As for ultra-low permeability reservoir,the adaptability of common nine-spot well pattern is studied through large-scale flat models made by micro-fractured natural sandstone outcrops.Combined with non-linear porous f...As for ultra-low permeability reservoir,the adaptability of common nine-spot well pattern is studied through large-scale flat models made by micro-fractured natural sandstone outcrops.Combined with non-linear porous flow characteristics,the concept of dimensionless pressure sweep efficiency and deliverability index are put forward to evaluate the physical models' well pattern adaptability.Through experiments,the models' pressure distribution is measured and on which basis,the pressure gradient fields are drawn and the porous flow regions of these models are divided into dead oil region,non-linear porous flow region,and quasi-linear porous flow region with the help of twin-core non-linear porous flow curve.The results indicate that rectangular well pattern in fracture reservoirs has the best adaptability,while the worst is inverted nine-spot equilateral well pattern.With the increase of drawdown pressure,dead oil region decreases,pressure sweep efficiency and deliverability index increase; meantime,the deliverability index of rectangular well pattern has much more rational increase.Under the same drawdown pressure,the rectangular well pattern has the largest pressure sweep efficiency.展开更多
The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digita...The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digital signal processor(DSP) is proposed. First, the combination of genetic algorithm(GA) and simulated annealing algorithm(SAA) is put forward, called GA-SA algorithm, which can make full use of the global search ability of GA and local search ability of SA. Later, based on T-S cloud reasoning neural network, flatness predictive model is designed in DSP. And it is applied to 900 HC reversible cold rolling mill. Experimental results demonstrate that the flatness predictive model via T-S cloud reasoning network can run on the hardware DSP TMS320 F2812 with high accuracy and robustness by using GA-SA algorithm to optimize the model parameter.展开更多
The influence of sand dust on discharge of external insulation has caused widespread concern.At present,the research results show wind-sand electricity has a remarkable effect on the discharge characteristics of insul...The influence of sand dust on discharge of external insulation has caused widespread concern.At present,the research results show wind-sand electricity has a remarkable effect on the discharge characteristics of insulator and has little influence on the discharge characteristics of air gap.The flashover of insulator strings occurs along the insulator surface and air gaps,and the sand dust deposited on the insulator surface may affect the flashover characteristics of insulator strings.This paper studies the flashover characteristics of flat plate model under DC voltage in wind-sand condition.The experimental results show that under positive polarity voltage,the flashover voltage of the flat plate model has a maximum value,while under negative polarity voltage,the flashover voltage of the flat plate model has a minimum value with a certain degree of sand dust deposition.The wind or sand in sand-dust weather has an important effect on the flashover characteristics of the flat plate model.In certain variation range of electric charge,electric charge of sand dust has little effect on the flashover voltage of flat plate model under DC voltage.The deposition of sand has significant influence on the flashover process of flat plate model,which is related to the deposition density and moisture content of sand particle.展开更多
In order to increase the precision of flatness control, considering the principle and the measured data of rolling process essence, the theory-intelligent dynamic matrix model of flatness control is established by usi...In order to increase the precision of flatness control, considering the principle and the measured data of rolling process essence, the theory-intelligent dynamic matrix model of flatness control is established by using theory and in-telligent methods synthetically. The network model for rapidly calculating the theory effective matrix is established by the BP network optimized by the particle swarm algorithm. The network model for rapidly calculating the meas- urement effective matrix is established by the RBF network optimized by the cluster algorithm. The flatness control model can track the practical situation of roiling process by on-line selVlearning. The scheme for flatness control quantity calculation is established by combining the theory control matrix and the measurement control matrix. The simulation result indicates that the establishment of theory-intelligent dynamic matrix model of flatness control with stable control process and high precision supplies a new way and method for studying flatness on-line control model.展开更多
In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3A...In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3Al/ Nb3Sn has been studied. The obtained results agree well with those of the earlier studies and show clearly fiat bands around the Fermi level. The steep bands as characterized in this work locate around the M point in the first Brillouin zone. The obtained results reveal that Nb3Al/Nb3Sn fits more to the "Flat/steep" band model than to the van-Hove singularity scenario. The fiat/steep band condition for superconductivity implies a different thermodynamic behavior of superconductors other than that predicted from the conventional BCS theory. This observation sets up an indicator for selecting a suitable superconductor when its large-scale industrial use is needed, for example, in superconducting maglev system or ITER project.展开更多
We show that a suitable combination of flat-band ferromagnetism,geometry and nontrivial electronic band topology can give rise to itinerant topological magnons.An SU(2) symmetric topological Hubbard model with nearly ...We show that a suitable combination of flat-band ferromagnetism,geometry and nontrivial electronic band topology can give rise to itinerant topological magnons.An SU(2) symmetric topological Hubbard model with nearly flat electronic bands,on a Kagome lattice,is considered as the prototype.This model exhibits ferromagnetic order when the lowest electronic band is half-filled.Using the numerical exact diagonalization method with a projection onto this nearly flat band,we can obtain the magnonic spectra.In the flat-band limit,the spectra exhibit distinct dispersions with Dirac points,similar to those of free electrons with isotropic hoppings,or a local spin magnet with pure ferromagnetic Heisenberg exchanges on the same geometry.Significantly,the non-flatness of the electronic band may induce a topological gap at the Dirac points,leading to a magnonic band with a nonzero Chern number.More intriguingly,this magnonic Chern number changes its sign when the topological index of the electronic band is reversed,suggesting that the nontrivial topology of the magnonic band is related to its underlying electronic band.Our work suggests interesting directions for the further exploration of,and searches for,itinerant topological magnons.展开更多
Fine grids with small spacing in boundary-fitted coordinates are normally used to treat the computation of fluid dynamics for estuarine areas and tidal flats. However, the adoption of Cartesian components of velocity ...Fine grids with small spacing in boundary-fitted coordinates are normally used to treat the computation of fluid dynamics for estuarine areas and tidal flats. However, the adoption of Cartesian components of velocity vectors in this kind of non-orthogonal coordinates will definitely result in a difficulty in solving implicitly the transformed momentum equations, and also complicate the wet-dry point judgement used for flood areas. To solve this problem, equations in terms of generalized contravariant velocity vectors in curvilinear coordinates are derived in the present study, by virtue of which, an Alternative-Direction-Implicit numerical scheme in non-orthogonal grids would then be easily obtained, and wet-dry point judgement would as well be largely simplified. A comparison is made between the explicit scheme and implicit scheme, showing that the present model is accurate and numerically stable for computations of fluid dynamics for estuarine areas and tidal flats.展开更多
With the support of numerous arguments, it has been shown that Melia’s claim that his cosmological Rh = ct model is flat and infinite is erroneous. In contrast, the model is positively curved, closed and, therefore, ...With the support of numerous arguments, it has been shown that Melia’s claim that his cosmological Rh = ct model is flat and infinite is erroneous. In contrast, the model is positively curved, closed and, therefore, finite. With respect to results of Melia’s model, it is identical to our Subluminal Model.展开更多
In connection with the characteristics of multi-disturbance and nonlinearity of a system for flatness control in cold rolling process, a new intelligent PID control algorithm was proposed based on a cloud model, neura...In connection with the characteristics of multi-disturbance and nonlinearity of a system for flatness control in cold rolling process, a new intelligent PID control algorithm was proposed based on a cloud model, neural network and fuzzy integration. By indeterminacy artificial intelligence, the problem of fixing the membership functions of input variables and fuzzy rules was solved in an actual fuzzy system and the nonlinear mapping between variables was implemented by neural network. The algorithm has the adaptive learning ability of neural network and the indetermi- nacy of a cloud model in processing knowledge, which makes the fuzzy system have more persuasion in the process of knowledge inference, realizing the online adaptive regulation of PID parameters and avoiding the defects of the traditional PID controller. Simulation results show that the algorithm is simple, fast and robust with good control performance and application value.展开更多
The performance of the flat jet with an inclination angle was investigated bya water model. A mathematical model for the shrinkage and the trajectory of the flat jet with aninclination angle was derived theoretically ...The performance of the flat jet with an inclination angle was investigated bya water model. A mathematical model for the shrinkage and the trajectory of the flat jet with aninclination angle was derived theoretically and verified by experimental data of the water model.The experimental results indicate that the inclination angle (alpha) has no influence on theshrinkage of the flat jet, the shrinkage of the flat jet along the width direction decreases withthe increasing of the initial velocity at the exit (u_0) and the initial thickness of the flat jet(t_0). Enough bigger initial exit velocity (u_0) and initial thickness can suppress the shrinkage ofthe flat jet along the width direction and keep the flat jet stabilized. In addition, thetrajectory of the flat jet with an inclination angle is parabolic and must be taking intoconsideration when to determine the striking distance.展开更多
A new turbulent constitutive relation was directly derived from Boussinesqs hypothesis and mixing length theory,and then implemented in the standard k-ε model.The performance of this constitutive relation was valid...A new turbulent constitutive relation was directly derived from Boussinesqs hypothesis and mixing length theory,and then implemented in the standard k-ε model.The performance of this constitutive relation was validated in zero pressure gradient flat-plate boundary layer flow,fully-developed turbulent channel flow and separated flow in a plane asymmetric diffuser.The investigation demonstrated that,this new constitutive relation gave very accurate results in the former two basic cases and provided significant improvement in prediction of separated and reattachment points in the plane asymmetric diffuser.Separation and reattachment points at x/H =7.5and 29 were calculated accurately in comparison to experimental results,and the static pressure coefficient of 0.82 was very close to large eddy simulation calculation.These results are very encouraging but further verification and extensive application of the new constitutive relation to other two-equation eddy viscosity model are needed.展开更多
A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis com...A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis compared with experimental data has been made to assess the influence of the wall temperature and the leading edge nose radius on a hypersonic double wedge boundary layer. It has been found that the laminar boundary layer separation occurs on the first ramp. Furthermore, the wall temperature and the leading edge nose radius have remarkable influence on the separation characteristics in the kink. Comparison of the calculated pressure coefficient distribution and the boundary layer profile with the experimental data shows that better results can be achieved when using the modified transition model.展开更多
The convergence of the multi-layered continental lithospheres with variable and complex thermal and rheological properties results in various modes of continental collision with distinct deformation behavior of the li...The convergence of the multi-layered continental lithospheres with variable and complex thermal and rheological properties results in various modes of continental collision with distinct deformation behavior of the lithospheric mantle. Using high-resolution thermo-mechanical numerical models,we systematically investigated the effects of crustal rheological strength and the convergence rate on the continental subduction mode. The model results reveal three basic modes of continental subduction,including slab break-off,steep subduction and continental flat-slab subduction. Whether lithospheric mantle of the overriding plate retreats or not during convergence enables the division of the first two modes into two sub-types,which are dominated by the crustal rheological strength. The mode of slab break-off develops under the conditions of low/moderate rheological strength of the continental crust and low convergence rate. In contrast,continental flat-slab subduction favors the strong crust and the high convergence rate. Otherwise,continental steep subduction occurs. The numerical results provide further implications for Geodynamics conditions and physical processes of different modes of continental collision that occur in nature.展开更多
Plate subduction drives both the internal convection and the surface geology of the solid Earth.Despite the rapid increase of computational power,it remains challenging for geodynamic models to reproduce the history o...Plate subduction drives both the internal convection and the surface geology of the solid Earth.Despite the rapid increase of computational power,it remains challenging for geodynamic models to reproduce the history of Earth-like subduction and associated mantle flow.Here,based on an adaptive approach of sequential data assimilation,we present a high-resolution global model since the mid-Mesozoic.This model incorporates the thermal structure and surface kinematics of tectonic plates based on a recent plate reconstruction to reproduce the observed subduction configuration and Earth-like convection.Introduction of temperature-and composition-dependent rheology allows for incorporation of many natural complexities,such as initiation of subduction zones,reversal of subduction polarity,and detailed plate-boundary dynamics.The resultant present-day slab geometry well matches Benioff zones and seismic tomography at depths < 1500 km,making it possible to hindcast past subduction dynamics and mantle flow.For example,the model produces a flat Farallon slab beneath North America during the Late Cretaceous to Early Cenozoic,a feature that has been geodynamically challenging to reproduce.This high-resolution model can also capture details of the 4-D evolution of slabs and the ambient mantle,such as temporally and spatially varying mantle flow associated with evolving slab geometry and buoyancy flux,as well as the formation of shallow slab tears due to subduction of young seafloors and the resulting complex mantle deformation.Such a geodynamic framework serves to further constrain uncertain plate reconstruction in the geological past,and to better understand the origin of enigmatic mantle seismic features.展开更多
基金Project(2011ZX05013-006)supported by the National Science and Technology Project of China
文摘As for ultra-low permeability reservoir,the adaptability of common nine-spot well pattern is studied through large-scale flat models made by micro-fractured natural sandstone outcrops.Combined with non-linear porous flow characteristics,the concept of dimensionless pressure sweep efficiency and deliverability index are put forward to evaluate the physical models' well pattern adaptability.Through experiments,the models' pressure distribution is measured and on which basis,the pressure gradient fields are drawn and the porous flow regions of these models are divided into dead oil region,non-linear porous flow region,and quasi-linear porous flow region with the help of twin-core non-linear porous flow curve.The results indicate that rectangular well pattern in fracture reservoirs has the best adaptability,while the worst is inverted nine-spot equilateral well pattern.With the increase of drawdown pressure,dead oil region decreases,pressure sweep efficiency and deliverability index increase; meantime,the deliverability index of rectangular well pattern has much more rational increase.Under the same drawdown pressure,the rectangular well pattern has the largest pressure sweep efficiency.
基金Project(E2015203354)supported by Natural Science Foundation of Steel United Research Fund of Hebei Province,ChinaProject(ZD2016100)supported by the Science and the Technology Research Key Project of High School of Hebei Province,China+1 种基金Project(LJRC013)supported by the University Innovation Team of Hebei Province Leading Talent Cultivation,ChinaProject(16LGY015)supported by the Basic Research Special Breeding of Yanshan University,China
文摘The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digital signal processor(DSP) is proposed. First, the combination of genetic algorithm(GA) and simulated annealing algorithm(SAA) is put forward, called GA-SA algorithm, which can make full use of the global search ability of GA and local search ability of SA. Later, based on T-S cloud reasoning neural network, flatness predictive model is designed in DSP. And it is applied to 900 HC reversible cold rolling mill. Experimental results demonstrate that the flatness predictive model via T-S cloud reasoning network can run on the hardware DSP TMS320 F2812 with high accuracy and robustness by using GA-SA algorithm to optimize the model parameter.
基金Project Supported by National Natural Science Foundation of China(90510014 ).
文摘The influence of sand dust on discharge of external insulation has caused widespread concern.At present,the research results show wind-sand electricity has a remarkable effect on the discharge characteristics of insulator and has little influence on the discharge characteristics of air gap.The flashover of insulator strings occurs along the insulator surface and air gaps,and the sand dust deposited on the insulator surface may affect the flashover characteristics of insulator strings.This paper studies the flashover characteristics of flat plate model under DC voltage in wind-sand condition.The experimental results show that under positive polarity voltage,the flashover voltage of the flat plate model has a maximum value,while under negative polarity voltage,the flashover voltage of the flat plate model has a minimum value with a certain degree of sand dust deposition.The wind or sand in sand-dust weather has an important effect on the flashover characteristics of the flat plate model.In certain variation range of electric charge,electric charge of sand dust has little effect on the flashover voltage of flat plate model under DC voltage.The deposition of sand has significant influence on the flashover process of flat plate model,which is related to the deposition density and moisture content of sand particle.
基金Item Sponsored by National High-Tech Research and Development Project of China(2009AA04Z143)Natural Science Foundation of Hebei Province of China(E2006001038)Hebei Provincial Science and Technology Project of China(10212101D)
文摘In order to increase the precision of flatness control, considering the principle and the measured data of rolling process essence, the theory-intelligent dynamic matrix model of flatness control is established by using theory and in-telligent methods synthetically. The network model for rapidly calculating the theory effective matrix is established by the BP network optimized by the particle swarm algorithm. The network model for rapidly calculating the meas- urement effective matrix is established by the RBF network optimized by the cluster algorithm. The flatness control model can track the practical situation of roiling process by on-line selVlearning. The scheme for flatness control quantity calculation is established by combining the theory control matrix and the measurement control matrix. The simulation result indicates that the establishment of theory-intelligent dynamic matrix model of flatness control with stable control process and high precision supplies a new way and method for studying flatness on-line control model.
基金financially supported by the Science Foundation for International Cooperation of Sichuan Province (2014HH0016)the Fundamental Research Funds for the Central Universities (SWJTU2014: A0920502051113-10000)National Magnetic Confinement Fusion Science Program (2011GB112001)
文摘In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3Al/ Nb3Sn has been studied. The obtained results agree well with those of the earlier studies and show clearly fiat bands around the Fermi level. The steep bands as characterized in this work locate around the M point in the first Brillouin zone. The obtained results reveal that Nb3Al/Nb3Sn fits more to the "Flat/steep" band model than to the van-Hove singularity scenario. The fiat/steep band condition for superconductivity implies a different thermodynamic behavior of superconductors other than that predicted from the conventional BCS theory. This observation sets up an indicator for selecting a suitable superconductor when its large-scale industrial use is needed, for example, in superconducting maglev system or ITER project.
基金Supported by the National Natural Science Foundation of China (Grant No.11774152)National Key R&D Program of China(Grant No.2016YFA0300401)。
文摘We show that a suitable combination of flat-band ferromagnetism,geometry and nontrivial electronic band topology can give rise to itinerant topological magnons.An SU(2) symmetric topological Hubbard model with nearly flat electronic bands,on a Kagome lattice,is considered as the prototype.This model exhibits ferromagnetic order when the lowest electronic band is half-filled.Using the numerical exact diagonalization method with a projection onto this nearly flat band,we can obtain the magnonic spectra.In the flat-band limit,the spectra exhibit distinct dispersions with Dirac points,similar to those of free electrons with isotropic hoppings,or a local spin magnet with pure ferromagnetic Heisenberg exchanges on the same geometry.Significantly,the non-flatness of the electronic band may induce a topological gap at the Dirac points,leading to a magnonic band with a nonzero Chern number.More intriguingly,this magnonic Chern number changes its sign when the topological index of the electronic band is reversed,suggesting that the nontrivial topology of the magnonic band is related to its underlying electronic band.Our work suggests interesting directions for the further exploration of,and searches for,itinerant topological magnons.
基金National Natural Science Foundation of China and National Excellent Youth Foundation of China.(Grant No.49606069)
文摘Fine grids with small spacing in boundary-fitted coordinates are normally used to treat the computation of fluid dynamics for estuarine areas and tidal flats. However, the adoption of Cartesian components of velocity vectors in this kind of non-orthogonal coordinates will definitely result in a difficulty in solving implicitly the transformed momentum equations, and also complicate the wet-dry point judgement used for flood areas. To solve this problem, equations in terms of generalized contravariant velocity vectors in curvilinear coordinates are derived in the present study, by virtue of which, an Alternative-Direction-Implicit numerical scheme in non-orthogonal grids would then be easily obtained, and wet-dry point judgement would as well be largely simplified. A comparison is made between the explicit scheme and implicit scheme, showing that the present model is accurate and numerically stable for computations of fluid dynamics for estuarine areas and tidal flats.
文摘With the support of numerous arguments, it has been shown that Melia’s claim that his cosmological Rh = ct model is flat and infinite is erroneous. In contrast, the model is positively curved, closed and, therefore, finite. With respect to results of Melia’s model, it is identical to our Subluminal Model.
基金Sponsored by National High-tech Research and Development Project of China(2009AA04Z143)Natural Science Foundation of Hebei Province of China(E2006001038)Science and Technology Project of Hebei Province of China(10212101D)
文摘In connection with the characteristics of multi-disturbance and nonlinearity of a system for flatness control in cold rolling process, a new intelligent PID control algorithm was proposed based on a cloud model, neural network and fuzzy integration. By indeterminacy artificial intelligence, the problem of fixing the membership functions of input variables and fuzzy rules was solved in an actual fuzzy system and the nonlinear mapping between variables was implemented by neural network. The algorithm has the adaptive learning ability of neural network and the indetermi- nacy of a cloud model in processing knowledge, which makes the fuzzy system have more persuasion in the process of knowledge inference, realizing the online adaptive regulation of PID parameters and avoiding the defects of the traditional PID controller. Simulation results show that the algorithm is simple, fast and robust with good control performance and application value.
文摘The performance of the flat jet with an inclination angle was investigated bya water model. A mathematical model for the shrinkage and the trajectory of the flat jet with aninclination angle was derived theoretically and verified by experimental data of the water model.The experimental results indicate that the inclination angle (alpha) has no influence on theshrinkage of the flat jet, the shrinkage of the flat jet along the width direction decreases withthe increasing of the initial velocity at the exit (u_0) and the initial thickness of the flat jet(t_0). Enough bigger initial exit velocity (u_0) and initial thickness can suppress the shrinkage ofthe flat jet along the width direction and keep the flat jet stabilized. In addition, thetrajectory of the flat jet with an inclination angle is parabolic and must be taking intoconsideration when to determine the striking distance.
基金China Academy of Aeronautics Propulsion Innovation Fund
文摘A new turbulent constitutive relation was directly derived from Boussinesqs hypothesis and mixing length theory,and then implemented in the standard k-ε model.The performance of this constitutive relation was validated in zero pressure gradient flat-plate boundary layer flow,fully-developed turbulent channel flow and separated flow in a plane asymmetric diffuser.The investigation demonstrated that,this new constitutive relation gave very accurate results in the former two basic cases and provided significant improvement in prediction of separated and reattachment points in the plane asymmetric diffuser.Separation and reattachment points at x/H =7.5and 29 were calculated accurately in comparison to experimental results,and the static pressure coefficient of 0.82 was very close to large eddy simulation calculation.These results are very encouraging but further verification and extensive application of the new constitutive relation to other two-equation eddy viscosity model are needed.
文摘A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis compared with experimental data has been made to assess the influence of the wall temperature and the leading edge nose radius on a hypersonic double wedge boundary layer. It has been found that the laminar boundary layer separation occurs on the first ramp. Furthermore, the wall temperature and the leading edge nose radius have remarkable influence on the separation characteristics in the kink. Comparison of the calculated pressure coefficient distribution and the boundary layer profile with the experimental data shows that better results can be achieved when using the modified transition model.
基金supported by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (No. XDB18000000)the NSFC Project (Nos. 41622404, 41688103, U1701641 and 41704091)the 973 Project (No. 2015CB856106)
文摘The convergence of the multi-layered continental lithospheres with variable and complex thermal and rheological properties results in various modes of continental collision with distinct deformation behavior of the lithospheric mantle. Using high-resolution thermo-mechanical numerical models,we systematically investigated the effects of crustal rheological strength and the convergence rate on the continental subduction mode. The model results reveal three basic modes of continental subduction,including slab break-off,steep subduction and continental flat-slab subduction. Whether lithospheric mantle of the overriding plate retreats or not during convergence enables the division of the first two modes into two sub-types,which are dominated by the crustal rheological strength. The mode of slab break-off develops under the conditions of low/moderate rheological strength of the continental crust and low convergence rate. In contrast,continental flat-slab subduction favors the strong crust and the high convergence rate. Otherwise,continental steep subduction occurs. The numerical results provide further implications for Geodynamics conditions and physical processes of different modes of continental collision that occur in nature.
基金support from NSF grants EAR-1345135,1554554,1565640supercomputing allocation on Blue Waters through ACI-1516586
文摘Plate subduction drives both the internal convection and the surface geology of the solid Earth.Despite the rapid increase of computational power,it remains challenging for geodynamic models to reproduce the history of Earth-like subduction and associated mantle flow.Here,based on an adaptive approach of sequential data assimilation,we present a high-resolution global model since the mid-Mesozoic.This model incorporates the thermal structure and surface kinematics of tectonic plates based on a recent plate reconstruction to reproduce the observed subduction configuration and Earth-like convection.Introduction of temperature-and composition-dependent rheology allows for incorporation of many natural complexities,such as initiation of subduction zones,reversal of subduction polarity,and detailed plate-boundary dynamics.The resultant present-day slab geometry well matches Benioff zones and seismic tomography at depths < 1500 km,making it possible to hindcast past subduction dynamics and mantle flow.For example,the model produces a flat Farallon slab beneath North America during the Late Cretaceous to Early Cenozoic,a feature that has been geodynamically challenging to reproduce.This high-resolution model can also capture details of the 4-D evolution of slabs and the ambient mantle,such as temporally and spatially varying mantle flow associated with evolving slab geometry and buoyancy flux,as well as the formation of shallow slab tears due to subduction of young seafloors and the resulting complex mantle deformation.Such a geodynamic framework serves to further constrain uncertain plate reconstruction in the geological past,and to better understand the origin of enigmatic mantle seismic features.