期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
An improved efficient adaptive method for large-scale multiexplosives explosion simulations
1
作者 Tao Li Cheng Wang Baojun Shi 《Defence Technology(防务技术)》 2025年第3期28-47,共20页
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re... Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size. 展开更多
关键词 Large-scale explosion Shock wave Adaptive method fluid field simulations Efficient method
在线阅读 下载PDF
ANALYSIS OF FLUID FIELD OF LIQUID METAL IN ELECTROMAGNETIC CENTRIFUGAL CASTING 被引量:2
2
作者 JIAO Yuning, LIU Qingmin, YANG Yuangsheng, HU Zhuangqi,Institute of Meta] Research, Chinese Academy of Sciences, Shenyang, ChinaGAO Yunyan, JIA Guanglin, ZHANG Guozhi, QIAO YuanjunNortheast University, Shenyang, China Manuscript received 12 May, 1994 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1994年第2期145-148,共4页
Navier-Stokes equation and Lorentz force equation are used to calculate the fluid field of liquid metal of electromagnetic centrifugal casting (EMCC) in this paper. A field equation is given, which shows the azimuthal... Navier-Stokes equation and Lorentz force equation are used to calculate the fluid field of liquid metal of electromagnetic centrifugal casting (EMCC) in this paper. A field equation is given, which shows the azimuthal velocity closely relates to electrical conductivity, magnetic density, viscosity of liquid metal and radius of casting. The results show that the stationary magnetic field can effectively restrain the fluid flow and the relative velocity between liquid metal and casting mould and the velocity gradient at solid / liquid interface increases with rising magnetic density, which has a great effect on the solidification of liquid metal and crystal growth characteristics. 展开更多
关键词 fluid field of liquid metal electromagnetic centrifugal casting
在线阅读 下载PDF
Effect of Gas Injection on Fluid Flow in Mold 被引量:1
3
作者 Jiongming Zhang Wanjun Wang +1 位作者 Jicheng He Baokuan Li (Materials Science and Engineering School, University of Science and Technology Beijing, Beijing 1 00083, China)(Northeastern University, Xi’an, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1998年第1期16-19,共4页
A mathematical and physical model was adopted to compute the fluid flow distribution in case of localgas holdup in mold. The photography was used to show the fluid field. The predicted flow patterns show. reasonableag... A mathematical and physical model was adopted to compute the fluid flow distribution in case of localgas holdup in mold. The photography was used to show the fluid field. The predicted flow patterns show. reasonableagreement with experiment observations using actual water model. 展开更多
关键词 MOLD gas holdup fluid field
在线阅读 下载PDF
Some exact solutions of the oscillatory motion of a generalized second grade fluid in an annular region of two cylinders 被引量:4
4
作者 A.Mahmood C.Fetecau +1 位作者 N.A.Khan M.Jamil 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第4期541-550,共10页
The velocity field and the associated shear stress corresponding to the longitudinal oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cylinders, are determined by means of th... The velocity field and the associated shear stress corresponding to the longitudinal oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. Initially, the fluid and cylinders are at rest and at t = 0+ both cylinders suddenly begin to oscillate along their common axis with simple harmonic motions having angular frequencies Ω1 and Ω2. The solutions that have been obtained are presented under integral and series forms in terms of the generalized G and R functions and satisfy the governing differential equation and all imposed initial and boundary conditions. The respective solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for the similar flow of ordinary second grade fluid and Newtonian fluid are also obtained as limiting cases of our general solutions. At the end, the effect of different parameters on the flow of ordinary second grade and generalized second grade fluid are investigated graphically by plotting velocity profiles. 展开更多
关键词 Generalized second grade fluid Velocity field Shear stress Longitudinal oscillatory flow Laplace and Hankel transforms
在线阅读 下载PDF
Simulation of 3D parachute fluid–structure interaction based on nonlinear finite element method and preconditioning finite volume method 被引量:3
5
作者 Fan Yuxin Xia Jian 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1373-1383,共11页
A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a t... A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual(GMRES) method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor(HHT) time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC(Harten–Lax–van Leer contact) scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel(LUSGS) approximate factorization is applied to accelerate the numerical convergence speed. Finally,the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature. 展开更多
关键词 Flow fields analysis fluid–structure interaction Nonlinear structural dynam-ics Numerical analysis Parachute inflation
原文传递
Numerical simulation of spatial-temporal evolution characteristics of subsurface fluid based on strong body seismogenic model$$$$ 被引量:1
6
作者 张慧 梁子彬 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第2期195-202,共8页
Using finite element technique of the plane-strain problem in solid-liquid two-phase medium, we Studied the char acteristics of 'field precursors' and 'focus precursors' of subsurface fluid and their s... Using finite element technique of the plane-strain problem in solid-liquid two-phase medium, we Studied the char acteristics of 'field precursors' and 'focus precursors' of subsurface fluid and their spatial-temporal evolution in case of dip-slip earthquake. The results show that: ① the change of ground fluid is slow and the anomaly is not prominent in the early period which is of elastic accumulation and non-linear; ② dilatancy emerges and anomalyfocus mainly in the source region in the moderate period which is hardening and of local dilatancy. In the period the focus precursors emerge earlier than the field precursors; ③ anomalies spreed continuously in the source area and new regions with big anomaly emerge out of the source region in the middle-short period which is of large scale dilatancy. 展开更多
关键词 subsurface fluid field precursors source precursors mechanism numerical simulation
在线阅读 下载PDF
Calculation of flow distribution in air reverse circulation bit interior fluid field by simplifying air flow model 被引量:1
7
作者 Shuqing HAO Hongwei HUANG Kun YIN 《Global Geology》 2007年第2期190-195,共6页
By simplifying the characters in the air reverse circulation bit interior fluid field, the authors used air dynamics and fluid mechanics to calculate the air distribution in the bit and obtained an equation of flow di... By simplifying the characters in the air reverse circulation bit interior fluid field, the authors used air dynamics and fluid mechanics to calculate the air distribution in the bit and obtained an equation of flow distribution with a unique resolution. This study will provide help for making certain the bit parameters of the bit structure effectively and study the air reverse circulation bit interior fluid field character deeply. 展开更多
关键词 air reverse circulation mass distribution equation interior fluid field
在线阅读 下载PDF
Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling 被引量:1
8
作者 梅书哲 王权 +8 位作者 郝美兰 徐健凯 肖红领 冯春 姜丽娟 王晓亮 刘峰奇 徐现刚 王占国 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第9期82-86,共5页
Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform perfor... Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform performanee, the flow field and ternperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to stud,v the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding~ significance for the growth of GaN fihn materials. 展开更多
关键词 MOCVD Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational fluid Dynamics Modeling GAN
原文传递
Fluid Dynamic Field in BozhongDepression, Bohai Bay Basin
9
作者 Ye Jiaren Chen Bonghan Yang Xianghua Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2001年第1期84-89,共6页
The data from regional geology, boreholes, geophysics and tests are integrated to analyze the fluid dynamic field in the Bozhong depression, Bohai Bay basin. The current geothermal gradient is determined to be about ... The data from regional geology, boreholes, geophysics and tests are integrated to analyze the fluid dynamic field in the Bozhong depression, Bohai Bay basin. The current geothermal gradient is determined to be about 2.95 /100 m by integrating 266 drill-stem test (DST) measurements and comparing with the global average value. The paleogeothermal gradients are calculated from the homogenization temperatures of saline inclusions, which vary both laterally and vertically. The data from sonic logs, well tests and seismic velocities are used to investigate the pressure variations in the study area. The mudstone compaction is classified as three major types: normal compaction and normal pressure, under-compaction and overpressure, and past-compaction and under-overpressure. The current pressure profile is characterized by normal pressure, sight pressure and intense overpressure from top to bottom The faults, unconformity surfaces and interconnecting pores constitute a complex network of vertical and horizontal fluid flows within the depression. The fluid potential energy profiles present a 'double-deck' structure. The depocenters are the area of fluids supply, whereas the slopes and uplifts are the main areas of fluids charge. 展开更多
关键词 Bozhong depression fluid dynamic field geothermal field pressure field potential energy field.
在线阅读 下载PDF
Exact solutions for the flow of second grade fluid in annulus between torsionally oscillating cylinders
10
作者 Amir Mahmood Saima Parveen Najeeb Alam Khan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第2期222-227,共6页
The velocity field and the associated shear stress corresponding to the torsional oscillatory flow of a second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and H... The velocity field and the associated shear stress corresponding to the torsional oscillatory flow of a second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. At time t = 0, the fluid and both the cylinders are at rest and at t = 0 + , cylinders suddenly begin to oscillate around their common axis in a simple harmonic way having angular frequencies ω 1 and ω 2 . The obtained solutions satisfy the governing differential equation and all imposed initial and boundary conditions. The solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for Newtonian fluid are also obtained as limiting cases of our general solutions. 展开更多
关键词 Second grade fluid · Velocity field · Shear stress · Longitudinal oscillatory flow · Laplace and Hankel transforms
在线阅读 下载PDF
Exact solution for the rotational flow of a generalized second grade fluid in a circular cylinder
11
作者 I.Siddique D.vieru 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第6期777-785,共9页
This paper deals with the rotational flow of a generalized second grade fluid, within a circular cylinder, due to a torsional shear stress. The fractional calculus approach in the constitutive relationship model of a ... This paper deals with the rotational flow of a generalized second grade fluid, within a circular cylinder, due to a torsional shear stress. The fractional calculus approach in the constitutive relationship model of a second grade fluid is introduced. The velocity field and the resulting shear stress are determined by means of the Laplace and finite Hankel transforms to satisfy all imposed initial and boundary conditions. The solutions corresponding to second grade fluids as well as those for Newtonian fluids are obtained as limiting cases of our general solutions. The influence of the fractional coefficient on the velocity of the fluid is also analyzed by graphical illustrations. 展开更多
关键词 Generalized second grade fluid - Exact solutions . Fractional calculus - Velocity field ~ Shear stress
在线阅读 下载PDF
MY WORK IN THE FIELD OF FLUID MECHANICS
12
作者 Zhou Heng(Tianjin University) 《Bulletin of the Chinese Academy of Sciences》 1996年第1期69-69,共1页
I graduated from the National Peiyang University (now called Tianjin University) in 1950, majoring in hydraulic engineering. Starting from 1952, my teaching work was basically in mechanics.My first academic probe was ... I graduated from the National Peiyang University (now called Tianjin University) in 1950, majoring in hydraulic engineering. Starting from 1952, my teaching work was basically in mechanics.My first academic probe was in cybernetics, resulting in the publication of the first Chinese paper concerning optimal control. After 1963, I worked on the theory of hydrodynamic stability. My explorative thrust is at the eigenvalues of the Orr Sommerfeld Equation,a non-self adjoint problem in 展开更多
关键词 MY WORK IN THE FIELD OF fluid MECHANICS
在线阅读 下载PDF
Numeric Simulation of Single Passage Ternary Turbulence Model in Hydraulic Torque Converter 被引量:5
13
作者 闫清东 魏巍 《Journal of Beijing Institute of Technology》 EI CAS 2003年第2期172-175,共4页
Based on the renormalization group theory, a hydraulic torque converter 3 D turbulent single flow passage model is constructed and boundary condition is determined for analyzing the influence of the fluid field chara... Based on the renormalization group theory, a hydraulic torque converter 3 D turbulent single flow passage model is constructed and boundary condition is determined for analyzing the influence of the fluid field characteristic and parameters on the macroscopic model. Numerical simulation of the single fluid path is processed by computational fluid dynamics and the calculated results approach to experimental data well, and especially in low transmission ratio the torque and head results are more close to experimental data than the calculated results of beam theory. This shows that the appropriate ternary analysis method and reasonable assumption of boundary condition may analyze the flow field more precisely and predict the performance of torque converter more accurately. 展开更多
关键词 hydraulic torque converter 3 D fluid field computational fluid dynamics
在线阅读 下载PDF
Analysis and Prediction of Corrosion Risk in Atmospheric Distillation Tower Overhead System 被引量:3
14
作者 Niu Luna Han Lei +3 位作者 Chen Wenwu Pan Long Zhang Yanling Qu Dingrong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第1期21-30,共10页
In order to optimize the atmospheric tower overhead low-temperature system,the physical parameters,multiphase composition,aqueous dew point temperature,and ammonium salt crystallization temperature are simulated with ... In order to optimize the atmospheric tower overhead low-temperature system,the physical parameters,multiphase composition,aqueous dew point temperature,and ammonium salt crystallization temperature are simulated with process simulation software.The temperature distribution in overhead heat exchanger is calculated by heat transfer calculation.The special parts with elbows near the inlet and outlet of heat exchanger are studied by fluid field analysis.Results indicate that under current operating conditions,the aqueous dew point temperature and initial crystallization temperature of NH4Cl are 91°C and 128°C,respectively.Ammonium salt appears in the distillation tower and liquid water occurs in heat exchanger tubes,in which the dew point induced corrosion is the most direct factor for heat exchanger corrosion.In the heat exchanger,condensate water appearing in the area 2.7 meters away from the bundle inlet can give rise to corrosion risk under the moist NH4Cl and high concentration of acidic solution circumstance.For the pipes and elbows located near the inlet and the outlet of heat exchanger,the flow field presents an unsymmetrical distribution.High risk areas are mainly concentrated on the external bend of elbows where the liquid water concentration is higher.The coupling of simulation methods established thereby is approved as an effective way to evaluate the corrosion risk in the atmospheric column overhead system and can provide a scientific basis for corrosion control. 展开更多
关键词 atmospheric tower overhead SIMULATION CORROSION ammonium salt crystallization fluid field
在线阅读 下载PDF
NUMERICAL SIMULATION OF CASTING PROCESS 被引量:2
15
作者 L.L. Chen, R.X. Liu and H.T. Lin College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期764-769,共6页
In this paper, the development status of casting numerical simulation technology is introduced. In additional, mathematical model, solution method, initial condition, boundary condition and defect predicting scheme of... In this paper, the development status of casting numerical simulation technology is introduced. In additional, mathematical model, solution method, initial condition, boundary condition and defect predicting scheme of foundry process are also analyzed, which include the mold filling process, solidification process and the process coupling fluid flow with heat transfer. Finally, a practical casting is taken out to show how to predict defects and optimize foundry process with numerical simulation technology. 展开更多
关键词 FOUNDRY numerical simulation temperature field fluid field coupling fluid flow with heat transfer
在线阅读 下载PDF
COMPUTER SIMULATION OF CONTINUOUS ELECTROMAGNETIC STIRRING FOR MAKING RHEOLOGIC SEMI-SOLID SLURRY OF ZL112Y ALUMINUM ALLOY 被引量:2
16
作者 LIU Changming YANG Ling ZUO Hongzhi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期108-114,共7页
To realize the technology of fabricating the rheologic semi-solid slurry of ZL112Y aluminum alloy via continues electromagnetic stirring process, ANSYS software was used to simulate electromagnetic force field and flu... To realize the technology of fabricating the rheologic semi-solid slurry of ZL112Y aluminum alloy via continues electromagnetic stirring process, ANSYS software was used to simulate electromagnetic force field and fluid velocity field in the alloy melt in a crucible tube in three coils. In the first section of the paper, eletromagnetic force field and fluid velocity field caused by single coil were simulated. The result of this simulation gives an average velocity of 3.2 cm/s and it is called critical velocity because a fluid velocity over it will cause a fine and spherical structure of solid primary a in a semi-solid melt. And, from this result, a reasonable temperature of semi-solid of the alloy and an electrical current intensity were established. The electrical current intensity of the result of this simulation corresponded to the current intensity used in a practice experiment, in which the primary α was obviously refined and sphericized. Based on this simulation of single coil electromagnetic stirring, in the second section of the paper, eletromagnetic force field and fluid velocity field caused by three coils were simulated. The result of the simulation shows that, 1) there is a semi-solid zone of 32 mm from bottom of the crucible tube to the upper; 2) the electrical current intensities of three coils of 400 A, 600 A, and 400 A, which were set to top range, middle range and bottom range of the tube, respectively, were the optimum parameters of electromagnetic current intensity under the condition of this investigation; and 3) under effect of these electromagnetic current intensity, the fluid velocities of the melt in the tube were 6.3 cm/s in top range, 3.75 cm/s in middle range, and 3.9 cm/s in bottom range of it, respectively. 展开更多
关键词 Electromagnetic stirring Electromagnetic force field fluid velocity field Rheologic semi-solid slurry Computer simulation
在线阅读 下载PDF
Method of calculation of a methane concentration field in gob areas with a known velocity field based on the model of stream tubes 被引量:2
17
作者 Wang Honggang Wu Fengliang 《Mining Science and Technology》 EI CAS 2011年第2期277-280,共4页
The control equations of gas concentration field in gob areas with a known velocity field are partial differential equations with variable coefficients,whose traditional mathematical calculation methods are very compl... The control equations of gas concentration field in gob areas with a known velocity field are partial differential equations with variable coefficients,whose traditional mathematical calculation methods are very complex.A numerical simulation method can be used to calculate the gas concentration field,but it also needs considerable amounts of computer resources and the relations of gas concentration at different points of the gob area are undefined.Based on the model of stream tubes,the conservation equations of mass and gas components within the stream tube are used to deduce the equations of a gas concentration field in a gob area with a known velocity field.This method of calculation of a gas concentration field is applied in a gob area with a U-type ventilation working face,which suggests that this new method has the virtue of exact calculations is simple to operate and has a clear physical interpretation. 展开更多
关键词 fluid field Cob area Concentration field Stream tube
在线阅读 下载PDF
Mechanism of Phase Transition from Liquid to Gas Under Dielectric Barrier Discharge Plasma
18
作者 王秋颖 李森 顾璠 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第5期585-591,共7页
Liquid gasification phenomenon was observable in liquid-solid dielectric barrier discharge (DBD) experiments. Starting from classical thermodynamics, this study aimed at finding the reason of liquid gasification in ... Liquid gasification phenomenon was observable in liquid-solid dielectric barrier discharge (DBD) experiments. Starting from classical thermodynamics, this study aimed at finding the reason of liquid gasification in the DBD experiments. Fluid statics and electrohydrodynamics were adopted to analyze the mechanism of phase transition from liquid to gas. The Sumoto effect was also employed to visually explain the change in the pressure of fluid due to the electric field. It was concluded from both theoretical analysis and experiment that the change in liquid pressure was a key factor causing liquid to gasify in DBD conditions.Furthermore, it was stressed that the liquid pressure was affected by many parameters including liquid permittivity, voltage, electric intensity, size of the discharge space and uniformity of the electric field distribution, etc. All of them affected DBD liquid gasification. The related results would provide useful theoretical evidence for multi-phase DBD applications. 展开更多
关键词 DBD LIQUID GASIFICATION phase transition PRESSURE electric field fluid field
在线阅读 下载PDF
Application of FLUENT on fine-scale simulation of wind field over complex terrain 被引量:2
19
作者 Lei Li LiJie Zhang +3 位作者 Ning Zhang Fei Hu Yin Jiang WeiMei Jiang 《Research in Cold and Arid Regions》 2010年第5期411-418,共8页
The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FL... The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FLUENT on describing the wind field details over a complex terrain. The results of the numerical tests show that FLUENT can simulate the wind field over extremely complex terrain, which cannot be simulated by mesoscale models. The reason why FLUENT can cope with extremely complex terrain, which can not be coped with by mesoscale models, relies on some particular techniques adopted by FLUENT, such as computer-aided design (CAD) technique, unstructured grid technique and finite volume method. Compared with mesoscale models, FLUENT can describe terrain in much more accurate details and can provide wind simulation results with higher resolution and more accuracy. 展开更多
关键词 FLUENT Computational fluid Dynamics (CFD) complex terrain wind field fine-scale simulation
在线阅读 下载PDF
Flow Field and Thermal Analysis of the Divertor Target Plate for HL-2A Tokamak
20
作者 施乐 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第5期2989-2993,共5页
In the initial phase of the physics experiment, the double-null divertor plates used consist of graphite armor tiles, Mo-alloy intermediate layers and Cu-alloy coolant tubes. In the later operating phase, tungsten wil... In the initial phase of the physics experiment, the double-null divertor plates used consist of graphite armor tiles, Mo-alloy intermediate layers and Cu-alloy coolant tubes. In the later operating phase, tungsten will be used as armor tiles. A multi-physical field numerical analysis method is used in this paper. Its analysis model reflects more realistically the real divertor structure than other models. Two-dimensional (2D) and three-dimensional (3D) fluid flow field, temperature distribution and thermal stress analyses of the divertor plates are carried out by the ANSYS code. During the physics experimental phase with a heat flux of 1 MW/m2, a coolant velocity of 5.48 m/s, and a thermal stress of 750 kg/cm2, the graphite armor tiles successfully meet the requirements of temperature, thermal stress and sputtering erosion. The tungsten armor will be considered as a second candidate. The result of simulation can be used for upgrading the design parameters of the HL-2A poloidal divertor. 展开更多
关键词 fluid flow field thermal stress computer simulation divertor target plate fluid calculation ANSYS code
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部