buildings was shown by the simulation results.Pore water migration distances are longer when the cluster loads with high plot ratio are imposed,so that consolidation takes longer time.The higher the plot ratio is,the deeper the effective deformation is,and thus the greater the land subsidence is.A higher plot ratio also increases the contribution that the deeper stratigraphic layers make to land subsidence.Contrary to the calculated results of land subsidence caused by cluster loads and groundwater recession,the percentage of settlement caused by cluster loads in the total settlement was 49.43%and 55.06%at two simulated monitoring points,respectively.These data suggest that the cluster loads can be one of the main causes of land subsidence.
文摘A novel numerical method to lubricate a conventional finite diameterconical-cylindrical bearing with a non-Newtonian lubricant, while adhering to the power-law model,is presented. The elastic deformation of bearing and varied viscosity of lubrication due to thepressure distribution of film thickness are also considered. Simulation results indicate that thenormal load carrying capacity is more pronounced for higher values of flow behavior index n, highereccentricity ratios and larger misalignment factors. It is found that the viscosity-pressure to theeffect of lubricant viscosity is significant.
文摘BACKGROUND Acute pancreatitis(AP)is a potentially life-threatening complication of pancreaticoduodenectomy that increases morbidity and mortality in patients.Interleukin-17A(IL-17a)the potential preoperative marker for predicting postoperative outcomes.The purpose of this study is to retrospectively assess the prognostic value of preoperative IL-17a level in prediction of AP and related postoperative pancreatic fistula(POPF)following pancreaticoduodenectomy.AIM To retrospectively assess the prognostic value of preoperative IL-17a levels in predicting AP and related POPF following pancreaticoduodenectomy.METHODS Retrospective analysis of pancreaticoduodenectomies performed on patients 150 patients between 2017 and 2023.Clinical data including pre-operative IL-17a levels were collected.The primary composite outcomes were postoperative AP and postoperative pancreatic(PP),and the predictive performances of IL-17a levels and fluid load status for postoperative complications were evaluated by statistical analysis.RESULTS A total of 150 patients were included,and 26 patients(17.3%)developed postoperative AP and 34 patients(22.7%)developed PP.Preoperative IL-17a was a risk factor for postoperative AP(P=0.03).Furthermore,excessive intraoperative fluid load was a significantly associated(P=0.01)with PP.The model(IL-17a levels+fluid load status)was highly accurate.CONCLUSION Preoperative IL-17a levels and intravascular volume status may serve as useful predictors of AP and subsequent PP following PD.These parameters provide means to evaluate preoperative risk and may guide clinical decision making to enhance postoperative recovery.