期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
LeafPoseNet:A low-cost,high-accuracy method for estimating flag leaf angle in wheat
1
作者 Qi Wang Fujun Sun +4 位作者 Yi Qiao Zongyang Li Shusong Zheng Hong-Qing Ling Ni Jiang 《The Crop Journal》 2025年第5期1543-1553,共11页
Flag leaf angle(FLANG)is one of the key traits in wheat breeding due to its impact on plant architecture,light interception,and yield potential.An image-based method of measuring FLANG in wheat would reduce the labor ... Flag leaf angle(FLANG)is one of the key traits in wheat breeding due to its impact on plant architecture,light interception,and yield potential.An image-based method of measuring FLANG in wheat would reduce the labor and error of manual measurement of this trait.We describe a method for acquiring in-field FLANG images and a lightweight deep learning model named LeafPoseNet that incorporates a spatial attention mechanism for FLANG estimation.In a test dataset with wheat varieties exhibiting diverse FLANG,LeafPoseNet achieved high accuracy in predicting the FLANG,with a mean absolute error(MAE)of 1.75°,a root mean square error(RMSE)of 2.17°,and a coefficient of determination(R2)of 0.998,significantly outperforming established models such as YOLO12x-pose,YOLO11x-pose,HigherHRNet,Lightweight-OpenPose,and LitePose.We performed phenotyping and genome-wide association study to identify the genomic regions associated with FLANG in a panel of 221 diverse bread wheat genotypes,and identified 10 quantitative trait loci.Among them,qFLANG2B.2 was found to harbor a potential causal gene,TraesCS2B01G313700,which may regulate FLANG formation by modulating brassinosteroid levels.This method provides a low-cost,high-accuracy solution for in-field phenotyping of wheat FLANG,facilitating both wheat FLANG genetic studies and ideal plant type breeding. 展开更多
关键词 WHEAT flag leaf angle Lightweight network leafPoseNet Genome-wide association study
在线阅读 下载PDF
Fine mapping of two recessive genes TaFLA1 and TaSPL8 controlling flag leaf angle in bread wheat 被引量:1
2
作者 Qiushi Wang Jiaxing Bai +11 位作者 Hongchun Xiong Yongdun Xie Chaojie Wang Jiayu Gu Linshu Zhao Huiyuan Li Jinfeng Zhang Shirong Zhao Yuping Ding Zhengwu Fang Huijun Guo Luxiang Liu 《The Crop Journal》 SCIE CSCD 2024年第4期1159-1167,共9页
Flag leaf angle is one of the key target traits in high yield wheat breeding.A smaller flag leaf angle reduces shading and enables plants to grow at a higher density,which increases yield.Here we identified a mutant,j... Flag leaf angle is one of the key target traits in high yield wheat breeding.A smaller flag leaf angle reduces shading and enables plants to grow at a higher density,which increases yield.Here we identified a mutant,je0407,with an 84.34%-89.35%smaller flag leaf angle compared with the wild type.The mutant also had an abnormal lamina joint and no ligule or auricle.Genetic analysis indicated that the ligule was controlled by two recessive genes,which were mapped to chromosomes 2AS and 2DL.The mutant allele on chromosome 2AS was named Tafla1b,and it was fine mapped to a 1 Mb physical interval.The mutant allele on chr.2DL was identified as Taspl8b,a novel allele of TaSPL8 with a missense mutation in the second exon,which was used to develop a cleaved amplified polymorphic sequence marker.F3 and F4 lines derived from crosses between Jing411 and je0407 were genotyped to investigate interactions between the Tafla1b and Taspl8b alleles.Plants with the Tafla1b/Taspl8a genotype had 58.41%-82.76%smaller flag leaf angles,6.4%-24.9%shorter spikes,and a greater spikelet density(0.382 more spikelets per cm)compared with the wild type.Plants with the Tafla1a/Taspl8b genotype had 52.62%-82.24%smaller flag leaf angles and no differences in plant height or spikelet density compared with the wild type.Tafla1b/Taspl8b plants produced erect leaves with an abnormal lamina joint.The two alleles had dosage effects on ligule formation and flag leaf angle,but no significant effect on thousand-grain weight.The mutant alleles provide novel resources for improvement of wheat plant architecture. 展开更多
关键词 WHEAT Ligule flag leaf angle Fine mapping Tafla1 Taspl8
在线阅读 下载PDF
Genetic Analysis and QTL Mapping of Large Flag Leaf Angle Trait in Japonica Rice 被引量:1
3
作者 HU Wen-de ZHANG Hong +5 位作者 JIANG Jian-hua WANG Ying-ying SUN Da-yun WANG Xiao-shuai LIANG Kui HONG De-lin 《Rice science》 SCIE 2012年第4期277-285,共9页
Genetic segregation analysis for flag leaf angle was conducted using six generations of P1, P2, F1, B1, B2 and F2 derived from a cross of 863B (a maintainer line of japonica rice) and A7444 (a germplasm with large ... Genetic segregation analysis for flag leaf angle was conducted using six generations of P1, P2, F1, B1, B2 and F2 derived from a cross of 863B (a maintainer line of japonica rice) and A7444 (a germplasm with large flag leaf angle). Genotypes and phenotypes of flag leaf angle were investigated in 863B (P1), A7444 (P2) and 141 plants in BC^F~ (863BIA744411863B) population. An SSR genetic linkage map was constructed and QTLs for flag leaf angle were detected. The genetic map containing 79 information loci was constructed, which covers a total distance of 441.6 cM, averaging 5.6 cM between two neighboring loci. Results showed that the trait was controlled by two major genes plus polygene and the major genes were more important. Fifteen markers showed highly significant correlations with flag leaf angle based on single marker regression analysis. Two QTLs (qFLA2 and qFLA8) for flag leaf angle were detected by both composite interval method in software WinQTLCart 2.5 and composite interval method based on mixed linear model in QTL Network 2.0. The qFLA2 explained 10.50% and 13.28% of phenotypic variation, respectively, and was located at the interval of RM300 and RM145 on the short arm of chromosome 2. The qFLA8 explained 9.59% and 7.64% of phenotypic variation, respectively, and was located at the interval flanking RM6215 and RM8265 on the long arm of chromosome 8. The positive alleles at the two QTLs were both contributed from A7444. 展开更多
关键词 RICE flag leaf angle out-crossing rate segregation analysis quantitative trait locus
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部