期刊文献+
共找到233篇文章
< 1 2 12 >
每页显示 20 50 100
A New Flatness Pattern Recognition Model Based on Cerebellar Model Articulation Controllers Network 被引量:2
1
作者 HE Hai-tao LI Yan 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第5期32-36,共5页
In the traditional flatness pattern recognition neural network, the topologic configurations need to be rebuilt with a changing width of cold strip. Furthermore, the large learning assignment, slow convergence, and lo... In the traditional flatness pattern recognition neural network, the topologic configurations need to be rebuilt with a changing width of cold strip. Furthermore, the large learning assignment, slow convergence, and local minimum in the network are observed. Moreover, going by the structure of the traditional neural network, according to experience, the model is time-consuming and complex. Thus, a new approach of flatness pattern recognition is proposed based on the CMAC (cerebellar model articulation controllers) neural network. The difference in fuzzy distances between samples and the basic patterns is introduced as the input of the CMAC network. Simultaneously, the adequate learning rate is improved in the error correction algorithm of this neural network. The new approach with advantages, such as high learning speed, good generalization, and easy implementation, is efficient and intelligent. The simulation results show that the speed and accuracy of the flatness pattern recognition model are obviously im proved. 展开更多
关键词 flatNESS pattern recognition CMAC neural network fuzzy distance
原文传递
A Flat Mobile Core Network for Evolved Packet Core Based SAE Mobile Networks
2
作者 Mohammad Al Shinwan Trong-Dinh Huy Kim Chul-Soo 《Journal of Computer and Communications》 2017年第5期62-73,共12页
In the current mobile IPv6 (MIPv6) systems for the System architecture evaluation (SAE) networks, such as 4th generation (4G) mobile network, the data delivery is performed basing on a centralized mobility network anc... In the current mobile IPv6 (MIPv6) systems for the System architecture evaluation (SAE) networks, such as 4th generation (4G) mobile network, the data delivery is performed basing on a centralized mobility network anchor between Evolved Node B (eNB) and Serving Gateways (S-GW), and also between S-GW and Packet Data Network Gateway (P-GW). However, the existing network has many obstacles, including suboptimal data routing, injection of unwanted data traffic into mobile core network and the requirement of capital expenditure. To handle these challenges, here we describe a flat mobile core network scheme donated by F-EPC, based SAE mobile network. In the proposed scheme, the P-GW and S-GW gateways are features as one node named Cellular Gateway (C-GW). Further, we proposed to distribute and increase the number of C-GW in mobile core network, the Mobility Management Entity (MME) functioned as centralizing mobility anchor and allocating the IP address for the User Entity (UE). In this paper, the explained results of a simulation analysis showed that the proposed scheme provides a superior performance compared with the current 4G architecture in terms of total transmission delay, handover delay and initial attach procedure. 展开更多
关键词 SAE EPC F-EPC flat network DMM MOBILITY
在线阅读 下载PDF
Flatness predictive model based on T-S cloud reasoning network implemented by DSP 被引量:4
3
作者 ZHANG Xiu-ling GAO Wu-yang +1 位作者 LAI Yong-jin CHENG Yan-tao 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2222-2230,共9页
The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digita... The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digital signal processor(DSP) is proposed. First, the combination of genetic algorithm(GA) and simulated annealing algorithm(SAA) is put forward, called GA-SA algorithm, which can make full use of the global search ability of GA and local search ability of SA. Later, based on T-S cloud reasoning neural network, flatness predictive model is designed in DSP. And it is applied to 900 HC reversible cold rolling mill. Experimental results demonstrate that the flatness predictive model via T-S cloud reasoning network can run on the hardware DSP TMS320 F2812 with high accuracy and robustness by using GA-SA algorithm to optimize the model parameter. 展开更多
关键词 T-S CLOUD reasoning neural network CLOUD MODEL flatNESS predictive MODEL hardware implementation digital signal PROCESSOR genetic ALGORITHM and simulated annealing ALGORITHM (GA-SA)
在线阅读 下载PDF
Particulate Matter Exposure of Rural Interior Communities as Observed by the First Tribal Air Quality Network in the Yukon Flat
4
作者 Stanley G.Edwin Nicole Molders 《Journal of Environmental Protection》 2018年第13期1425-1448,共24页
A tribal-owned network of aerosol monitors and meteorological stations was installed at Ts’aahudaaneekk’onh Denh (Beaver), Gwichyaa Zheh (Fort Yukon), Jalgiitsik (Chalkyitsik), and Danzhit Khànlaii (Circle) in ... A tribal-owned network of aerosol monitors and meteorological stations was installed at Ts’aahudaaneekk’onh Denh (Beaver), Gwichyaa Zheh (Fort Yukon), Jalgiitsik (Chalkyitsik), and Danzhit Khànlaii (Circle) in the Yukon Flats, Alaska. Surface inversions occurred under calm wind conditions due to radiative cooling. In May, local emissions governed air quality with worst conditions related to road and river dust. As the warm season progressed, worst air quality was due to transport of pollutants from upwind wildfires. During situations without smoke or when smoke existed at layers above the surface inversion, concentrations of particulate matter of less than 2.5 micrometer in diameter or less (PM2.5) were explainable by the local emissions;24-h means remained below 25 μg·m-3. Absorption of solar radiation in the smoke layer and upward scattering enhanced stability and fostered the persistence of the surface inversions. During smoke episodes without the presence of a surface inversion, daily mean concentrations exceeded 35 μg·m-3 often for several consecutive days, at all sites. Then concentrations temporally reached levels considered unhealthy. 展开更多
关键词 Summer Surface Inversions in the Yukon flats PM_(2.5) Concentrations in Rural Alaska Villages First Tribal Air-Quality network in the Yukon flats
暂未订购
基于深度残差收缩网络的地铁车轮扁疤故障诊断
5
作者 梁红琴 姜进南 +4 位作者 龙辉 陶功权 卢纯 温泽峰 张楷 《中南大学学报(自然科学版)》 北大核心 2025年第3期1234-1248,共15页
针对地铁实际运营环境恶劣的问题,本文以轴箱振动加速度作为监测信号,基于深度残差收缩网络(DRSN),提出1种适用于强噪声背景的车轮扁疤故障严重程度辨识方法。首先,基于地铁车辆-轨道刚柔耦合动力学模型生成车轮扁疤故障数据集,并采用... 针对地铁实际运营环境恶劣的问题,本文以轴箱振动加速度作为监测信号,基于深度残差收缩网络(DRSN),提出1种适用于强噪声背景的车轮扁疤故障严重程度辨识方法。首先,基于地铁车辆-轨道刚柔耦合动力学模型生成车轮扁疤故障数据集,并采用数据增强技术提升数据集的多样性,同时满足深度学习对数据规模的要求。其次,设计1种结构合理的深度残差收缩网络,能够自适应地提取轴箱振动加速度信号的特征,从而实现车轮扁疤故障程度的智能分类。研究结果表明:在无噪声条件下,所提方法对正常车轮及轻度、中度和重度扁疤车轮的平均诊断精度达到99.88%(标准差为0.05);同时,在不同噪声等级下,该方法的平均诊断精度仍稳定保持在95%以上。与遗传算法结合支持向量机(GA-SVM)、卷积神经网络(CNN)、宽深度卷积神经网络(WDCNN)以及深度残差网络(ResNet)相比,所提方法具有更优异的辨识能力和鲁棒性。 展开更多
关键词 车辆-轨道耦合动力学模型 车轮扁疤 深度残差收缩网络 轴箱振动加速度 数据增强
在线阅读 下载PDF
BiMcGRU在医疗病历命名实体关系识别中的应用
6
作者 胡志坚 《自动化技术与应用》 2025年第8期71-74,130,共5页
为提升医疗病历实体命名的效果,对基于词汇增强的平格变压器(flat lattice transformer,FLAT)模型进行改进,并利用基于双向神经网络改进的共享多向单元(bi-directional multi-cell GRU,BiMcGRU)模型对传统命名实体识别系统进行优化。在... 为提升医疗病历实体命名的效果,对基于词汇增强的平格变压器(flat lattice transformer,FLAT)模型进行改进,并利用基于双向神经网络改进的共享多向单元(bi-directional multi-cell GRU,BiMcGRU)模型对传统命名实体识别系统进行优化。在脑血管疾病数据集中,相比于传统FLAT模型,汉字部首特征引入后FLAT模型精确率、召回率和F1值分别提升了0.91%、0.73%和0.82%。两种实验数据集测试中,基于多任务学习的医疗病历命名实体模型的F1值分别为89.34%和91.53%,比多任务BERT-BiGRU-ATT-CRF模型的F1值高,说明BiMcGRU模型能够提升多任务训练识别的效果,研究结果为医疗病历实体命名识别提供新的方法。 展开更多
关键词 命名实体识别 医疗病历 平格变压器 卷积神经网络 条件随机场
在线阅读 下载PDF
基于有限元降阶泛化的扁线绕组交流损耗快速计算方法
7
作者 王耀 程远 +2 位作者 高博 李育宽 崔淑梅 《电工技术学报》 北大核心 2025年第18期5832-5844,共13页
由于低直流电阻等优异特性,扁线绕组已成为新能源汽车驱动电机的主流技术方案。然而,复杂的交流损耗计算为扁线绕组设计带来困难。该文提出一种具备泛化能力的有限元降阶方法,采用本征正交分解与神经网络相结合的方式对绕组磁场进行求... 由于低直流电阻等优异特性,扁线绕组已成为新能源汽车驱动电机的主流技术方案。然而,复杂的交流损耗计算为扁线绕组设计带来困难。该文提出一种具备泛化能力的有限元降阶方法,采用本征正交分解与神经网络相结合的方式对绕组磁场进行求解泛化,实现电机工况内任意工作点的磁场快速求解。同时,该文还修正了扁线绕组涡流损耗解析公式,结合降阶泛化方法输出的磁场结果实现扁线绕组槽内与端部损耗的快速计算。结果表明,与有限元方法相比,所提方法的计算速度提高,且相对于传统扁线损耗解析方法求解精度得以提升。在泛化范围内磁场重构最大误差小于0.008 T,最大损耗误差小于6.17%。最后通过扁线电机与利兹线电机的绕组损耗分离实验,验证了所提方法的有效性。 展开更多
关键词 永磁同步电机 降阶算法 神经网络 扁线绕组 半解析求解
在线阅读 下载PDF
基于BP神经网络的扁平钢箱梁涡振性能预测
8
作者 白桦 杨光 +2 位作者 杨鹏瑞 杨鑫 高广中 《东南大学学报(自然科学版)》 北大核心 2025年第5期1388-1398,共11页
以大跨桥梁常用的扁平钢箱梁为研究对象,通过风洞试验和数值模拟建立了扁平钢箱梁断面在不同动力特性和气动外形下的扭转涡振响应数据库。利用建立的数据库训练了BP神经网络,提出了确定最佳隐含层节点数的方法,并利用交叉验证和遗传算法... 以大跨桥梁常用的扁平钢箱梁为研究对象,通过风洞试验和数值模拟建立了扁平钢箱梁断面在不同动力特性和气动外形下的扭转涡振响应数据库。利用建立的数据库训练了BP神经网络,提出了确定最佳隐含层节点数的方法,并利用交叉验证和遗传算法对BP神经网络的初始权值及阈值进行优化,预测扁平钢箱梁断面的扭转涡振性能。结果表明,利用遗传算法优化后的BP神经网络可以有效预测扁平钢箱梁断面的涡振特性,随机抽取的2个样本预测平均相对误差为8.18%。参数分析表明,扁平钢箱梁断面的腹板角度越小,箱梁断面越趋近于流线型,扭转涡振响应越小。扁平钢箱梁断面增加风嘴后可以减小扭转涡振响应,然而风嘴角度越大,扭转涡振响应越大。 展开更多
关键词 扁平钢箱梁 涡振 BP神经网络 遗传算法 交叉验证
在线阅读 下载PDF
基于GA-BP神经网络的冷连轧带钢板形预测
9
作者 杨熙成 叶俊成 +1 位作者 谢璐璐 孙杰 《材料与冶金学报》 北大核心 2025年第1期55-61,共7页
为了提高冷连轧过程中板形预设定和闭环反馈的控制效果,以1450 mm五机架UCM冷连轧机组为研究对象,对1742个实验数据进行分类和预处理,以74个工艺参数变量作为输入特征,20个不同位置的板形值作为输出结果,构建了反向传播(backpropagation... 为了提高冷连轧过程中板形预设定和闭环反馈的控制效果,以1450 mm五机架UCM冷连轧机组为研究对象,对1742个实验数据进行分类和预处理,以74个工艺参数变量作为输入特征,20个不同位置的板形值作为输出结果,构建了反向传播(backpropagation,BP)神经网络模型,并采用遗传算法(genetic algorithm,GA)进行优化,得到了基于遗传算法的反向传播(GA-BP)神经网络模型.结果表明,所构建的GA-BP神经网络模型在拟合优度、预测精度和稳定性等方面均优于BP神经网络模型,其RMSE值从0.9818 I降至0.4476 I,MAE值从0.6225 I降至0.2193 I,R^(2)由0.7454增至0.9131. 展开更多
关键词 冷轧带钢 板形预测 反向传播神经网络 遗传算法
在线阅读 下载PDF
基于残差神经网络和连续小波变换的车轮踏面损伤识别
10
作者 张可军 刘崇睿 赵龙 《高速铁路技术》 2025年第5期1-5,共5页
车轮扁疤是铁路系统中最常见的缺陷之一,轻微的车轮扁疤会降低乘坐舒适度,而严重的车轮扁疤则可能导致脱轨等重大事故。为实现车轮扁疤的预防性维护,在保障轮对良好状态的同时降低维护成本,须对车轮踏面进行实时状态监测。针对此类问题... 车轮扁疤是铁路系统中最常见的缺陷之一,轻微的车轮扁疤会降低乘坐舒适度,而严重的车轮扁疤则可能导致脱轨等重大事故。为实现车轮扁疤的预防性维护,在保障轮对良好状态的同时降低维护成本,须对车轮踏面进行实时状态监测。针对此类问题,本文提出一种基于残差神经网络(ResNet)和连续小波变换(CWT)的车轮扁疤故障诊断方法。该方法首先通过连续小波变换将轴箱振动加速度信号转换为二维时频图,再将二维时频图输入残差神经网络进行车轮扁疤故障识别。实验结果表明,本文所提出的CWT-ResNet模型能够准确识别车轮扁疤的损伤程度,识别准确率达到98.13%。 展开更多
关键词 车轮扁疤 残差神经网络 连续小波变换
在线阅读 下载PDF
FLAT网络在发酵过程建模中的应用
11
作者 田炳丽 隋青美 张桂涛 《山东大学学报(工学版)》 CAS 2003年第1期55-59,共5页
本文使用FLAT网络对一种工业规模的连续发酵过程进行了辨识 .发酵过程作为一种复杂的生化反应 ,它比一般的非线性系统更加复杂 ,FLAT网络用于发酵过程的辨识 ,可以得到较高的辨识精度 ,而且辨识速度快。
关键词 发酵过程 建立模型/flat网络
在线阅读 下载PDF
结合神经文本生成的FLAT模型的中文电子病历命名实体识别
12
作者 陈鹏 苏志同 余肖生 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第9期98-109,共12页
随着医疗信息化的发展,电子病历命名实体识别受到了广泛关注。电子病历中包含大量的专业词汇,而专业词汇的切分错误会使命名实体识别效果不佳。FLAT模型在引入词边界信息时能有效避免分词错误信息的传播,提高命名实体识别效果,但FALT模... 随着医疗信息化的发展,电子病历命名实体识别受到了广泛关注。电子病历中包含大量的专业词汇,而专业词汇的切分错误会使命名实体识别效果不佳。FLAT模型在引入词边界信息时能有效避免分词错误信息的传播,提高命名实体识别效果,但FALT模型依赖于高质量的词典信息。针对这一问题,提出了结合神经文本生成的FLAT模型,使用神经文本生成方法生成大量新病历文本,通过提出的评分函数筛选通顺的文本训练词向量作为FLAT模型的词典信息。实验表明:结合神经文本生成的FLAT模型在CCKS2017数据集上取得了95.32%的F1分数,比BiLSTM CRF模型提高了1.16%,比BERT CRF模型提高了0.89%;在CCKS2019数据集上取得了85.87%的F1分数,比BiLSTM CRF模型提高了5.19%,比BERT CRF模型提高了1.34%。 展开更多
关键词 命名实体识别 电子病历 flat 神经文本生成
在线阅读 下载PDF
冷轧铜带广义板形控制目标曲线的制定
13
作者 王宁 刘宏民 +1 位作者 王东城 高心成 《中国有色金属学报》 北大核心 2025年第10期3552-3565,共14页
为适应冷轧铜带板形和板凸度综合控制的现实需求,提出了成品前道次主要控制板凸度、兼顾板形,成品道次着力控制板形的广义板形控制策略。针对广义板形控制目标曲线设定缺乏理论方法的问题,采用条元变分法机理解析模型进行板形预报,并联... 为适应冷轧铜带板形和板凸度综合控制的现实需求,提出了成品前道次主要控制板凸度、兼顾板形,成品道次着力控制板形的广义板形控制策略。针对广义板形控制目标曲线设定缺乏理论方法的问题,采用条元变分法机理解析模型进行板形预报,并联立双分支输入与多标签输出的神经网络数据智能模型进行板形判别,构建了面向板形和板凸度综合优化控制、板形目标曲线设定的机理智能协同建模和计算方法。在冷轧铜带800 mm四辊轧机上的工业应用表明,按照本文控制策略和建模方法制定的板形目标曲线,不仅可使成品道次板形达到实际要求,而且可以最大限度地控制板凸度。在两个应用案例中,板凸度消除效果分别提升了28.57%和62.5%,还可以防止表面色差缺陷,实现由板形目标曲线控制多个质量指标的目的。 展开更多
关键词 冷轧铜带 广义板形 控制策略 目标曲线 机理模型 神经网络
在线阅读 下载PDF
Cloud Neural Fuzzy PID Hybrid Integrated Algorithm of Flatness Control 被引量:7
14
作者 Chun-yu JIA Tao BAI +2 位作者 Xiu-ying SHAN Fa-jun CUI Sheng-jie XU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第6期559-564,共6页
In connection with the characteristics of multi-disturbance and nonlinearity of a system for flatness control in cold rolling process, a new intelligent PID control algorithm was proposed based on a cloud model, neura... In connection with the characteristics of multi-disturbance and nonlinearity of a system for flatness control in cold rolling process, a new intelligent PID control algorithm was proposed based on a cloud model, neural network and fuzzy integration. By indeterminacy artificial intelligence, the problem of fixing the membership functions of input variables and fuzzy rules was solved in an actual fuzzy system and the nonlinear mapping between variables was implemented by neural network. The algorithm has the adaptive learning ability of neural network and the indetermi- nacy of a cloud model in processing knowledge, which makes the fuzzy system have more persuasion in the process of knowledge inference, realizing the online adaptive regulation of PID parameters and avoiding the defects of the traditional PID controller. Simulation results show that the algorithm is simple, fast and robust with good control performance and application value. 展开更多
关键词 flatness control cloud model neural network fuzzy inference PID
原文传递
Tier_Flat:P2P网络并行模拟器(HiFiP2P)的一种路由算法
15
作者 余传亮 张宏莉 杨贤清 《高技术通讯》 EI CAS CSCD 北大核心 2010年第9期899-904,共6页
为了给P2P网络并行模拟器HiFiP2P提供正确高效的路由,使其能够高效地执行大规模P2P网络并行模拟,基于互联网中的层次路由模型和Flat本地静态路由计算和查找算法,采取边界路由最小化的并行网络拓扑划分机制,设计了Tier_Flat路由算法,用... 为了给P2P网络并行模拟器HiFiP2P提供正确高效的路由,使其能够高效地执行大规模P2P网络并行模拟,基于互联网中的层次路由模型和Flat本地静态路由计算和查找算法,采取边界路由最小化的并行网络拓扑划分机制,设计了Tier_Flat路由算法,用以实现HiFiP2P的远程和本地静态路由,它以最低O((N^4)^(1/3))的空间开销,取得了O(1)的查找效率。结果表明,Tier_Flat路由算法路由计算时间短,路由表内存占用小,路由查询速度快,为HiFiP2P平台的大规模P2P网络并行模拟提供了高效的路由服务。 展开更多
关键词 并行模拟 HiFiP2P 网络拓扑划分 Tier_flat路由算法
在线阅读 下载PDF
Flatness Control Based on Dynamic Effective Matrix for Cold Strip Mills 被引量:24
16
作者 LIU Hongmin HE Haitao +1 位作者 SHAN Xiuying JIANG Guangbiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第2期287-296,共10页
Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the im... Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method. 展开更多
关键词 cold strip mill flatness control dynamic effective matrix CLUSTER fuzzy neural network
在线阅读 下载PDF
Theory-Intelligent Dynamic Matrix Model of Flatness Control for Cold Rolled Strips 被引量:12
17
作者 LIU Hong-min SHAN Xiu-ying JIA Chun-yu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第8期1-7,共7页
In order to increase the precision of flatness control, considering the principle and the measured data of rolling process essence, the theory-intelligent dynamic matrix model of flatness control is established by usi... In order to increase the precision of flatness control, considering the principle and the measured data of rolling process essence, the theory-intelligent dynamic matrix model of flatness control is established by using theory and in-telligent methods synthetically. The network model for rapidly calculating the theory effective matrix is established by the BP network optimized by the particle swarm algorithm. The network model for rapidly calculating the meas- urement effective matrix is established by the RBF network optimized by the cluster algorithm. The flatness control model can track the practical situation of roiling process by on-line selVlearning. The scheme for flatness control quantity calculation is established by combining the theory control matrix and the measurement control matrix. The simulation result indicates that the establishment of theory-intelligent dynamic matrix model of flatness control with stable control process and high precision supplies a new way and method for studying flatness on-line control model. 展开更多
关键词 flatness control dynamic matrix theory model measured data neural network particle swarm CLUSTER
原文传递
Research on confirmation of basic technological parameters of tension levellers based on neural network and genetic algorithm
18
作者 彭晓晖 徐宏喆 +2 位作者 李盼 王社昌 任玉成 《Journal of Pharmaceutical Analysis》 SCIE CAS 2008年第3期160-163,177,共5页
Confirmation of basic technological parameters of tension levellers is the most important factor of leveling strip. Up to now, most factories have used experts’ experience to decide these parameters, without any esta... Confirmation of basic technological parameters of tension levellers is the most important factor of leveling strip. Up to now, most factories have used experts’ experience to decide these parameters, without any established rule to follow. For better quality of strip, a valid method is needed to decide technological parameters precisely and reasonably. In this paper, a method is used based on neural network and genetic algorithm. Neural network has a good ability to extract rules from work process of tension levellers. Then using neural network, which has learned from a lot of working samples, to be the evaluation of fitness, genetic algorithm could easily find the best or better technological parameters. At the end of this paper, examinations are given to show the effect of this method. 展开更多
关键词 tension levellers neural network genetic algorithm strip flatness
在线阅读 下载PDF
Fuzzy Neural Model for Flatness Pattern Recognition 被引量:13
19
作者 JIA Chun-yu SHAN Xiu-ying LIU Hong-min NIU Zhao-ping 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第6期33-38,共6页
For the problems occurring in a least square method model, a fuzzy model, and a neural network model for flatness pattern recognition, a fuzzy neural network model for flatness pattern recognition with only three-inpu... For the problems occurring in a least square method model, a fuzzy model, and a neural network model for flatness pattern recognition, a fuzzy neural network model for flatness pattern recognition with only three-input and three output signals was proposed with Legendre orthodoxy polynomial as basic pattern, based on fuzzy logic expert experiential knowledge and genetic-BP hybrid optimization algorithm. The model not only had definite physical meanings in its inner nodes, but also had strong self-adaptability, anti interference ability, high recognition precision, and high velocity, thereby meeting the demand of high-precision flatness control for cold strip mill and providing a convenient, practical, and novel method for flatness pattern recognition. 展开更多
关键词 flatNESS pattern recognition Legendre orthodoxy polynomial genetic-BP algorithm fuzzy neural network
原文传递
A Summary of the Large-Scale Access Convergence Network Structure
20
作者 LAN Julong ZHANG Xiaohui +5 位作者 SHEN Juan HU Yuxiang WANG Xiang MAO Zhenshan WANG Lingqiang LIANG Dong 《China Communications》 SCIE CSCD 2016年第S1期1-5,共5页
Under the requirement of everything over IP, network service shows the following characteristics:(1) network service increases its richness;(2) broadband streaming media becomes the mainstream. To achieve unified mult... Under the requirement of everything over IP, network service shows the following characteristics:(1) network service increases its richness;(2) broadband streaming media becomes the mainstream. To achieve unified multi-service bearing in the IP network, the largescale access convergence network architecture is proposed. This flat access convergence structure with ultra-small hops, which shortens the service transmission path, reduces the complexity of the edge of the network, and achieves IP strong waist model with the integration of computation, storage and transmission. The key technologies are also introduced in this paper, including endto-end performance guarantee for real time interactive services, fog storing mechanism, and built-in safety transmission with integration of aggregation and control. 展开更多
关键词 network architecture LARGE-SCALE ACCESS CONVERGENCE flat structure ultra-small HOPS
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部