期刊文献+
共找到880篇文章
< 1 2 44 >
每页显示 20 50 100
Impact of Various Coupled Motions on the Aerodynamic Performance of a Floating Offshore Wind Turbine Within the Wind–Rain Field
1
作者 Yazhou Wang Yalong Guo +1 位作者 Xujiang Xia Ning Zhuang 《哈尔滨工程大学学报(英文版)》 2025年第2期370-387,共18页
This study employed a computational fluid dynamics model with an overset mesh technique to investigate the thrust and power of a floating offshore wind turbine(FOWT)under platform floating motion in the wind–rain fie... This study employed a computational fluid dynamics model with an overset mesh technique to investigate the thrust and power of a floating offshore wind turbine(FOWT)under platform floating motion in the wind–rain field.The impact of rainfall on aerodynamic performance was initially examined using a stationary turbine model in both wind and wind–rain conditions.Subsequently,the study compared the FOWT’s performance under various single degree-of-freedom(DOF)motions,including surge,pitch,heave,and yaw.Finally,the combined effects of wind–rain fields and platform motions involving two DOFs on the FOWT’s aerodynamics were analyzed and compared.The results demonstrate that rain negatively impacts the aerodynamic performance of both the stationary turbines and FOWTs.Pitch-dominated motions,whether involving single or multiple DOFs,caused significant fluctuations in the FOWT aerodynamics.The combination of surge and pitch motions created the most challenging operational environment for the FOWT in all tested scenarios.These findings highlighted the need for stronger construction materials and greater ultimate bearing capacity for FOWTs,as well as the importance of optimizing designs to mitigate excessive pitch and surge. 展开更多
关键词 floating offshore wind turbine Aerodynamic performance Coupled motions Wind–rain field
在线阅读 下载PDF
Load-measurement method for floating offshore wind turbines based on a long short-term memory (LSTM) neural network
2
作者 Yonggang LIN Xiangheng FENG +1 位作者 Hongwei LIU Yong SUN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第5期456-470,共15页
Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,w... Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,we applied machine learning techniques to obtain hydrodynamic and aerodynamic loads of FOWTs by measuring platform motion responses and wave-elevation sequences.First,a computational fluid dynamics(CFD)simulation model of the floating platform was established based on the dynamic fluid body interaction technique and overset grid technology.Then,a long short-term memory(LSTM)neural network model was constructed and trained to learn the nonlinear relationship between the waves,platform-motion inputs,and hydrodynamic-load outputs.The optimal model was determined after analyzing the sensitivity of parameters such as sample characteristics,network layers,and neuron numbers.Subsequently,the effectiveness of the hydrodynamic load model was validated under different simulation conditions,and the aerodynamic load calculation was completed based on the D'Alembert principle.Finally,we built a hybrid-scale FOWT model,based on the software in the loop strategy,in which the wind turbine was replaced by an actuation system.Model tests were carried out in a wave basin and the results demonstrated that the root mean square errors of the hydrodynamic and aerodynamic load measurements were 4.20%and 10.68%,respectively. 展开更多
关键词 floating offshore wind turbine(FOWT) Long short-term memory(LSTM)neural network Machine learning technique Load measurement Hybrid-scale model test
原文传递
Numerical Analysis of a Floating Offshore Wind Turbine by Coupled Aero-Hydrodynamic Simulation 被引量:8
3
作者 Yang Huang Ping Cheng Decheng Wan 《Journal of Marine Science and Application》 CSCD 2019年第1期82-92,共11页
The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a con... The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a considerable amount of attention as a means to exploit steady and strong wind sources available in deep-sea areas. In this study, the coupled aero-hydrodynamic characteristics of a spar-type 5-MW wind turbine are analyzed. An unsteady actuator line model(UALM) coupled with a twophase computational fluid dynamics solver naoe-FOAM-SJTU is applied to solve three-dimensional Reynolds-averaged NavierStokes equations. Simulations with different complexities are performed. First, the wind turbine is parked. Second, the impact of the wind turbine is simplified into equivalent forces and moments. Third, fully coupled dynamic analysis with wind and wave excitation is conducted by utilizing the UALM. From the simulation, aerodynamic forces, including the unsteady aerodynamic power and thrust, can be obtained, and hydrodynamic responses such as the six-degrees-of-freedom motions of the floating platform and the mooring tensions are also available. The coupled responses of the FOWT for cases of different complexities are analyzed based on the simulation results. Findings indicate that the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform are obvious. The aerodynamic loads have a significant effect on the dynamic responses of the floating platform, and the aerodynamic performance of the wind turbine has highly unsteady characteristics due to the motions of the floating platform. A spar-type FOWT consisting of NREL-5-MW baseline wind turbine and OC3-Hywind platform system is investigated. The aerodynamic forces can be obtained by the UALM. The 6 DoF motions and mooring tensions are predicted by the naoe-FOAM-SJTU. To research the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform, simulations with different complexities are performed. Fully coupled aero-hydrodynamic characteristics of FOWTs, including aerodynamic loads, wake vortex, motion responses, and mooring tensions, are compared and analyzed. 展开更多
关键词 floatING offshore wind TURBINE UNSTEADY AERODYNAMICS HYDRO dynamic responses Coupling effects naoe-FOAM-SJTU SOLVER Actuator line model
在线阅读 下载PDF
Concept Design and Coupled Dynamic Response Analysis on 6-MW Spar-Type Floating Offshore Wind Turbine 被引量:7
4
作者 MENG Long ZHOU Tao +2 位作者 HE Yan-ping ZHAO Yong-sheng LIU Ya-dong 《China Ocean Engineering》 SCIE EI CSCD 2017年第5期567-577,共11页
Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed... Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) ofa 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system. 展开更多
关键词 Spar-type floating offshore wind turbine concept design combined wind and wave loads coupled dynamicresponse
在线阅读 下载PDF
Dynamic Response of Offshore Wind Turbine on 3×3 Barge Array Floating Platform under Extreme Sea Conditions 被引量:5
5
作者 LIU Qing-song MIAO Wei-pao +3 位作者 YUE Min-nan LI Chun WANG Bo DING Qingwei 《China Ocean Engineering》 SCIE EI CSCD 2021年第2期186-200,共15页
Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and instal... Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and install wind turbines in order to harness wind energy and generate electricity.The conventional floating offshore wind turbine system is typically in the state of force imbalance due to the unique sway characteristics caused by the unfixed foundation and the high center of gravity of the platform.Therefore,a floating wind farm for 3×3 barge array platforms with shared mooring system is presented here to increase stability for floating platform.The NREL 5 MW wind turbine and ITI Energy barge reference model is taken as a basis for this work.Furthermore,the unsteady aerodynamic load solution model of the floating wind turbine is established considering the tip loss,hub loss and dynamic stall correction based on the blade element momentum(BEM)theory.The second development of AQWA is realized by FORTRAN programming language,and aerodynamic-hydrodynamic-Mooring coupled dynamics model is established to realize the algorithm solution of the model.Finally,the 6 degrees of freedom(DOF)dynamic response of single barge platform and barge array under extreme sea condition considering the coupling effect of wind and wave were observed and investigated in detail.The research results validate the feasibility of establishing barge array floating wind farm,and provide theoretical basis for further research on new floating wind farm. 展开更多
关键词 BARGE floating platform extreme sea conditions dynamic response STABILITY
在线阅读 下载PDF
Motion Performance and Mooring System of a Floating Offshore Wind Turbine 被引量:5
6
作者 Jing Zhao Liang Zhang Haitao Wu 《Journal of Marine Science and Application》 2012年第3期328-334,共7页
The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platfo... The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooting system dynamics of the platform were calculated by SESAM soRware. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis. 展开更多
关键词 floating offshore wind turbine semi-submersible platform platform motion mooring dynamics mooring system
在线阅读 下载PDF
Review of Experimental-Numerical Methodologies and Challenges for Floating Offshore Wind Turbines 被引量:5
7
作者 Peng Chen Jiahao Chen Zhiqiang Hu 《Journal of Marine Science and Application》 CSCD 2020年第3期339-361,共23页
Due to the dissimilar scaling issues,the conventional experimental method of FOWTs can hardly be used directly to validate the full-scale global dynamic responses accurately.Therefore,it is of absolute necessity to fi... Due to the dissimilar scaling issues,the conventional experimental method of FOWTs can hardly be used directly to validate the full-scale global dynamic responses accurately.Therefore,it is of absolute necessity to find a more accurate,economic and efficient approach,which can be utilized to predict the full-scale global dynamic responses of FOWTs.In this paper,a literature review of experimental-numerical methodologies and challenges for FOWTs is made.Several key challenges in the conventional basin experiment issues are discussed,including scaling issues;coupling effects between aero-hydro and structural dynamic responses;blade pitch control strategies;experimental facilities and calibration methods.Several basin experiments,industrial projects and numerical codes are summarized to demonstrate the progress of hybrid experimental methods.Besides,time delay in hardware-in-the-loop challenges is concluded to emphasize their significant role in real-time hybrid approaches.It is of great use to comprehend these methodologies and challenges,which can help some future researchers to make a footstone for proposing a more efficient and functional hybrid basin experimental and numerical method. 展开更多
关键词 floating offshore wind turbines Hybrid approach Basin experiment Numerical simulation Wind energy
在线阅读 下载PDF
Effects of incident wind/wave directions on dynamic response of a SPAR-type floating offshore wind turbine system 被引量:3
8
作者 Guoqin Lyu Huiqin Zhang Jiachun Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第5期954-963,共10页
As a promising renewable energy,offshore wind energy currently is gaining more attention,by which the economic and efficient operation of floating wind turbine systems is a potential research direction.This study is p... As a promising renewable energy,offshore wind energy currently is gaining more attention,by which the economic and efficient operation of floating wind turbine systems is a potential research direction.This study is primarily devoted to the analysis of dynamic response of the NREL-5 MW reference wind turbine supported by an OC3-Hywind SPAR-type platform using a recompiled code which combines FAST with WAMIT.To verify the reliability of the recompiled code,the free decay motions of a floating wind turbine system in still water are examined with satisfactory results.After that,thirteen scenarios with different angles between wind and wave from 0°to 90°are investigated.The dynamic responses of the turbine system in various degrees of freedom(DOFs)for different incident wind/wave directions are presented in both time and frequency domains via the fast Fourier transform. 展开更多
关键词 offSHORE floatING WIND TURBINE Dynamic responses SPAR-type WIND TURBINE Distributions of WIND and wave DIRECTIONS
在线阅读 下载PDF
Scour and liquefaction issues for anchors and other subsea structures in floating offshore wind farms: A review 被引量:3
9
作者 B.Mutlu Sumer Veysel Sadan Ozgur Kirca 《Water Science and Engineering》 EI CAS CSCD 2022年第1期3-14,共12页
This article reviews scouring and liquefaction issues for anchor foundations of floating offshore wind farms.The review is organized in two sections:(1)the scouring issues for drag-embedment anchors(DEAs)and other sub... This article reviews scouring and liquefaction issues for anchor foundations of floating offshore wind farms.The review is organized in two sections:(1)the scouring issues for drag-embedment anchors(DEAs)and other subsea structures associated with DEAs such as tensioners,clump weights,and chains in floating offshore wind farms;and(2)the liquefaction issues for the same types of structures,particularly for DEAs.The scouring processes are described in detail,and the formulae and design guidelines for engineering predictions are included for quantities like scour depth,time scale,and sinking due to general shear failure of the bed soil caused by scoui\The latter is furnished with numerical examples.Likewise,in the second section,the liquefaction processes are described with special reference to residual liquefaction where pore-water pressure builds up in undrained soils(such as fine sand and silt)under waves,leading to liquefaction of the bed soil and precipitating failure of DEAs and their associated subsea structures.An integrated mathematical model to deal with liquefaction around and the resulted sinking failure of DEAs,introduced in a recent study,has been revisited.Implementation of the model is illustrated with a numerical example.It is believed that the present review and the existing literatures from the"neighboring"fields form a complementary source of information on scour and liquefaction around foundations of floating offshore wind farms. 展开更多
关键词 floating structures LIQUEFACTION offshore structures offshore wind energy Renewable energy SCOURING
在线阅读 下载PDF
Dynamic Response of 6MW Spar Type Floating Offshore Wind Turbine by Experiment and Numerical Analyses 被引量:3
10
作者 MENG Long HE Yan-ping +6 位作者 ZHAO Yong-sheng YANG Jie YANGHe HAN Zhao-long YU Long MAO Wen-gang DU Wei-kang 《China Ocean Engineering》 SCIE EI CSCD 2020年第5期608-620,共13页
The floating offshore wind turbine(FOWT) is widely used for harvesting marine wind energy. Its dynamic responses under offshore wind and wave environment provide essential reference for the design and installation. In... The floating offshore wind turbine(FOWT) is widely used for harvesting marine wind energy. Its dynamic responses under offshore wind and wave environment provide essential reference for the design and installation. In this study,the dynamic responses of a 6 MW Spar type FOWT designed for the water depth of 100 m are investigated by means of the wave tank experiment and numerical analysis. A scaled model is manufactured for the experiment at a ratio of65.3, while the numerical model is constructed on the open-source platform FAST(Fatigue, Aerodynamics,Structures, and Turbulence). Still water tests, wind-induced only tests, wave-induced only tests and combined windwave-current tests are all conducted experimentally and numerically. The accuracy of the experimental set-up as well as the loading generation has been verified. Surge, pitch and heave motions are selected to analyze and the numerical results agree well with the experimental values. Even though results obtained by using the FOWT calculation model established in FAST software show some deviations from the test results, the trends are always consistent. Both experimental and numerical studies demonstrate that they are reliable for the designed 6 MW Spar type FOWT. 展开更多
关键词 floating offshore wind turbine dynamic responses Spar type platform FAST model test
在线阅读 下载PDF
Research on Dynamic Response Characteristics of 6 MW Spar-Type Floating Offshore Wind Turbine 被引量:4
11
作者 MENG Long HE Yanping +2 位作者 ZHOU Tao ZHAO Yongsheng LIU Yadong 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第4期505-514,共10页
A 6 MW spar-type floating offshore wind turbine (FOWT) model is put forward and a fully coupled aero-hydro-servo-elastic time domain model is established in the fatigue, aerodynamics, structures and turbulence (FAS... A 6 MW spar-type floating offshore wind turbine (FOWT) model is put forward and a fully coupled aero-hydro-servo-elastic time domain model is established in the fatigue, aerodynamics, structures and turbulence (FAST) code. Influence rules of wind 10ad and wave load on the characteristics of 6 MW spar-type FOWT are investigated. Firstly, validation of the model is carried out and a satisfactory result is obtained. The maximal deviations of rotor thrust and power between simulation results and reference values are 4.54% and -2.74%, respectively. Then the characteristics, including rotor thrust, rotor power, out-of-plane blade deflection, tower base fore-aft bending moment, and mooring line tension, are researched. The results illustrate that the mean value of dynamic response characteristics is mainly controlled by the wind-induced action. For characteristics of tower base fore-aft bending moment and platform pitch motion, the oscillation is dominated by the wave-induced action during all conditions considered. For characteristics of out-of-plane blade tip deflection and mooring line tension, the oscillation is commanded by combination effect of wave and wind loads when the wind speed is lower than the rated wind speed (hereinafter referred to as below rated wind speed) and is controlled by the wave-induced action when the wind speed is higher than the rated wind speed (hereinafter referred to as above rated wind speed). As to the rotor thrust and power, the oscillation is dominated by the wind induced action at below rated wind speed and by the combination action of wind and wave loads at above rated wind speed. The results should be useful to the detailed design and model basin test of the 6 MW spar-type FOWT. 展开更多
关键词 floating offshore wind turbine(FOWT) time domain response wind and wave loads dynamic response characteristics
原文传递
Platform motion minimization using model predictive control of a floating offshore wind turbine 被引量:3
12
作者 Kamran Ali Shah Ye Li +2 位作者 Ryozo Nagamune Yarong Zhou Waheed Ur Rehman 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第5期291-295,共5页
Wind turbines are installed offshore with the assistance of a floating platform to help meet the world’s increasing energy needs.However,the incident wind and extra incident wave disturbances have an impact on the pe... Wind turbines are installed offshore with the assistance of a floating platform to help meet the world’s increasing energy needs.However,the incident wind and extra incident wave disturbances have an impact on the performance and operation of the floating offshore wind turbine(FOWT)in comparison to bottom-fixed wind turbines.In this paper,model predictive control(MPC)is utilized to overcome the limitation caused by platform motion.Due to the ease of control synthesis,the MPC is developed using a simplified model instead of high fidelity simulation model.The performance of the controller is verified in the presence of realistic wind and wave disturbances.The study demonstrates the effectiveness of MPC in reducing platform motions and rotor/generator speed regulation of FOWTs. 展开更多
关键词 Wind energy floating offshore wind turbine Platform motion Model predictive control
在线阅读 下载PDF
Mechanism of floating body effect mitigation via cutting off source injection in a fully-depleted silicon-on-insulator technology 被引量:2
13
作者 黄鹏程 陈书明 陈建军 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期283-289,共7页
In this paper, the effect of floating body effect (FBE) on a single event transient generation mechanism in fully depleted (FD) silicon-on-insulator (SOI) technology is investigated using three-dimensional techn... In this paper, the effect of floating body effect (FBE) on a single event transient generation mechanism in fully depleted (FD) silicon-on-insulator (SOI) technology is investigated using three-dimensional technology computer-aided design (3D- TCAD) numerical simulation. The results indicate that the main SET generation mechanism is not carder drift/diffusion but floating body effect (FBE) whether for positive or negative channel metal oxide semiconductor (PMOS or NMOS). Two stacking layout designs mitigating FBE are investigated as well, and the results indicate that the in-line stacking (IS) layout can mitigate FBE completely and is area penalty saving compared with the conventional stacking layout. 展开更多
关键词 floating body effect in-line stacking SILICON-ON-INSULATOR source injection
原文传递
Study on Gyroscopic Effect of Floating Offshore Wind Turbines 被引量:2
14
作者 CHEN Jia-hao PEI Ai-guo +1 位作者 CHEN Peng HU Zhi-qiang 《China Ocean Engineering》 SCIE EI CSCD 2021年第2期201-214,共14页
Compared with bottom-fixed wind turbines,the supporting platform of a floating offshore wind turbine has a larger range of motion,so the gyroscopic effects of the system will be more obvious.In this paper,the mathemat... Compared with bottom-fixed wind turbines,the supporting platform of a floating offshore wind turbine has a larger range of motion,so the gyroscopic effects of the system will be more obvious.In this paper,the mathematical analytic expression of the gyroscopic moment of a floating offshore wind turbine is derived firstly.Then,FAST software is utilized to perform a numerical analysis on the model of a spar-type horizontal axis floating offshore wind turbine,OC3-Hywind,so as to verify the correctness of the theoretical analytical formula and take an investigation on the characteristics of gyroscopic effect.It is found that the gyroscopic moment of the horizontal axis floating offshore wind turbine is essentially caused by the vector change of the rotating rotor,which may be due to the pitch or yaw motion of the floating platform or the yawing motion of the nacelle.When the rotor is rotating,the pitch motion of the platform mainly excites the gyroscopic moment in the rotor’s yaw direction,and the yaw motion of the platform largely excites the rotor’s gyroscopic moment in pitch direction,accordingly.The results show that the gyroscopic moment of the FOWT is roughly linearly related to the rotor’s inertia,the rotor speed,and the angular velocity of the platform motion. 展开更多
关键词 floating offshore wind turbine gyroscopic effects yaw motion pitch motion numerical analysis
在线阅读 下载PDF
Aero-Hydrodynamic Coupled Dynamic Characteristics of Semi-Submersible Floating Offshore Wind Turbines Under Inflow Turbulence 被引量:2
15
作者 JIANG Hai-rui BAI Xing-lan Murilo A.VAZ 《China Ocean Engineering》 SCIE EI CSCD 2023年第4期660-672,共13页
In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated... In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically. 展开更多
关键词 turbulence characteristics floating offshore wind turbines second-order hydrodynamic loads low-and high-frequency responses aero-hydrodynamic coupling
在线阅读 下载PDF
Study on Rigid-Flexible Coupling Effects of Floating Offshore Wind Turbines 被引量:1
16
作者 CHEN Jia-hao HU Zhi-qiang +1 位作者 LIU Ge-liang WAN De-cheng 《China Ocean Engineering》 SCIE EI CSCD 2019年第1期1-13,共13页
In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the hi... In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the higher-order axial displacements into account, which are usually neglected in the conventional linear dynamic model. Subsequently,investigations on the dynamic differences between the proposed nonlinear dynamic model and the linear one are conducted. The results demonstrate that the stiffness of the turbine blades in the proposed nonlinear dynamic model increases with larger overall motions but that in the linear dynamic model declines with larger overall motions.Deformation of the blades in the nonlinear dynamic model is more reasonable than that in the linear model as well.Additionally, more distinct coupling effects are observed in the proposed nonlinear model than those in the linear model. Finally, it shows that the aerodynamic loads, the structural loads and global dynamic responses of floating offshore wind turbines using the nonlinear dynamic model are slightly smaller than those using the linear dynamic model. In summary, compared with the conventional linear dynamic model, the proposed nonlinear coupling dynamic model is a higher-order dynamic model in consideration of the rigid-flexible coupling effects of floating offshore wind turbines, and accord more perfectly with the engineering facts. 展开更多
关键词 floatING offSHORE WIND TURBINE DYNAMIC STIFFENING effect nonlinear coupled DYNAMIC model DARwind
在线阅读 下载PDF
Structural Strength Analysis of a Tri-Floater Floating Foundation for Offshore VAWT 被引量:1
17
作者 LIU Liqin ZHAO Haixiang +2 位作者 XU Wanhai YUAN Rui GUO Ying 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第4期753-762,共10页
Vertical axis wind turbines(VAWTs) are advantageous for the development of large-scale offshore wind power because the drive system is located at the bottom of the turbine. This study investigates the structural stren... Vertical axis wind turbines(VAWTs) are advantageous for the development of large-scale offshore wind power because the drive system is located at the bottom of the turbine. This study investigates the structural strength of a tri-floater floating foundation supporting a 2.6 MW Darrieus VAWT. Finite element models of the floating foundation were developed using space plate-beam elements. The environmental loads, such as the aerodynamic loads, static wind loads, and wave-current loads, were considered. The general strengths of the floating foundation were calculated for the normal operating case(a cut-out wind speed of 25 m s^(-1) and blade rotation of 12 r min^(-1) were used to analyze the most unfavorable loads) and an extreme case(wind speed of 40 m s^(-1) and parked blades), and the weak components of the structure were analyzed. The results show that the floating foundation meets the strength requirements and the structural stress is highest when the wave, wind, and current are in a collinear direction. The main and secondary supporting bars transmit the loads between the stand columns and the tower foundation, and their stresses are higher than those in the other components. In the actual design, these supporting bars should be strengthened. The aerodynamic loads are very important and should be considered in the structural strength analysis of the floating foundation and the floating wind turbine system. 展开更多
关键词 vertical axis wind TURBINE tri-floater floatING FOUNDATION strength analysis finite element method structural stress
在线阅读 下载PDF
Dynamic Responses of A Semi-Type Offshore Floating Wind Turbine During Normal State and Emergency Shutdown 被引量:6
18
作者 胡志强 李良 +2 位作者 王晋 胡秋皓 沈马成 《China Ocean Engineering》 SCIE EI CSCD 2016年第1期97-112,共16页
This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine(OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time doma... This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine(OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time domain, using an aero-hydro-servo-elastic simulation code-FAST. Owing to the unique viscous features of the reference system, the original viscous damping model implemented in FAST is replaced with a quadratic one to gain an accurate capture of viscous effects. Simulation cases involve free-decay motion in still water, steady motions in the presence of regular waves and wind as well as dynamic response in operational sea states with and without wind. Simulations also include the cases for transient responses induced by fast blade pitching after emergency shutdown. The features of platform motions, local structural loads and a typical mooring line tension force under a variety of excitations are obtained and investigated. 展开更多
关键词 offshore floating wind turbine dynamic responses semi-type aerodynamic effects effective RAO emergency shutdown
在线阅读 下载PDF
Analysis of Key Disciplinary Parameters in Floating Offshore Wind Turbines with An AI-Based SADA Method 被引量:1
19
作者 CHEN Peng HU Zhi-qiang 《China Ocean Engineering》 SCIE EI CSCD 2022年第4期649-657,共9页
Floating offshore wind turbines(FOWTs)are a promising offshore renewable energy harvesting facility but requesting multiple-disciplinary analysis for their dynamic performance predictions.However,engineering-fidelity ... Floating offshore wind turbines(FOWTs)are a promising offshore renewable energy harvesting facility but requesting multiple-disciplinary analysis for their dynamic performance predictions.However,engineering-fidelity level tools and the empirical parameters pose challenges due to the strong nonlinear coupling effects of FOWTs.A novel method,named SADA,was proposed by Chen and Hu(2021)for optimizing the design and dynamic performance prediction of FOWTs in combination with AI technology.In the SADA method,the concept of Key Disciplinary Parameters(KDPs)is also proposed,and it is of crucial importance in the SADA method.The purpose of this paper is to make an in-depth investigation of the characters of KDPs and the internal correlations between different KDPs in the dynamic performance prediction of FOWTs.Firstly,a brief description of SADA is given,and the basin experimental data are used to conduct the training process of SADA.Secondly,categories and boundary conditions of KDPs are introduced.Three types of KDPs are given,and different boundary conditions are used to analyze KDPs.The results show that the wind and current in Environmental KDPs are strongly correlated with the percentage difference of dynamic response rather than that by wave parameters.In general,the optimization results of SADA consider the specific basin environment and the coupling results between different KDPs help the designers further understand the factors that have a more significant impact on the FOWTs system in a specific domain. 展开更多
关键词 floating offshore wind turbine SADA KDPs machine learning basin experiment
在线阅读 下载PDF
Assessment of Fatigue Strength of An Offshore Floating Production and Storage Unit 被引量:1
20
作者 LIU Jiancheng(刘建成) +1 位作者 GU Yongning(顾永宁) 《China Ocean Engineering》 SCIE EI 2002年第1期41-49,共9页
The procedure of assessment of structural fatigue strength of an offshore floating production and storage and offloading unit (FPSO) in this paper. The emphasis is placed on the long-term prediction of wave induced lo... The procedure of assessment of structural fatigue strength of an offshore floating production and storage and offloading unit (FPSO) in this paper. The emphasis is placed on the long-term prediction of wave induced loading, the refined finite element model for hot spot stress calculation, the combination of stress components, and fatigue damage assessment based on S-N curve. 展开更多
关键词 offshore structure fatigue strength hot spot stress long-term prediction floating production and storage and offloading unit
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部