The global clustering of inventive talent shapes innovation capacity and drives economic growth.For China,this process is especially crucial in sustaining its development momentum.This paper draws on data from the EPO...The global clustering of inventive talent shapes innovation capacity and drives economic growth.For China,this process is especially crucial in sustaining its development momentum.This paper draws on data from the EPO Worldwide Patent Statistical Database(PATSTAT)to extract global inventive talent mobility information and analyzes the spatial structural evolution of the global inventive talent flow network.The study finds that this network is undergoing a multi-polar transformation,characterized by the rising importance of a few central countries-such as the United States,Germany,and China-and the increasing marginalization of many peripheral countries.In response to this typical phenomenon,the paper constructs an endogenous migration model and conducts empirical testing using the Temporal Exponential Random Graph Model(TERGM).The results reveal several endogenous mechanisms driving global inventive talent flows,including reciprocity,path dependence,convergence effects,transitivity,and cyclic structures,all of which contribute to the network’s multi-polar trend.In addition,differences in regional industrial structures significantly influence talent mobility choices and are a decisive factor in the formation of poles within the multi-polar landscape.Based on these findings,it is suggested that efforts be made to foster two-way channels for talent exchange between China and other global innovation hubs,in order to enhance international collaboration and knowledge flow.We should aim to reduce the migration costs and institutional barriers faced by R&D personnel,thereby encouraging greater mobility of high-skilled talent.Furthermore,the government is advised to strategically leverage regional strengths in high-tech industries as a lever to capture competitive advantages in emerging technologies and products,ultimately strengthening the country’s position in the global innovation landscape.展开更多
Theoretic and practical significance has been highlighted in the research of the roles and functions of destinations,as destinations are restricted by the spatial structure based on tourist flow network from the persp...Theoretic and practical significance has been highlighted in the research of the roles and functions of destinations,as destinations are restricted by the spatial structure based on tourist flow network from the perspective of relationship.This article conducted an empirical analysis for Tourism Region of South Anhui(TRSA) and revealed the necessity and feasibility of studying the roles and functions of destinations from tourist flow network's perspective.The automorphic equivalence analysis and centrality analysis were used to classify 16 destinations in TRSA into six role types:tourist flow distribution center,hub of tourist flows,passageway destination,common touring destination,attached touring destination,and nearly isolated destination.Some suggestions were given on suitable infrastructure construction and destinations service designs according to their functions in network.This destination role positioning was based on tourist flow network structure in integral and macroscopic way.It provided an important reference for the balanced and harmonious development of all the destinations of TRSA.In addition,this article verified the applicability of social network analysis on tourist flow research in local scale,and expanded this method to destination role and function positioning.展开更多
In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper c...In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.展开更多
Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assig...Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assigned to face critical situations-i.e.,to keep the network functioning normally in the case of failure at one or more edges.The robust design problem(RDP)in a capacitated flow network is to search for the minimum capacity assignment of each edge such that the network still survived even under the edge’s failure.The RDP is known as NP-hard.Thus,capacity assignment problem subject to system reliability and total capacity constraints is studied in this paper.The problem is formulated mathematically,and a genetic algorithm is proposed to determine the optimal solution.The optimal solution found by the proposed algorithm is characterized by maximum reliability and minimum total capacity.Some numerical examples are presented to illustrate the efficiency of the proposed approach.展开更多
Based on the heat flow data published in 1990 and 2001, a study of the factors influencing the terrestrial heat flow distribution in the China continent and its quantitative expression is carried out using the "Netli...Based on the heat flow data published in 1990 and 2001, a study of the factors influencing the terrestrial heat flow distribution in the China continent and its quantitative expression is carried out using the "Netlike Plastic-Flow" continental dynamics model and the methods of statistic analysis and optimum fitting. The result indicates that the factors influencing the heat flow distribution is classified into two groups, i.e. background and tectonic ones, in which the former mainly involves the non- uniform distribution of mantle heat flow, heat production of radioactive dements in the crust, heattransfer media and hydrothermal circulation, while the latter mainly involves plastic-flow networks and relatively-stable blocks. The plastic-flow network is a manifestation of shear localization in the netlike plastic-flow process in the lower lithosphere, which is composed of two sets of plastic-flow belts (PFBs) intersecting each other and, as one of the basic action regimes, controls the intraplate tectonic deformation. Relatively stable blocks (RSBs), which are the tectonic units with relatively-high viscosities existing in the netlike plastic-flow field, as one of the principal origins, result in the development of large-seale compressional basins. PFB and RSB, as the active and quiet states of tectonic deformation, give rise to the higher and lower heat flow values, respectivdy. The provincial average heat flow in continent can be estimated using the expression qav = q0 + a Pbt-c Pbk, where the three terms of the right side are background heat flow, PFB-positive contribution and RSB-negative contribution, Pbt and Pbk are the PFB- and RSB-coverage ratios, respectively, a is the coefficient of PFB- positive contribution depending mainly on the strain in the lower lithosphere, and c is the coefficient of RSB-negative contribution related mainly to the thickness of the lithosphere, the aseismic-area ratio and the tectonic age. For the major portion of the China continent excluding some of the southeastern region of China, the confidence interval of the provincial average background heat flow is qo=57.25±24.8 mW/m^2 and the PFB-positive- and RSB-negative-contribution coefficients are a=14.8-71.9 mW/m^2 and c=0-25.6 mW/m^2, respectively. The concepts of PFB and RSB effects and the heat flow expression suggested provide a new choice of the approach to the quantitative description of the characteristics of heat flow distribution in continent and their physical mechanisms.展开更多
Multipe NSSS (Nuclear Steam Supply System) modules use the common feeding-water system to drive the common turbine power generation set. The SSFFN (secondary side fluid flow network) of MHTGR plant has features i.e. s...Multipe NSSS (Nuclear Steam Supply System) modules use the common feeding-water system to drive the common turbine power generation set. The SSFFN (secondary side fluid flow network) of MHTGR plant has features i.e. strong-coupling and nonlinearity. A wide range of power switching operation will cause unsteady flow, which may destroy the working elements and will be a threat for normal operation. To overcome those problems, a differential-algebraic model and PI controllers are designed for the SSFFN. In MATLAB\SIMULINK environment, a simulation platform is established and used to make a simulation of SSFFN of a MHTGR plant with two NSSS modules, which uses feedwater valves to control the mass flow rate in each module instead of feedwater pump. Results reflect good robustness of controllers.展开更多
Several conclusions on minimal cutset are proposed, from which a new algorithm is deduced to evaluate the unreliability of flow networks. Beginning with one unreliability product of the network, disjointed unreliabili...Several conclusions on minimal cutset are proposed, from which a new algorithm is deduced to evaluate the unreliability of flow networks. Beginning with one unreliability product of the network, disjointed unreliability products are branched out one by one, every of which is selected from the network minimal cutsets. Finally the unreliability of the network is obtained by adding all these unreliability products up.展开更多
Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose...Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks.Design/Methodology/Approach:The IKM model enhances the preferential attachment and growth observed in scale-free BA networks,while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network.To compare its performance,the BA and DMS models are also employed for simulating the network.Pearson coefficient analysis is conducted on the simulated networks generated by the IKM,BA and DMS models,as well as on the actual network.Findings:The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network.It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm.The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units.Research Limitations:This study has some limitations.Firstly,it primarily focuses on the evolution of knowledge flow networks within the field of physics,neglecting other fields.Additionally,the analysis is based on a specific set of data,which may limit the generalizability of the findings.Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets.Practical Implications:The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions.It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations.The model can aid in optimizing knowledge flow and enhancing collaboration within organizations.Originality/value:This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks.The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions.Moreover,the model has the potential to be applied to other knowledge networks,which are formed by knowledge organizations as node units.展开更多
In the present paper, a three-component, stationary, multistate flow network system is studied. Detailed costs and incomes are specified. The aim is to minimize the expected total net loss with respect to the expected...In the present paper, a three-component, stationary, multistate flow network system is studied. Detailed costs and incomes are specified. The aim is to minimize the expected total net loss with respect to the expected times the components spend in each state. This represents a novelty in that we connect the expected component times spent in each state to the minimal total net loss of the system, without first finding the component importance. This is of interest in the design phase where one may tune the components to minimize the expected total net loss. Due to the complex nature of the problem, we first study a simplified version. There the expected times spent in each state are assumed equal for each component. Then a modified version of the full model is presented. The optimization in this model is completed in two steps. First the optimization is carried out for a set of pre-chosen fixed expected life cycle lengths. Then the overall minimum is identified by varying these expectations. Both the simplified and the modified optimization problems are nonlinear. The setup used in this article is such that it can easily be modified to represent other flow network systems and cost functions. The challenge lies in the optimization of real life systems.展开更多
System reliability optimization problem of multi-source multi-sink flow network is defined by searching the optimal components that maximize the reliability and minimize the total assignment cost. Therefore, a genetic...System reliability optimization problem of multi-source multi-sink flow network is defined by searching the optimal components that maximize the reliability and minimize the total assignment cost. Therefore, a genetic-based approach is proposed to solve the components assignment problem under budget constraint. The mathematical model of the optimization problem is presented and solved by the proposed genetic-based approach. The proposed approach is based on determining the optimal set of lower boundary points that maximize the system reliability such that the total assignment cost does not exceed the specified budget. Finally, to evaluate our approach, we applied it to various network examples with different numbers of available components;two-source two-sink network and three-source two-sink network.展开更多
There are an increasing of scenarios that require the independent bandwidth and delay demands. For instance, in a data center, the interactive message would not occupy much bandwidth, but it requires the rigorous dema...There are an increasing of scenarios that require the independent bandwidth and delay demands. For instance, in a data center, the interactive message would not occupy much bandwidth, but it requires the rigorous demands for the delay. However, the existing QoS approaches are mainly bandwidth based, which are inappropriate for these scenarios. Hence, we propose the decoupled scheme in the OpenFlow networks to provide the centralized differential bandwidth and delay control. We leverage the mature HTB to manage the bandwidth. And we design the Queue Delay Management Scheme (QDMS) for queuing delay arrangement, as well as the Comprehensive Parameters based Dijkstra Route algorithm (CPDR) for the propagation delay control. The evaluation results verify the decoupling effectiveness. And the decoupled scheme can reduce the delay for high priority flows.展开更多
Taking Shanghai as an example,this study obtained the online travel notes data from Xiaohongshu and Qunar in the past 10 years to construct the Shanghai tourist flow network(STFN)and used the methods of change point d...Taking Shanghai as an example,this study obtained the online travel notes data from Xiaohongshu and Qunar in the past 10 years to construct the Shanghai tourist flow network(STFN)and used the methods of change point detection(CPD)and complex network analysis(CNA)to reveal the spatial structure characteristics of Shanghai tourism flow and the dynamic evolution process of STFN.The results showed that:(1)In the past 10 years,Shanghai tourist market had experienced a process of evolution from stable and orderly to short-term fluc-tuation and then gradual recovery,and the year of 2019 was the turning point of tourist flow network evolution.(2)The small-world and approximate scale-free characteristics of STFN were verified,and the network changed from disassortative to temporary assortative,showing a development trend of external expansion and internal separation.(3)While the centrality indicators of tourist flow network remained stable as a whole,the attention to cultural nodes was also increasing with the emergence of new nodes;(4)In terms of spatial connection,new popular nodes emerged and the relationship between them and the surrounding nodes was strengthened;(5)The spatial pattern of tourist flow network presented an inverted“V”shape and gradually expanded to southwest and southeast,forming a network with core nodes as the center and radiating outward.At the same time,newly emerging nodes at the periphery had formed relatively independent clusters.展开更多
The escalating ecological consequences of state transitions have attracted significant attention in both theoretical and experimental studies,with a focus on determining the stable or equilibrium points of dynamic sys...The escalating ecological consequences of state transitions have attracted significant attention in both theoretical and experimental studies,with a focus on determining the stable or equilibrium points of dynamic systems[1-5].Identifying equilibrium states not only reveals a system's current status but also offers insights into its evolutionary trajectory under specific environmental conditions[6].展开更多
Understanding the high-tech industrial agglomeration from a spatial-spillover perspective is essential for cities to gain economic and technological competitive advantages.Along with rapid urbanization and the develop...Understanding the high-tech industrial agglomeration from a spatial-spillover perspective is essential for cities to gain economic and technological competitive advantages.Along with rapid urbanization and the development of fast transportation networks,socioeconomic interactions between cities have been ever-increasing,traditional spatial metrics are not enough to describe actual inter-city connections.High-skilled labor flow between cities strongly influences the high-tech industrial agglomeration,yet receives less attention.By exploiting unique large-scale datasets and tools from complex network and data mining,the authors construct an inter-city high-skilled labor flow network,which was integrated into spatial econometric models.The regression results indicate that spatial-spillover effects exist in the development of high-tech industries in the Yangtze River Delta Urban Agglomeration region.Moreover,the spatial-spillover effects are stronger among cities with a higher volume of high-skilled labor flows than among cities with just stronger geographic connections.Additionally,the authors investigate the channels for the spillover effects and discover that inadequate local government expenses on science and technology likely hamper the high-tech industrial agglomeration,so does the inadequate local educational provision.The increasing foreign direct investments in one city likely encourages the high-tech industrial agglomeration in other cities because of the policy inertia toward traditional industries.展开更多
Refrigerant natural circulation(RNC)system is a closed loop recycling system which is composed of evaporator,condenser,gas pipe and the liquid pipe.The difference in indoor and outdoor temperatures will lead to the re...Refrigerant natural circulation(RNC)system is a closed loop recycling system which is composed of evaporator,condenser,gas pipe and the liquid pipe.The difference in indoor and outdoor temperatures will lead to the refrigerant phase-change,and the gravity difference caused by different heights of condenser and evaporator will make the low boiling point refrigerants carry on natural circulation to realize the indoor heating or cooling.In order to analyze the effect of changes in the RNC system upon the working conditions of the indoor and outdoor units as well as the function of the indoor unit,this paper describes the incidence relations among the various components of the RNC system,and establishes gas–liquid two-phase fluid network mathematical model by using the method of fluid network;besides utilizing the model,it also conducts simulator investigation of coupling characteristics of the RNC system’s refrigeration condition,and makes an analysis of indoor temperature,indoor unit’s air volume,the number of indoor units and the indoor unit capacity and other factors’changes on the coupling characteristics of the RNC system.The results show that under refrigeration conditions,the increase in the air volume of a single indoor unit or room temperature will result in an increase in the cooling capacity of its own indoor units,a decrease in the cooling capacity of other indoor units and a reduction in the total cooling capacity of indoor units of the RNC system;however,the decrease in the outdoor units’inlet temperature will lead to a drop in the evaporation temperature of the system and increase in the cooling capacity.展开更多
Blockage is a kind of phenomenon frequently occurred in a transport network, in which the human beings are the moving subjects. The minimum flow of a network defined in this paper means the maximum flow quantity throu...Blockage is a kind of phenomenon frequently occurred in a transport network, in which the human beings are the moving subjects. The minimum flow of a network defined in this paper means the maximum flow quantity through the network in the seriously blocked situation. It is an important parameter in designing and operating a transport network, especially in an emergency evacuation network. A branch and bound method is presented to solve the minimum flow problem on the basis of the blocking flow theory and the algorithm and its application are illustrated by examples.展开更多
In this paper we discuss the uniqueness and existence of solution to a real gas flow network by employing graph theory. A directed graph is an efficient way to represent a gas network. We consider steady state real ga...In this paper we discuss the uniqueness and existence of solution to a real gas flow network by employing graph theory. A directed graph is an efficient way to represent a gas network. We consider steady state real gas flow network that includes pipelines, compressors, and the connectors. The pipelines and compressors are represented as edges of the graph and the interconnecting points are represented as nodes of the graph representing the network. We show that a unique solution of such a system exists. We use monotonicity property of a mapping to proof uniqueness, and the contraction mapping theorem is used to prove existence.展开更多
Blockage is a kind of phenomenon occurring frequently in modern transportation network. This paper deals with the research work on the blocking now in a network with the help of network flow theory. The blockage pheno...Blockage is a kind of phenomenon occurring frequently in modern transportation network. This paper deals with the research work on the blocking now in a network with the help of network flow theory. The blockage phenomena can be divided intO local blockage and network blockage. In this paper, which deals mainly with the latter, the fundamental concepts and definitions of network blocking flow, blocking outset are presented and the related theorems are proved. It is proved that the sufficient and necessary condition for the emergence of a blocking now in a network is the existence of the blocking outset. The necessary conditions for the existence of the blocking outset in a network are analysed and the characteristic cutset of blockage which reflects the all possible situation of blocking nows in the network is defined.In the last part of the paper the mathematical model of the minimum blocking now is developed and the solution to a small network is given.展开更多
The use of multi-perspective and multi-scalar city networks has gradually developed into a range of critical approaches to understand spatial interactions and linkages. In particular, road linkages represent key chara...The use of multi-perspective and multi-scalar city networks has gradually developed into a range of critical approaches to understand spatial interactions and linkages. In particular, road linkages represent key characteristics of spatial dependence and distance decay, and are of great significance in depicting spatial relationships at the regional scale. Therefore, based on highway passenger flow data between prefecture-level administrative units, this paper attempted to identify the functional structures and regional impacts of city networks in China, and to further explore the spatial organization patterns of the existing functional regions, aiming to deepen our understanding of city network structures and to provide new cognitive perspectives for ongoing research. The research results lead to four key conclusions. First, city networks that are based on highway flows exhibit strong spatial dependence and hierarchical characteristics, to a large extent spatially coupled with the distributions of major megaregions in China. These phenomena are a reflection of spatial relationships at regional scales as well as core-periphery structure. Second, 19 communities that belong to an important type of spatial configuration are identified through community detection algorithm, and we suggest they are correspondingly urban economic regions within urban China. Their spatial metaphors include the administrative region economy, spatial spillover effects of megaregions, and core-periphery structure. Third, each community possesses a specific city network system and exhibits strong spatial dependence and various spatial organization patterns. Regional patterns have emerged as the result of multi-level, dynamic, and networked characteristics. Fourth, adopting a morphology-based perspective, the regional city network systems can be basically divided into monocentric, dual-nuclei, polycentric, and low-level equilibration spatial structures, while most are developing monocentrically.展开更多
The traffic flow is interrelated to traffic congestion, the big traffic flow directly results in traffic congestion of some section. In this paper, on the basis of the research of overseas traffic accident, considerin...The traffic flow is interrelated to traffic congestion, the big traffic flow directly results in traffic congestion of some section. In this paper, on the basis of the research of overseas traffic accident, considering the characteristic of Chinese traffic, artificial neural network was used to predict traffic accident, and an improved BP artificial neural network model according with Chinese the situation of a country was proposed. The urban traffic flow prediction was simulated under the particular situation, the simulation result shows that the improved BP artificial neural network can fit the urban traffic flow prediction very well and have high performance.展开更多
基金supported by the Major Project of the National Social Science Fund of China,titled“Design Path Selection for the Mechanism of New and Old Growth Driver Conversion”(Grant No.18ZDA077)by the Joint Special Major Research Project of the Yangtze River Delta Economics and Social Development Research Center at Nanjing University and the Collaborative Innovation Center for China Economy(CICCE),titled“Practicing Innovation in China’s Development Economics for the Yangtze River Delta:From Industrial Clusters to Technological Clusters”(Grant No.CYD2022006).
文摘The global clustering of inventive talent shapes innovation capacity and drives economic growth.For China,this process is especially crucial in sustaining its development momentum.This paper draws on data from the EPO Worldwide Patent Statistical Database(PATSTAT)to extract global inventive talent mobility information and analyzes the spatial structural evolution of the global inventive talent flow network.The study finds that this network is undergoing a multi-polar transformation,characterized by the rising importance of a few central countries-such as the United States,Germany,and China-and the increasing marginalization of many peripheral countries.In response to this typical phenomenon,the paper constructs an endogenous migration model and conducts empirical testing using the Temporal Exponential Random Graph Model(TERGM).The results reveal several endogenous mechanisms driving global inventive talent flows,including reciprocity,path dependence,convergence effects,transitivity,and cyclic structures,all of which contribute to the network’s multi-polar trend.In addition,differences in regional industrial structures significantly influence talent mobility choices and are a decisive factor in the formation of poles within the multi-polar landscape.Based on these findings,it is suggested that efforts be made to foster two-way channels for talent exchange between China and other global innovation hubs,in order to enhance international collaboration and knowledge flow.We should aim to reduce the migration costs and institutional barriers faced by R&D personnel,thereby encouraging greater mobility of high-skilled talent.Furthermore,the government is advised to strategically leverage regional strengths in high-tech industries as a lever to capture competitive advantages in emerging technologies and products,ultimately strengthening the country’s position in the global innovation landscape.
基金Under the auspices of National Natural Science Foundation of China(No.41001070,40801054,40371030)
文摘Theoretic and practical significance has been highlighted in the research of the roles and functions of destinations,as destinations are restricted by the spatial structure based on tourist flow network from the perspective of relationship.This article conducted an empirical analysis for Tourism Region of South Anhui(TRSA) and revealed the necessity and feasibility of studying the roles and functions of destinations from tourist flow network's perspective.The automorphic equivalence analysis and centrality analysis were used to classify 16 destinations in TRSA into six role types:tourist flow distribution center,hub of tourist flows,passageway destination,common touring destination,attached touring destination,and nearly isolated destination.Some suggestions were given on suitable infrastructure construction and destinations service designs according to their functions in network.This destination role positioning was based on tourist flow network structure in integral and macroscopic way.It provided an important reference for the balanced and harmonious development of all the destinations of TRSA.In addition,this article verified the applicability of social network analysis on tourist flow research in local scale,and expanded this method to destination role and function positioning.
基金This project (No. 49070196) is funded by the National Science Foundation of China.
文摘In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.
文摘Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assigned to face critical situations-i.e.,to keep the network functioning normally in the case of failure at one or more edges.The robust design problem(RDP)in a capacitated flow network is to search for the minimum capacity assignment of each edge such that the network still survived even under the edge’s failure.The RDP is known as NP-hard.Thus,capacity assignment problem subject to system reliability and total capacity constraints is studied in this paper.The problem is formulated mathematically,and a genetic algorithm is proposed to determine the optimal solution.The optimal solution found by the proposed algorithm is characterized by maximum reliability and minimum total capacity.Some numerical examples are presented to illustrate the efficiency of the proposed approach.
文摘Based on the heat flow data published in 1990 and 2001, a study of the factors influencing the terrestrial heat flow distribution in the China continent and its quantitative expression is carried out using the "Netlike Plastic-Flow" continental dynamics model and the methods of statistic analysis and optimum fitting. The result indicates that the factors influencing the heat flow distribution is classified into two groups, i.e. background and tectonic ones, in which the former mainly involves the non- uniform distribution of mantle heat flow, heat production of radioactive dements in the crust, heattransfer media and hydrothermal circulation, while the latter mainly involves plastic-flow networks and relatively-stable blocks. The plastic-flow network is a manifestation of shear localization in the netlike plastic-flow process in the lower lithosphere, which is composed of two sets of plastic-flow belts (PFBs) intersecting each other and, as one of the basic action regimes, controls the intraplate tectonic deformation. Relatively stable blocks (RSBs), which are the tectonic units with relatively-high viscosities existing in the netlike plastic-flow field, as one of the principal origins, result in the development of large-seale compressional basins. PFB and RSB, as the active and quiet states of tectonic deformation, give rise to the higher and lower heat flow values, respectivdy. The provincial average heat flow in continent can be estimated using the expression qav = q0 + a Pbt-c Pbk, where the three terms of the right side are background heat flow, PFB-positive contribution and RSB-negative contribution, Pbt and Pbk are the PFB- and RSB-coverage ratios, respectively, a is the coefficient of PFB- positive contribution depending mainly on the strain in the lower lithosphere, and c is the coefficient of RSB-negative contribution related mainly to the thickness of the lithosphere, the aseismic-area ratio and the tectonic age. For the major portion of the China continent excluding some of the southeastern region of China, the confidence interval of the provincial average background heat flow is qo=57.25±24.8 mW/m^2 and the PFB-positive- and RSB-negative-contribution coefficients are a=14.8-71.9 mW/m^2 and c=0-25.6 mW/m^2, respectively. The concepts of PFB and RSB effects and the heat flow expression suggested provide a new choice of the approach to the quantitative description of the characteristics of heat flow distribution in continent and their physical mechanisms.
文摘Multipe NSSS (Nuclear Steam Supply System) modules use the common feeding-water system to drive the common turbine power generation set. The SSFFN (secondary side fluid flow network) of MHTGR plant has features i.e. strong-coupling and nonlinearity. A wide range of power switching operation will cause unsteady flow, which may destroy the working elements and will be a threat for normal operation. To overcome those problems, a differential-algebraic model and PI controllers are designed for the SSFFN. In MATLAB\SIMULINK environment, a simulation platform is established and used to make a simulation of SSFFN of a MHTGR plant with two NSSS modules, which uses feedwater valves to control the mass flow rate in each module instead of feedwater pump. Results reflect good robustness of controllers.
文摘Several conclusions on minimal cutset are proposed, from which a new algorithm is deduced to evaluate the unreliability of flow networks. Beginning with one unreliability product of the network, disjointed unreliability products are branched out one by one, every of which is selected from the network minimal cutsets. Finally the unreliability of the network is obtained by adding all these unreliability products up.
基金supported in part by the National Natural Science Foundation of China under Grant 72264036in part by the West Light Foundation of The Chinese Academy of Sciences under Grant 2020-XBQNXZ-020+1 种基金Social Science Foundation of Xinjiang under Grant 2023BGL077the Research Program for High-level Talent Program of Xinjiang University of Finance and Economics 2022XGC041,2022XGC042.
文摘Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks.Design/Methodology/Approach:The IKM model enhances the preferential attachment and growth observed in scale-free BA networks,while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network.To compare its performance,the BA and DMS models are also employed for simulating the network.Pearson coefficient analysis is conducted on the simulated networks generated by the IKM,BA and DMS models,as well as on the actual network.Findings:The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network.It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm.The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units.Research Limitations:This study has some limitations.Firstly,it primarily focuses on the evolution of knowledge flow networks within the field of physics,neglecting other fields.Additionally,the analysis is based on a specific set of data,which may limit the generalizability of the findings.Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets.Practical Implications:The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions.It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations.The model can aid in optimizing knowledge flow and enhancing collaboration within organizations.Originality/value:This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks.The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions.Moreover,the model has the potential to be applied to other knowledge networks,which are formed by knowledge organizations as node units.
文摘In the present paper, a three-component, stationary, multistate flow network system is studied. Detailed costs and incomes are specified. The aim is to minimize the expected total net loss with respect to the expected times the components spend in each state. This represents a novelty in that we connect the expected component times spent in each state to the minimal total net loss of the system, without first finding the component importance. This is of interest in the design phase where one may tune the components to minimize the expected total net loss. Due to the complex nature of the problem, we first study a simplified version. There the expected times spent in each state are assumed equal for each component. Then a modified version of the full model is presented. The optimization in this model is completed in two steps. First the optimization is carried out for a set of pre-chosen fixed expected life cycle lengths. Then the overall minimum is identified by varying these expectations. Both the simplified and the modified optimization problems are nonlinear. The setup used in this article is such that it can easily be modified to represent other flow network systems and cost functions. The challenge lies in the optimization of real life systems.
文摘System reliability optimization problem of multi-source multi-sink flow network is defined by searching the optimal components that maximize the reliability and minimize the total assignment cost. Therefore, a genetic-based approach is proposed to solve the components assignment problem under budget constraint. The mathematical model of the optimization problem is presented and solved by the proposed genetic-based approach. The proposed approach is based on determining the optimal set of lower boundary points that maximize the system reliability such that the total assignment cost does not exceed the specified budget. Finally, to evaluate our approach, we applied it to various network examples with different numbers of available components;two-source two-sink network and three-source two-sink network.
基金supported National Natural Science Foundation of China (Project Number: 61671086)Consulting Project of Chinese Academy of Engineering (Project Number: 2016-XY-09)
文摘There are an increasing of scenarios that require the independent bandwidth and delay demands. For instance, in a data center, the interactive message would not occupy much bandwidth, but it requires the rigorous demands for the delay. However, the existing QoS approaches are mainly bandwidth based, which are inappropriate for these scenarios. Hence, we propose the decoupled scheme in the OpenFlow networks to provide the centralized differential bandwidth and delay control. We leverage the mature HTB to manage the bandwidth. And we design the Queue Delay Management Scheme (QDMS) for queuing delay arrangement, as well as the Comprehensive Parameters based Dijkstra Route algorithm (CPDR) for the propagation delay control. The evaluation results verify the decoupling effectiveness. And the decoupled scheme can reduce the delay for high priority flows.
基金The Key Project of National Natural Science Foundation of China(42130510)。
文摘Taking Shanghai as an example,this study obtained the online travel notes data from Xiaohongshu and Qunar in the past 10 years to construct the Shanghai tourist flow network(STFN)and used the methods of change point detection(CPD)and complex network analysis(CNA)to reveal the spatial structure characteristics of Shanghai tourism flow and the dynamic evolution process of STFN.The results showed that:(1)In the past 10 years,Shanghai tourist market had experienced a process of evolution from stable and orderly to short-term fluc-tuation and then gradual recovery,and the year of 2019 was the turning point of tourist flow network evolution.(2)The small-world and approximate scale-free characteristics of STFN were verified,and the network changed from disassortative to temporary assortative,showing a development trend of external expansion and internal separation.(3)While the centrality indicators of tourist flow network remained stable as a whole,the attention to cultural nodes was also increasing with the emergence of new nodes;(4)In terms of spatial connection,new popular nodes emerged and the relationship between them and the surrounding nodes was strengthened;(5)The spatial pattern of tourist flow network presented an inverted“V”shape and gradually expanded to southwest and southeast,forming a network with core nodes as the center and radiating outward.At the same time,newly emerging nodes at the periphery had formed relatively independent clusters.
基金supported by the funds from the National Natural Science Foundation of China(42041005 and 32101313)the CAS Strategic Priority Research Programme(A)(XDA20050103)Science&Technology Fundamental Resources Investigation Program(2022FY100100)。
文摘The escalating ecological consequences of state transitions have attracted significant attention in both theoretical and experimental studies,with a focus on determining the stable or equilibrium points of dynamic systems[1-5].Identifying equilibrium states not only reveals a system's current status but also offers insights into its evolutionary trajectory under specific environmental conditions[6].
基金supported by the National Natural Science Foundation of China under Grant Nos.71803007 and 61903020Humanities and Social Sciences Fund of the Ministry of Education of China under Grant No.18YJC630170+1 种基金Natural Science Fund of Zhejiang Province under Grant No.LQ19G010004Fundamental Research Funds for the Central Universities under Grant No.FRF-TP-20-024A2,buctrc201825。
文摘Understanding the high-tech industrial agglomeration from a spatial-spillover perspective is essential for cities to gain economic and technological competitive advantages.Along with rapid urbanization and the development of fast transportation networks,socioeconomic interactions between cities have been ever-increasing,traditional spatial metrics are not enough to describe actual inter-city connections.High-skilled labor flow between cities strongly influences the high-tech industrial agglomeration,yet receives less attention.By exploiting unique large-scale datasets and tools from complex network and data mining,the authors construct an inter-city high-skilled labor flow network,which was integrated into spatial econometric models.The regression results indicate that spatial-spillover effects exist in the development of high-tech industries in the Yangtze River Delta Urban Agglomeration region.Moreover,the spatial-spillover effects are stronger among cities with a higher volume of high-skilled labor flows than among cities with just stronger geographic connections.Additionally,the authors investigate the channels for the spillover effects and discover that inadequate local government expenses on science and technology likely hamper the high-tech industrial agglomeration,so does the inadequate local educational provision.The increasing foreign direct investments in one city likely encourages the high-tech industrial agglomeration in other cities because of the policy inertia toward traditional industries.
文摘Refrigerant natural circulation(RNC)system is a closed loop recycling system which is composed of evaporator,condenser,gas pipe and the liquid pipe.The difference in indoor and outdoor temperatures will lead to the refrigerant phase-change,and the gravity difference caused by different heights of condenser and evaporator will make the low boiling point refrigerants carry on natural circulation to realize the indoor heating or cooling.In order to analyze the effect of changes in the RNC system upon the working conditions of the indoor and outdoor units as well as the function of the indoor unit,this paper describes the incidence relations among the various components of the RNC system,and establishes gas–liquid two-phase fluid network mathematical model by using the method of fluid network;besides utilizing the model,it also conducts simulator investigation of coupling characteristics of the RNC system’s refrigeration condition,and makes an analysis of indoor temperature,indoor unit’s air volume,the number of indoor units and the indoor unit capacity and other factors’changes on the coupling characteristics of the RNC system.The results show that under refrigeration conditions,the increase in the air volume of a single indoor unit or room temperature will result in an increase in the cooling capacity of its own indoor units,a decrease in the cooling capacity of other indoor units and a reduction in the total cooling capacity of indoor units of the RNC system;however,the decrease in the outdoor units’inlet temperature will lead to a drop in the evaporation temperature of the system and increase in the cooling capacity.
文摘Blockage is a kind of phenomenon frequently occurred in a transport network, in which the human beings are the moving subjects. The minimum flow of a network defined in this paper means the maximum flow quantity through the network in the seriously blocked situation. It is an important parameter in designing and operating a transport network, especially in an emergency evacuation network. A branch and bound method is presented to solve the minimum flow problem on the basis of the blocking flow theory and the algorithm and its application are illustrated by examples.
文摘In this paper we discuss the uniqueness and existence of solution to a real gas flow network by employing graph theory. A directed graph is an efficient way to represent a gas network. We consider steady state real gas flow network that includes pipelines, compressors, and the connectors. The pipelines and compressors are represented as edges of the graph and the interconnecting points are represented as nodes of the graph representing the network. We show that a unique solution of such a system exists. We use monotonicity property of a mapping to proof uniqueness, and the contraction mapping theorem is used to prove existence.
文摘Blockage is a kind of phenomenon occurring frequently in modern transportation network. This paper deals with the research work on the blocking now in a network with the help of network flow theory. The blockage phenomena can be divided intO local blockage and network blockage. In this paper, which deals mainly with the latter, the fundamental concepts and definitions of network blocking flow, blocking outset are presented and the related theorems are proved. It is proved that the sufficient and necessary condition for the emergence of a blocking now in a network is the existence of the blocking outset. The necessary conditions for the existence of the blocking outset in a network are analysed and the characteristic cutset of blockage which reflects the all possible situation of blocking nows in the network is defined.In the last part of the paper the mathematical model of the minimum blocking now is developed and the solution to a small network is given.
基金National Natural Science Foundation of China,No.41530751,No.41471113,No.41601165
文摘The use of multi-perspective and multi-scalar city networks has gradually developed into a range of critical approaches to understand spatial interactions and linkages. In particular, road linkages represent key characteristics of spatial dependence and distance decay, and are of great significance in depicting spatial relationships at the regional scale. Therefore, based on highway passenger flow data between prefecture-level administrative units, this paper attempted to identify the functional structures and regional impacts of city networks in China, and to further explore the spatial organization patterns of the existing functional regions, aiming to deepen our understanding of city network structures and to provide new cognitive perspectives for ongoing research. The research results lead to four key conclusions. First, city networks that are based on highway flows exhibit strong spatial dependence and hierarchical characteristics, to a large extent spatially coupled with the distributions of major megaregions in China. These phenomena are a reflection of spatial relationships at regional scales as well as core-periphery structure. Second, 19 communities that belong to an important type of spatial configuration are identified through community detection algorithm, and we suggest they are correspondingly urban economic regions within urban China. Their spatial metaphors include the administrative region economy, spatial spillover effects of megaregions, and core-periphery structure. Third, each community possesses a specific city network system and exhibits strong spatial dependence and various spatial organization patterns. Regional patterns have emerged as the result of multi-level, dynamic, and networked characteristics. Fourth, adopting a morphology-based perspective, the regional city network systems can be basically divided into monocentric, dual-nuclei, polycentric, and low-level equilibration spatial structures, while most are developing monocentrically.
文摘The traffic flow is interrelated to traffic congestion, the big traffic flow directly results in traffic congestion of some section. In this paper, on the basis of the research of overseas traffic accident, considering the characteristic of Chinese traffic, artificial neural network was used to predict traffic accident, and an improved BP artificial neural network model according with Chinese the situation of a country was proposed. The urban traffic flow prediction was simulated under the particular situation, the simulation result shows that the improved BP artificial neural network can fit the urban traffic flow prediction very well and have high performance.