The rapid growth of neutron flux has driven the development of^(3)He-free neutron detectors to satisfy the requirements of the neutron scattering instruments under construction or planned at the China Spallation Neutr...The rapid growth of neutron flux has driven the development of^(3)He-free neutron detectors to satisfy the requirements of the neutron scattering instruments under construction or planned at the China Spallation Neutron Source(CSNS).Position-sensitive neutron detectors with a high counting rate and large area play an important role in the instruments performing neutron measurements in or close to the direct beam.The ceramic gas-electron-multiplier(GEM)detector serves as a promising solution,and considerable work has been done using the small-area GEM neutron detectors.In this article,we designed and constructed a detector prototype utilizing ceramic GEM foils with an effective area of about307 mm×307 mm.To evaluate and investigate their basic characteristics,the Monte Carlo(MC)tool FLUKA was employed and several neutron beam tests were conducted at CSNS.The simulated spatial resolution was basically in agreement with the measured value of 2.50±0.01 mm(FWHM).The wavelength spectra measurement was verified through comparisons with a commercial beam monitor.In addition,a detection efficiency of 4.7±0.1%was achieved for monoenergetic neutrons of 1.59 A wavelength.This is consistent with the simulated result.The results indicate that the large-area ceramic GEM detector is a good candidate to implement neutron beam measurements.Its efficiency can be improved in a cascading manner to approach that reached by traditional^(3)He detectors.展开更多
In this article, we have given the definition of the relative double multiplier (quasi-multiplier) on a ternary algebra,and studied the isomorphic problem of the multiplier algebra M(A,e) of a ternary algerbra A.
A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is refo...A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.展开更多
This paper presents a new kind of macromodel of OTA,which can be used to solve the problem in which the two port macromodel couldnt reflect some functions of the OTA.The new model also opens up a new way for the simu...This paper presents a new kind of macromodel of OTA,which can be used to solve the problem in which the two port macromodel couldnt reflect some functions of the OTA.The new model also opens up a new way for the simulation of the OTA circuit.This paper discusses the way of designing this model and simulating it in SPICE.The result proves its reasonable design and its simplicity in structure.In the application of this model,we design a complete symmetric double differential quarter square OTA multiplying unit by using four three port OTA macromodels.It successfully solved the problem of the unsymmetry of two input ports in an OTA multiplying unit.This result fully agrees with the experiment.展开更多
Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the ...Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the pair (A, B), and then the deformation D^π becomes a multiplier Hopf algebra. B×A can be considered as a subalgebra of M(D^π×D^π), the image of element b×a in B×A is (1∝b)×(a∝1) in M(D^π×D^π). Let W =∑αWα∈ M(B×A) be a π-canonical multiplier for the pair (A, B) with Wα∈M(Bα×A) for all α∈G. The image of W in M(D^π×D^π)is a π-quasitriangular structure over D^π.展开更多
Let Q n denote the class of all polynomials p(z) nonvanishing in the unit disk with deg p≤n and p (0)=1, and let W n denote the class of all polynomials s(z) satisfying deg s≤n and for all...Let Q n denote the class of all polynomials p(z) nonvanishing in the unit disk with deg p≤n and p (0)=1, and let W n denote the class of all polynomials s(z) satisfying deg s≤n and for all p∈Q n, s*p∈Q n , where * denotes the Hadamard product. Some properties for W n and Q n are obtained.展开更多
Testing of a triple gas electron multiplier (GEM) with pixel-pads is described. Images by scanning and suspending radioactive sources were obtained by using 96 channels digital data acquisition (DAQ) system which ...Testing of a triple gas electron multiplier (GEM) with pixel-pads is described. Images by scanning and suspending radioactive sources were obtained by using 96 channels digital data acquisition (DAQ) system which was composed of 96 8×8 mm2 pads and associated electronics channels.展开更多
In this article we introduce the paranormed sequence spaces (f,A, Am,p), c0(f,A,Am,p) and L00(f,A, Am,p), associated with the multiplier sequence ∧ = (hk), defined by a modulus function f. We study their diff...In this article we introduce the paranormed sequence spaces (f,A, Am,p), c0(f,A,Am,p) and L00(f,A, Am,p), associated with the multiplier sequence ∧ = (hk), defined by a modulus function f. We study their different properties like solidness, symmetricity, completeness etc. and prove some inclusion results.展开更多
In this paper, we consider the convergence of the generalized alternating direction method of multipliers(GADMM) for solving linearly constrained nonconvex minimization model whose objective contains coupled functio...In this paper, we consider the convergence of the generalized alternating direction method of multipliers(GADMM) for solving linearly constrained nonconvex minimization model whose objective contains coupled functions. Under the assumption that the augmented Lagrangian function satisfies the Kurdyka-Lojasiewicz inequality, we prove that the sequence generated by the GADMM converges to a critical point of the augmented Lagrangian function when the penalty parameter in the augmented Lagrangian function is sufficiently large. Moreover, we also present some sufficient conditions guaranteeing the sublinear and linear rate of convergence of the algorithm.展开更多
Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) con...Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) control approach with full block multipliers to design a missile robust gain scheduling autopilot in order to eliminate conservatism.A model matching design structure with a high demand on matching precision is constructed based on the missile linear fractional transformation(LFT) model.By applying full block S-procedure and elimination lemma,a convex feasibility problem with an infinite number of constraints is formulated to satisfy robust quadratic performance specifications.Then a grid method is adopted to transform the infinite-dimensional convex feasibility problem into a solvable finite-dimensional convex feasibility problem,based on which a gain scheduling controller with linear fractional dependence on the flight Mach number and altitude is derived.Static and dynamic simulation results show the effectiveness and feasibility of the proposed scheme.展开更多
In this paper, we establish two multiplier theorems for Herz type Hardy spaces, and as an application, we discuss the boundedness of pseudo-differential operators in these spaces.
This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, B...This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, BMOA and Q8 spaces. The boundedness and compactness of these operators on F(p, q, s) spaces are characterized by means of an embedding theorem, i.e., F(p,q, s) spaces boundedly embedded into the tent-type spaces Tp,s^∞(μ)展开更多
Let G be a locally compact unimodular group with Haar measure rmdx and ω be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space Aωp,q (G) and prove that Aωp,q (G) is a t...Let G be a locally compact unimodular group with Haar measure rmdx and ω be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space Aωp,q (G) and prove that Aωp,q (G) is a translation invariant Banach space. Fur- thermore the authors discuss inclusion properties and show that if G is a locally compact abelian group then Aωp,q (G) admits an approximate identity bounded in Lω1 (G). It is also proved that the space Lωp (G) Lω1 Lωq (G) is isometrically isomorphic to the space Aωp,q (G) and the space of multipliers from Lωp (G) to Lq-1, (G) is isometrically isomorphic to the dual of the space Aωp,q (G) iff G satisfies a property Ppq. At the end of this work it is showed that if G is a locally compact abelian group then the space of all multipliers from Lω1 (G) to Aωp,q (G) is the space Aωp,q (G).展开更多
Let A be a symmetric expansive matrix and H^p(R^n) be the anisotropic Hardy space associated with A. For a function m in L∞(R^n), an appropriately chosen function η in Cc^∞(R^n) and j ∈ Z define mj(ξ) = m...Let A be a symmetric expansive matrix and H^p(R^n) be the anisotropic Hardy space associated with A. For a function m in L∞(R^n), an appropriately chosen function η in Cc^∞(R^n) and j ∈ Z define mj(ξ) = m(A^jξ)η(ξ). The authors show that if 0 〈 p 〈 1 and mj belongs to the anisotropic nonhomogeneous Herz space K1^1/P^-1,p(R^n), then m is a Fourier multiplier from H^p(R^n) to L^V(R^n). For p = 1, a similar result is obtained if the space K1^0.1(R^n) is replaced by a slightly smaller space K(w). Moreover, the authors show that if 0 〈 p 〈 1 and if the sequence {(mj)^v} belongs to a certain mixednorm space, depending on p, then m is also a Fourier multiplier from H^p(R^n) to L^v(R^n).展开更多
Let G be a locally compact Abelian group with Haar measure μ. In the present paper, first the authors discussed some properties of weighted Lorentz space. Then they defined the relative completion A of a subspace A o...Let G be a locally compact Abelian group with Haar measure μ. In the present paper, first the authors discussed some properties of weighted Lorentz space. Then they defined the relative completion A of a subspace A of the weighted Lorentz space, and showed that the space of the multipliers from L_w~1,(G) to A is algebrically isomorphic and homeomorphic to A.展开更多
In the paper,we introduce some of multipliers on residuated lattices and investigate the relations among them.First,basing on the properties of multipliers,we show that the set of all multiplicative multipliers on a r...In the paper,we introduce some of multipliers on residuated lattices and investigate the relations among them.First,basing on the properties of multipliers,we show that the set of all multiplicative multipliers on a residuated lattice A forms a residuated lattice which is isomorphic to A.Second,we prove that the set of all total multipliers on A is a Boolean subalgebra of the residuated lattice(which is constituted by all multiplicative multipliers on A)and is isomorphic to the Boolean center of A.Moreover,by partial multipliers,we study the maximal residuated lattices of quotients for residuated lattices.Finally,we focus on principal implicative multipliers on residuated lattices and obtain that the set of principal implicative multipliers on A is isomorphic to the set of all multiplicative multipliers on A under the opposite(dual)order.展开更多
Let G be a locally compact abelian group. The main purpose of this article is to find the space of multipliers from the Lorentz space. L(p1, q1)(G) to L(p'2, q'2)(G). For this reason, the authors define the ...Let G be a locally compact abelian group. The main purpose of this article is to find the space of multipliers from the Lorentz space. L(p1, q1)(G) to L(p'2, q'2)(G). For this reason, the authors define the space A p1,q1^ p2,p2(G), discuss its properties and prove that the space of multipliers from L(p1, q1)(G) to L(p'2, q'2)(G) is isometrically isomorphic to the dual of A p1,q1^p2,q2 (G).展开更多
基金Project supported by the National Key R&D Program of China(Grant No.2023YFC2206502)the National Natural Science Foundation of China(Grant Nos.12175254 and 12227810)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(Grant No.2023B0303000003)Guangdong Provincial Key Laboratory of Advanced Particle Detection Technology(Grant No.2024B1212010005)。
文摘The rapid growth of neutron flux has driven the development of^(3)He-free neutron detectors to satisfy the requirements of the neutron scattering instruments under construction or planned at the China Spallation Neutron Source(CSNS).Position-sensitive neutron detectors with a high counting rate and large area play an important role in the instruments performing neutron measurements in or close to the direct beam.The ceramic gas-electron-multiplier(GEM)detector serves as a promising solution,and considerable work has been done using the small-area GEM neutron detectors.In this article,we designed and constructed a detector prototype utilizing ceramic GEM foils with an effective area of about307 mm×307 mm.To evaluate and investigate their basic characteristics,the Monte Carlo(MC)tool FLUKA was employed and several neutron beam tests were conducted at CSNS.The simulated spatial resolution was basically in agreement with the measured value of 2.50±0.01 mm(FWHM).The wavelength spectra measurement was verified through comparisons with a commercial beam monitor.In addition,a detection efficiency of 4.7±0.1%was achieved for monoenergetic neutrons of 1.59 A wavelength.This is consistent with the simulated result.The results indicate that the large-area ceramic GEM detector is a good candidate to implement neutron beam measurements.Its efficiency can be improved in a cascading manner to approach that reached by traditional^(3)He detectors.
文摘In this article, we have given the definition of the relative double multiplier (quasi-multiplier) on a ternary algebra,and studied the isomorphic problem of the multiplier algebra M(A,e) of a ternary algerbra A.
基金The Scientific Research Foundation of Nanjing University of Posts and Telecommunications(No.NY210049)
文摘A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.
文摘This paper presents a new kind of macromodel of OTA,which can be used to solve the problem in which the two port macromodel couldnt reflect some functions of the OTA.The new model also opens up a new way for the simulation of the OTA circuit.This paper discusses the way of designing this model and simulating it in SPICE.The result proves its reasonable design and its simplicity in structure.In the application of this model,we design a complete symmetric double differential quarter square OTA multiplying unit by using four three port OTA macromodels.It successfully solved the problem of the unsymmetry of two input ports in an OTA multiplying unit.This result fully agrees with the experiment.
基金Specialized Research Fund for the Doctoral Program of Higher Education(No20060286006)the National Natural Science Foundation of China(No10871042)
文摘Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the pair (A, B), and then the deformation D^π becomes a multiplier Hopf algebra. B×A can be considered as a subalgebra of M(D^π×D^π), the image of element b×a in B×A is (1∝b)×(a∝1) in M(D^π×D^π). Let W =∑αWα∈ M(B×A) be a π-canonical multiplier for the pair (A, B) with Wα∈M(Bα×A) for all α∈G. The image of W in M(D^π×D^π)is a π-quasitriangular structure over D^π.
文摘Let Q n denote the class of all polynomials p(z) nonvanishing in the unit disk with deg p≤n and p (0)=1, and let W n denote the class of all polynomials s(z) satisfying deg s≤n and for all p∈Q n, s*p∈Q n , where * denotes the Hadamard product. Some properties for W n and Q n are obtained.
文摘Testing of a triple gas electron multiplier (GEM) with pixel-pads is described. Images by scanning and suspending radioactive sources were obtained by using 96 channels digital data acquisition (DAQ) system which was composed of 96 8×8 mm2 pads and associated electronics channels.
文摘In this article we introduce the paranormed sequence spaces (f,A, Am,p), c0(f,A,Am,p) and L00(f,A, Am,p), associated with the multiplier sequence ∧ = (hk), defined by a modulus function f. We study their different properties like solidness, symmetricity, completeness etc. and prove some inclusion results.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1157117811801455)the Fundamental Research Funds of China West Normal University(Grant No.17E084)
文摘In this paper, we consider the convergence of the generalized alternating direction method of multipliers(GADMM) for solving linearly constrained nonconvex minimization model whose objective contains coupled functions. Under the assumption that the augmented Lagrangian function satisfies the Kurdyka-Lojasiewicz inequality, we prove that the sequence generated by the GADMM converges to a critical point of the augmented Lagrangian function when the penalty parameter in the augmented Lagrangian function is sufficiently large. Moreover, we also present some sufficient conditions guaranteeing the sublinear and linear rate of convergence of the algorithm.
文摘Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) control approach with full block multipliers to design a missile robust gain scheduling autopilot in order to eliminate conservatism.A model matching design structure with a high demand on matching precision is constructed based on the missile linear fractional transformation(LFT) model.By applying full block S-procedure and elimination lemma,a convex feasibility problem with an infinite number of constraints is formulated to satisfy robust quadratic performance specifications.Then a grid method is adopted to transform the infinite-dimensional convex feasibility problem into a solvable finite-dimensional convex feasibility problem,based on which a gain scheduling controller with linear fractional dependence on the flight Mach number and altitude is derived.Static and dynamic simulation results show the effectiveness and feasibility of the proposed scheme.
文摘In this paper, we establish two multiplier theorems for Herz type Hardy spaces, and as an application, we discuss the boundedness of pseudo-differential operators in these spaces.
基金Supported in part by the National Natural Science Foundation of China(11271359)the Fundamental Research Funds for the Central Universities(2014-Ia-037and 2015-IVA-069)
文摘This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, BMOA and Q8 spaces. The boundedness and compactness of these operators on F(p, q, s) spaces are characterized by means of an embedding theorem, i.e., F(p,q, s) spaces boundedly embedded into the tent-type spaces Tp,s^∞(μ)
文摘Let G be a locally compact unimodular group with Haar measure rmdx and ω be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space Aωp,q (G) and prove that Aωp,q (G) is a translation invariant Banach space. Fur- thermore the authors discuss inclusion properties and show that if G is a locally compact abelian group then Aωp,q (G) admits an approximate identity bounded in Lω1 (G). It is also proved that the space Lωp (G) Lω1 Lωq (G) is isometrically isomorphic to the space Aωp,q (G) and the space of multipliers from Lωp (G) to Lq-1, (G) is isometrically isomorphic to the dual of the space Aωp,q (G) iff G satisfies a property Ppq. At the end of this work it is showed that if G is a locally compact abelian group then the space of all multipliers from Lω1 (G) to Aωp,q (G) is the space Aωp,q (G).
基金Supported by NSP of China (Grant No. 10571015)RFDP of China (Grant No. 20050027025).
文摘Let A be a symmetric expansive matrix and H^p(R^n) be the anisotropic Hardy space associated with A. For a function m in L∞(R^n), an appropriately chosen function η in Cc^∞(R^n) and j ∈ Z define mj(ξ) = m(A^jξ)η(ξ). The authors show that if 0 〈 p 〈 1 and mj belongs to the anisotropic nonhomogeneous Herz space K1^1/P^-1,p(R^n), then m is a Fourier multiplier from H^p(R^n) to L^V(R^n). For p = 1, a similar result is obtained if the space K1^0.1(R^n) is replaced by a slightly smaller space K(w). Moreover, the authors show that if 0 〈 p 〈 1 and if the sequence {(mj)^v} belongs to a certain mixednorm space, depending on p, then m is also a Fourier multiplier from H^p(R^n) to L^v(R^n).
文摘Let G be a locally compact Abelian group with Haar measure μ. In the present paper, first the authors discussed some properties of weighted Lorentz space. Then they defined the relative completion A of a subspace A of the weighted Lorentz space, and showed that the space of the multipliers from L_w~1,(G) to A is algebrically isomorphic and homeomorphic to A.
基金supported by the National Natural Science Foundation of China(11531009).
文摘In the paper,we introduce some of multipliers on residuated lattices and investigate the relations among them.First,basing on the properties of multipliers,we show that the set of all multiplicative multipliers on a residuated lattice A forms a residuated lattice which is isomorphic to A.Second,we prove that the set of all total multipliers on A is a Boolean subalgebra of the residuated lattice(which is constituted by all multiplicative multipliers on A)and is isomorphic to the Boolean center of A.Moreover,by partial multipliers,we study the maximal residuated lattices of quotients for residuated lattices.Finally,we focus on principal implicative multipliers on residuated lattices and obtain that the set of principal implicative multipliers on A is isomorphic to the set of all multiplicative multipliers on A under the opposite(dual)order.
文摘Let G be a locally compact abelian group. The main purpose of this article is to find the space of multipliers from the Lorentz space. L(p1, q1)(G) to L(p'2, q'2)(G). For this reason, the authors define the space A p1,q1^ p2,p2(G), discuss its properties and prove that the space of multipliers from L(p1, q1)(G) to L(p'2, q'2)(G) is isometrically isomorphic to the dual of A p1,q1^p2,q2 (G).