The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time ...The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [ Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multirelaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling.展开更多
The band structure, density of states, Mulliken populations, and frontier orbital of spodumene crystal were calculated using the first-principles method based on the density functional theory(DFT) and further analyz...The band structure, density of states, Mulliken populations, and frontier orbital of spodumene crystal were calculated using the first-principles method based on the density functional theory(DFT) and further analyzed in detail. The calculation results reveal that the O in spodumene is the most active and easily links with H+in the water, but the active Li is very low, so it is better to add activator to increase the concentrate grade and recovery rate of spodumene in the flotation process. Si–O bonds in spodumene crystal are mainly covalent, since the covalency of Al–O bonds is stronger than that of Li–O bonds,and minerals dissociate along the weakest Li–O bonds. In addition, the study of the frontier orbital indicates that both O and Si atoms have large contribution to the frontier orbital in the spodumene crystal. Oleate and dodecylamine are used as the collectors of spodumene. The results contribute to the understanding of crystal structures of spodumene, and can be used in guiding related practical applications.展开更多
The electronic structures and optical properties of B3 ZnO series of Zn4X4-yMy(X :O, S, Se or Te; M = N, Sb, C1 or I; y = 0 or 1) are studied by first-principles calculations using a pseudopotential plane-wave meth...The electronic structures and optical properties of B3 ZnO series of Zn4X4-yMy(X :O, S, Se or Te; M = N, Sb, C1 or I; y = 0 or 1) are studied by first-principles calculations using a pseudopotential plane-wave method. The results show that Zn d-X p orbital interactions play an important role in the p-type doping tendency in zinc-based Ⅱ-Ⅵ semiconductors. In ZnX, with increasing atomic number of X, Zn d-X p orbital interactions decrease and Zn s-X p orbital interactions increase. Additionally, substituting group-V elements for X will reduce the Zn d-X p orbital interactions while substituting group-VII elements for X will increase the Zn d-X p orbital interactions. The results also show that group-V-doped ZnX and group-Ⅷ-doped ZnX exhibit different optical behaviours due to their different orbital interaction effects.展开更多
Theoretical investigation of the phase equilibria of the Fe-Ni alloy has been performed by combining the FLAPW total energy calculations and the Cluster Variation Method through the Cluster Expansion Method. The calcu...Theoretical investigation of the phase equilibria of the Fe-Ni alloy has been performed by combining the FLAPW total energy calculations and the Cluster Variation Method through the Cluster Expansion Method. The calculations have proved the stabilization of the LIE phase at 1:3 stoichiometry, which is in agreement with the experimental result, and predicted the existence of L1 0 as a stable phase below 550 K; this L1 0 phase has been missing in the conventional phase diagram. The calculations are extended to the Fe-rich region that is characterized by a wide range phase separation and has drawn considerable attention because of the intriguing Invar property associated with a Fe concentration of 65%. To reveal the origin of the phase separation, a P-V curve in an entire concentration range is derived by the second derivative of free energy functional of the disordered phase with respect to the volume. The calculation confirmed that the phase separation is caused by the breakdown of the mechanical-stability criterion. The newly calculated phase separation line combined with the L1 0 and L12Eorder-disordered phase boundaries provides phase equilibria in the wider concentration range of the system. Furthermore, a coefficient of thermal expansion (CTE) is attempted by incorporating the thermal vibration effect through harmonic approximation of the Debye-Gruneisen model. The Invar behavior has been reproduced, and the origin of this anomalous volume change has been discussed.展开更多
Kaolinite is a kind of clay mineral which often causes large deformations in soft-rock tunnel engineering and thus causes safety issues. To deal with these engineering safety issues, the physical/chemical properties o...Kaolinite is a kind of clay mineral which often causes large deformations in soft-rock tunnel engineering and thus causes safety issues. To deal with these engineering safety issues, the physical/chemical properties of the kaolinite should be studied from basic viewpoints. By using the density-functional theory, in this paper, the atomic and the electronic structures of the kaolinite are studied within the local-density approximation (LDA). It is found that the kaolinite has a large indirect band gap with the conduction band minimum (CBM) and the valence band maximum (VBM) being at the F and the B points, respectively. The chemical bonding between the cation and the oxygen anion in kaolinite is mainly ionic, accompanied by a minor covalent component. It is pointed that the VBM and the CBM of kaolinite consist of oxygen 2p and cation s states, respectively. The bond lengths between different cations and anions, as well as of the different OH groups, are also compared.展开更多
The corrosion of steels in liquid metal lead (Pb) and bismuth (Bi) is a critical challenge in the development of accel-erator driven systems (ADS). Using a first-principles method with a slab model, we theoretic...The corrosion of steels in liquid metal lead (Pb) and bismuth (Bi) is a critical challenge in the development of accel-erator driven systems (ADS). Using a first-principles method with a slab model, we theoretically investigate the interaction between the Pb (Bi) atom and the iron (Fe) (100) surface to assess the fundamental corrosion properties. Our investigation demonstrates that both Pb and Bi atoms favorably adsorb on the (100) surface. Such an adsorption decreases the energy required for the dissociation of an Fe atom from the surface, enhancing the dissolution tendency significantly. The seg- regation of six common alloying elements (Cr, A1, Mn, Ni, Nb, and Si) to the surface and their impacts on the corrosion properties are also considered. The present results reveal that Si seems to have a relatively good performance to stabilize the surface and alleviate the dissolving trend caused by Pb and Bi.展开更多
Cavitation bubble collapse near rough solid wall is modeled by the multi-relaxation-time (MRT) pseudopotential lattice Boltzmann (LB) model. The modified forcing scheme, which can achieve LB model’s thermodynamic con...Cavitation bubble collapse near rough solid wall is modeled by the multi-relaxation-time (MRT) pseudopotential lattice Boltzmann (LB) model. The modified forcing scheme, which can achieve LB model’s thermodynamic consistency by tuning a parameter related with the particle interaction range, is adopted to achieve desired stability and density ratio. The bubble collapse near rough solid wall was simulated by the improved MRT pseudopotential LB model. The mechanism of bubble collapse is studied by investigating the bubble profiles, pressure field and velocity field evolution. The eroding effects of collapsing bubble are analyzed in details. It is found that the process and the effect of the interaction between bubble collapse and rough solid wall are affected seriously by the geometry of solid boundary. At the same time, it demonstrates that the MRT pseudopotential LB model is a potential tool for the investigation of the interaction mechanism between the collapsing bubble and complex geometry boundary.展开更多
Black phosphorene(BP)and its analogs have attracted intensive attention due to their unique puckered structures,anisotropic characteristics,and negative Poisson’s ratio.The van der Waals(vdW)heterostructures assembly...Black phosphorene(BP)and its analogs have attracted intensive attention due to their unique puckered structures,anisotropic characteristics,and negative Poisson’s ratio.The van der Waals(vdW)heterostructures assembly by stacking different materials show novel physical properties,however,the parent materials do not possess.In this work,the first-principles calculations are performed to study the mechanical properties of the vdW heterostructure.Interestingly,a near-zero Poisson’s ratio ν_(zx)is found in BP/SnSe heterostructure.In addition,compared with the parent materials BP and SnSe with strong in-plane anisotropic mechanical properties,the BP/SnSe heterostructure shows strongly suppressed anisotropy.The results show that the vdW heterostructure has quite different mechanical properties compared with the parent materials,and provides new opportunities for the mechanical applications of the heterostructures.展开更多
Lattice constants, total energies, and densities of state of transition metals Co, Rh, and Ir in the VⅢB group with different crystalline structures were calculated via generalized gradient approximation (GGA) of t...Lattice constants, total energies, and densities of state of transition metals Co, Rh, and Ir in the VⅢB group with different crystalline structures were calculated via generalized gradient approximation (GGA) of the total energy plane wave pseudopotential method in first-principles. The lattice stabilities of Rh and Ir are ΔG^ bcc-hcp 〉 Δ G^fcc-hcp 〉 0, agreeing well with those of the projector augmented wave method in first-principles and the CALPHAD method in spite of elemental Co. Analyses of the electronic structures to lattice stability show that crystalline Rh and Ir with fcc structures have the obvious characteristic of a stable phase, agreeing with the results of total energy calculations. Analyses of atomic populations show that the transition rate of electrons from the s state to the p or d state for hcp, fcc, and bcc crystals of Co and Rh increases with the elemental period number to form a stronger cohesion, a higher cohesive energy, or a more stable lattice between atoms in heavier metals.展开更多
The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential...The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential formalism. For description of the structure, well known Percus-Yevick (PY) hard sphere model is used as a reference system. By applying a variation method the best hard core diameters have been found which correspond to minimum free energy. With this procedure the thermodynamic properties such as entropy and heat of mixing have been computed. The influence of local field correction function viz; Hartree (H), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) is also investigated. The computed results of the excess entropy compares favourably in the case of liquid alloys while the agreement with experiment is poor in the case of heats of mixing. This may be due to the sensitivity of the heats of mixing with the potential parameters and the dielectric function.展开更多
We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it ...We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it forms an intermediate product Ti_(3)CuC_(2),and then reacts with Ti_(3)CuC_(2)to obtain Ti_(3)C_(2)Cl_(2).The reaction of Ti_(3)AlC_(2)and CuCl_(2)at a temperature of 800℃for 2 h to obtain Ti_(3)C_(2)Cl_(2)with an optimal lamellar structure is shown in SEM results.The pseudopotential plane-wave(PP-PW)method is used to calculate on the electronic structure.The etching mechanism is investigated by the total energies of each substance.The chemical reaction of Ti_(3)AlC_(2)and CuCl_(2)will first become Ti_(3)CuC_(2)and Cu,and then become Ti_(3)C_(2)Cl_(2)during the Lewis acid etching process,which are consistent with the experimental results.展开更多
Introduction Frequency-dependent dielectric response is one of the important properties of ferroelectrics,reflecting the polarization response to high-frequency electric fields.Polarizations are closely related to fer...Introduction Frequency-dependent dielectric response is one of the important properties of ferroelectrics,reflecting the polarization response to high-frequency electric fields.Polarizations are closely related to ferroelectric domain structures,such as single domain,which represents the region with homogeneous polarizations direction.Ferroelectrics usually possess complex domain structures with domain walls(DWs)separating adjacent homogeneously polarized domains.DWs have attracted much attention during the past two decades due to their properties and potential for device designing.The related issues include DW motion,nonvolatile memory,topological defects,enhanced susceptibility,enhanced quality factor,low dielectric loss,and others.(Ba0.8,Sr0.2)TiO3(BST0.8)is a ferroelectric usually with multi-domain structures.Previous work identified two typical types of domain walls(DWs),i.e.,90°DWs and 180°DWs.The enhancement of dielectric response in systems with 90°DWs is now well understood,and the behavior of dielectric response in multi-domain systems with 180°DWs remains unclear.Therefore,gaining insights into how 180°DWs affect the dielectric response can clarify the effects in multidomain systems.Methods We performed molecular dynamics simulations using the ALFE-H code with the first-principles-based effective Hamiltonian method to study the BST0.8 system.All the calculations were performed in the NPT ensemble using the Evans-Hoover thermostat,and periodic boundary condition(PBC)along all three directions.To simulate the substrate,a uniform biaxial strain was fixed to the 1.55%in-plane strain.To analyze the multi-domain with different DWs,the simulations started with a self-constructed initial multi-domain polarization configuration.Subsequent 50 ps MD simulation was performed under chosen strains for structural relaxation.In the initial configuration,the magnitude of non-zero components of soft mode on each site was set to 0.1Å,atomic occupations(alloying)were randomized,and unless otherwise specified,all other mode variables were set to zero.The trajectory of local mode averaged over the supercell during MD simulations was extracted to calculate the dielectric response.The 8 ns MD simulations were performed to obtain an autocorrelation function for any time t ranging from 0 to 1 ns by one step of 10 fs.The fast Fourier transformation(FFT)was performed to calculate the dielectric response.Then two uncoupled damped harmonic oscillators(DHOs)were used to fit the data of dielectric response.Results and discussion The dielectric response of single domain at 300 K with the different electric fields along[110]from 0 to 2 MV/cm was computed.The computational results can be well fitted with the model of two uncoupled DHOs.The real and imaginary parts of the predicted dielectric response at each chosen electric field both exhibit two peaks.As the electric field increases,the low-frequency mode with 300 GHz at zero field in the system gradually disappears,and a high-frequency mode of larger than 8 THz appears when electric field is larger than 1 MV/cm.The high frequencies modes of 3 THz at zero filed and 8 THz under 1 MV/cm shift towards higher frequencies as the electric field increases.In other words,the present simulations reveal that it is possible to manipulate the frequency of peaks in dielectric response via changing the magnitude of the external electric field.The dielectric responses of multi-domain with 90°DWs and 180°DWs are further analyzed.According to the experimental PFM results,the multi-domain structures are simulated and the dielectric response through MD simulations is calculated.The analysis of the dielectric response of single domain structure and multi-domain structures shows that the single domain structures exhibit high-frequency peaks at>300 GHz,whereas the multi-domain structures exhibit low-frequency peaks at 8 GHz and 120 GHz for 180°DWs system and at 10 GHz for 90°DWs system,revealing that there exists a low-frequency mode related to collective oscillation of DWs in multi-domain structures.In addition,the frequencies of peaks in multi-domain with DWs are in a gigahertz range,whereas the single domain structure exhibits peaks in a terahertz range.The contribution of DWs to the dielectric response primarily arises from the timescale of DWs motion,such as sliding or breathing,which differs significantly from the high-frequency vibrations of optical phonon modes.The vibrational frequency of DWs is much lower,with relaxation times in the order of nanoseconds,resulting in a response frequency in GHz range,which is far below the terahertz range of optical phonon modes.Therefore,DWs oscillations dominate the dielectric response at a low frequency.Moreover,multi-domain structure with 180°DWs exhibits a unique low frequency mode at 120 GHz,which is significantly different from single domain and 90°DWs system.In other words,multi-domain structures with 180°DWs and 90°DWs exhibit different dielectric responses.There exists a common low-frequency mode related to the oscillations of DWs in BST0.8.Conclusions It was possible to manipulate the frequency of peaks in dielectric response of single domain through changing the magnitude of the external electric field.Domain walls oscillations dominated the dielectric response in a low frequency gigahertz range,whereas the single domain structures exhibited resonant peaks in a terahertz range.Moreover,multi-domain structures with different domain walls in BST0.8 had different dielectric responses,but the both have a same low-frequency mode at 10 GHz related to the domain walls oscillations.The results of this study indicated the dielectric response behaviors of ferroelectrics induced in an external electric field and internal multi-domain configurations and provided the potential mechanisms and guidance for optimizing application performance.展开更多
The discrete-variational method within the framework of density functional theory was used to investigate the process of O2 adsorption occurring on the surface of NiTi alloy. The calculated results showed that O2 exhi...The discrete-variational method within the framework of density functional theory was used to investigate the process of O2 adsorption occurring on the surface of NiTi alloy. The calculated results showed that O2 exhibits the adsorption state of O2- (0.36< 8 <0.70).O2 only interact with one nearest surface Ti atom, and the Ti atom only adsorbs one oxygen atom of the O2 molecule. Other cluster atoms would not be influenced in the adsorption process. The density of state analysis showed that the interaction between Ti and 0 atom is mainly contributed to 2p (0) and 4s (Ti) orbitals.展开更多
A first-principles study has been performed to calculate the electronic and optical properties of the SbxSn1xO system.The simulations are based upon the method of generalized gradient approximations with the Perdew-Bu...A first-principles study has been performed to calculate the electronic and optical properties of the SbxSn1xO system.The simulations are based upon the method of generalized gradient approximations with the Perdew-Burke-Ernzerhof form in the framework of density functional theory.The supercell structure shows a trend from expanding to shrinking with the increasing Sb concentration.The increasing Sb concentration induces the band gap narrowing.Optical transition has shifted to the low energy range with increasing Sb concentration.Other important optical constants such as the dielectric function,reflectivity,refractive index,and electron energy loss function for Sb-doped SnO2 are discussed.The optical absorption edge of SnO2 doped with Sb also shows a redshift.展开更多
Many methods are used to calculate the positron lifetime, these methods could be divided into two main types. The first method is atomic superposition approximation method and the second one is the so called energy ba...Many methods are used to calculate the positron lifetime, these methods could be divided into two main types. The first method is atomic superposition approximation method and the second one is the so called energy band calculation method. They are also known as the non-self-consistent field method and self-consistent field method respectively. In this paper, we first introduce the two basic methods and then, we take Si as an example and give our calculation results, these results coincide with our latest experimental results, finally, we discuss the advantages and disadvantages of the two methods.展开更多
The structural transformation from a liquid into a crystalline solid is an important subject in condensed matter physics and materials science. In the present study, first-principles molecular dynamics calculations ar...The structural transformation from a liquid into a crystalline solid is an important subject in condensed matter physics and materials science. In the present study, first-principles molecular dynamics calculations are performed to investigate the structure and properties of aluminum during the solidification which is induced by cooling and compression. In the cooling process and compression process, it is found that the icosahedral short-range order is initially enhanced and then begin to decay, the face-centered cubic short-range order eventually becomes dominant before it transforms into a crystalline solid.展开更多
Oxygenated carbon materials exhibit outstanding electrocatalytic performance in the production of hydrogen peroxide(H2O2)through a two-electron oxygen reduction reaction.The nature of the active functional group and u...Oxygenated carbon materials exhibit outstanding electrocatalytic performance in the production of hydrogen peroxide(H2O2)through a two-electron oxygen reduction reaction.The nature of the active functional group and underlying reaction mechanism,however,remain unclear.Here,a comprehensive workflow was established to identify the active sites from the numerous possible structures.The common hydroxyl group at the notched edge demonstrates a key role in the two-electron process.The local chemical environment weakens the binding of OOH intermediate to substrate while enhancing interaction with solution,thereby promoting the H_(2)O_(2)production.With increasing pH,the intramolecular hydrogen bond between OOH intermediate and hydroxyl decreases,facilitating OOH desorption.Furthermore,the rise in selectivity with increasing potential stems from the suppression of the four-electron process.The active site was further validated through experiments.Guided by theoretical understanding,optimal performance was achieved with high selectivity(>95%)and current density(2.06 mA/cm^(2))in experiment.展开更多
The new developedγ/γʹCo–Al–Nb-base alloys show great potentials as high-temperature materials.However,finding appropriate compositions to improve performance of alloys still poses a great challenge to the developm...The new developedγ/γʹCo–Al–Nb-base alloys show great potentials as high-temperature materials.However,finding appropriate compositions to improve performance of alloys still poses a great challenge to the development of Co–Al–Nb-base alloys.Motivated by the lack of alloying effects on fundamental properties of criticalγʹphase,we systematically performed a theoretical investigation on the effect of alloying elements TM(TM:Ti,V,Cr,Zr,Mo,Ta,W,Re,and Ru)on phase stabilities and mechanical properties of L1_(2)-typeγʹ(Co,Ni)_(3)(Al,Nb).By analyzing the stability ofγʹphase with respect to its competitive B2 and D0_(19) phases,the results shown that Ti,V,and Cr enhance the L1_(2) stability and widen the L1_(2)–D0_(19) energy barrier,in which V yields the maximum influence.The analysis of electronic structure indicated that the alternation of valence electrons at fermi level would be the atomic origin for doping TM inγʹphase.The calculated results of mechanical properties shown that V and Cr are expected to be optimal dopant for enhancing the strength and the ductility ofγʹphase.The addition of Ta is also beneficial for enhancing the strength at the slight expense of ductility ofγʹphase.By drawing the mechanical maps,the preferred composition range for the phases with desired properties is roughly demarcated in theory for the multi-addition of V/Cr and V/Ta inγʹphase.The findings would be useful for optimizing the performance of novelγ/γʹCo–Al–Nb-base superalloys.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11274092 and 1140040119)the Natural Science Foundation of Jiangsu Province,China(Grant No.SBK2014043338)
文摘The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [ Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multirelaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling.
基金financially supported by the National Natural Science Foundation of China (No. 51104070)the Special Funds for Postgraduate Student Innovation Program of Jiangxi University of Science and Technology (No. YC2012-X07)the Special Funds for Postgraduate Student Innovation Program of Jiangxi province (No. YC2013-S183)
文摘The band structure, density of states, Mulliken populations, and frontier orbital of spodumene crystal were calculated using the first-principles method based on the density functional theory(DFT) and further analyzed in detail. The calculation results reveal that the O in spodumene is the most active and easily links with H+in the water, but the active Li is very low, so it is better to add activator to increase the concentrate grade and recovery rate of spodumene in the flotation process. Si–O bonds in spodumene crystal are mainly covalent, since the covalency of Al–O bonds is stronger than that of Li–O bonds,and minerals dissociate along the weakest Li–O bonds. In addition, the study of the frontier orbital indicates that both O and Si atoms have large contribution to the frontier orbital in the spodumene crystal. Oleate and dodecylamine are used as the collectors of spodumene. The results contribute to the understanding of crystal structures of spodumene, and can be used in guiding related practical applications.
基金Project supported by the National Natural Science Foundation of China (Grant No 10625416).
文摘The electronic structures and optical properties of B3 ZnO series of Zn4X4-yMy(X :O, S, Se or Te; M = N, Sb, C1 or I; y = 0 or 1) are studied by first-principles calculations using a pseudopotential plane-wave method. The results show that Zn d-X p orbital interactions play an important role in the p-type doping tendency in zinc-based Ⅱ-Ⅵ semiconductors. In ZnX, with increasing atomic number of X, Zn d-X p orbital interactions decrease and Zn s-X p orbital interactions increase. Additionally, substituting group-V elements for X will reduce the Zn d-X p orbital interactions while substituting group-VII elements for X will increase the Zn d-X p orbital interactions. The results also show that group-V-doped ZnX and group-Ⅷ-doped ZnX exhibit different optical behaviours due to their different orbital interaction effects.
文摘Theoretical investigation of the phase equilibria of the Fe-Ni alloy has been performed by combining the FLAPW total energy calculations and the Cluster Variation Method through the Cluster Expansion Method. The calculations have proved the stabilization of the LIE phase at 1:3 stoichiometry, which is in agreement with the experimental result, and predicted the existence of L1 0 as a stable phase below 550 K; this L1 0 phase has been missing in the conventional phase diagram. The calculations are extended to the Fe-rich region that is characterized by a wide range phase separation and has drawn considerable attention because of the intriguing Invar property associated with a Fe concentration of 65%. To reveal the origin of the phase separation, a P-V curve in an entire concentration range is derived by the second derivative of free energy functional of the disordered phase with respect to the volume. The calculation confirmed that the phase separation is caused by the breakdown of the mechanical-stability criterion. The newly calculated phase separation line combined with the L1 0 and L12Eorder-disordered phase boundaries provides phase equilibria in the wider concentration range of the system. Furthermore, a coefficient of thermal expansion (CTE) is attempted by incorporating the thermal vibration effect through harmonic approximation of the Debye-Gruneisen model. The Invar behavior has been reproduced, and the origin of this anomalous volume change has been discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 40972196)
文摘Kaolinite is a kind of clay mineral which often causes large deformations in soft-rock tunnel engineering and thus causes safety issues. To deal with these engineering safety issues, the physical/chemical properties of the kaolinite should be studied from basic viewpoints. By using the density-functional theory, in this paper, the atomic and the electronic structures of the kaolinite are studied within the local-density approximation (LDA). It is found that the kaolinite has a large indirect band gap with the conduction band minimum (CBM) and the valence band maximum (VBM) being at the F and the B points, respectively. The chemical bonding between the cation and the oxygen anion in kaolinite is mainly ionic, accompanied by a minor covalent component. It is pointed that the VBM and the CBM of kaolinite consist of oxygen 2p and cation s states, respectively. The bond lengths between different cations and anions, as well as of the different OH groups, are also compared.
基金Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.KJCX2-YW-N35 and XDA03010303)the National Natural Science Foundation of China(Grant Nos.91026002 and 91126002)the National Magnetic Confinement Fusion Program,China(Grant No.2011GB108004)
文摘The corrosion of steels in liquid metal lead (Pb) and bismuth (Bi) is a critical challenge in the development of accel-erator driven systems (ADS). Using a first-principles method with a slab model, we theoretically investigate the interaction between the Pb (Bi) atom and the iron (Fe) (100) surface to assess the fundamental corrosion properties. Our investigation demonstrates that both Pb and Bi atoms favorably adsorb on the (100) surface. Such an adsorption decreases the energy required for the dissociation of an Fe atom from the surface, enhancing the dissolution tendency significantly. The seg- regation of six common alloying elements (Cr, A1, Mn, Ni, Nb, and Si) to the surface and their impacts on the corrosion properties are also considered. The present results reveal that Si seems to have a relatively good performance to stabilize the surface and alleviate the dissolving trend caused by Pb and Bi.
文摘Cavitation bubble collapse near rough solid wall is modeled by the multi-relaxation-time (MRT) pseudopotential lattice Boltzmann (LB) model. The modified forcing scheme, which can achieve LB model’s thermodynamic consistency by tuning a parameter related with the particle interaction range, is adopted to achieve desired stability and density ratio. The bubble collapse near rough solid wall was simulated by the improved MRT pseudopotential LB model. The mechanism of bubble collapse is studied by investigating the bubble profiles, pressure field and velocity field evolution. The eroding effects of collapsing bubble are analyzed in details. It is found that the process and the effect of the interaction between bubble collapse and rough solid wall are affected seriously by the geometry of solid boundary. At the same time, it demonstrates that the MRT pseudopotential LB model is a potential tool for the investigation of the interaction mechanism between the collapsing bubble and complex geometry boundary.
基金Project supported by the National Natural Science Foundation of China(Nos.11572040 and92163101)the National Key Research and Development Program of China(No.2019YFA0307900)the Beijing Natural Science Foundation(No.Z190011)。
文摘Black phosphorene(BP)and its analogs have attracted intensive attention due to their unique puckered structures,anisotropic characteristics,and negative Poisson’s ratio.The van der Waals(vdW)heterostructures assembly by stacking different materials show novel physical properties,however,the parent materials do not possess.In this work,the first-principles calculations are performed to study the mechanical properties of the vdW heterostructure.Interestingly,a near-zero Poisson’s ratio ν_(zx)is found in BP/SnSe heterostructure.In addition,compared with the parent materials BP and SnSe with strong in-plane anisotropic mechanical properties,the BP/SnSe heterostructure shows strongly suppressed anisotropy.The results show that the vdW heterostructure has quite different mechanical properties compared with the parent materials,and provides new opportunities for the mechanical applications of the heterostructures.
基金supported by the Doctoral Discipline Foundation of the Ministry of Education of China (No. 20070533118)the National Natural Science Foundation of China (No. 50871124)the Postdoctoral Foundation of Central South University
文摘Lattice constants, total energies, and densities of state of transition metals Co, Rh, and Ir in the VⅢB group with different crystalline structures were calculated via generalized gradient approximation (GGA) of the total energy plane wave pseudopotential method in first-principles. The lattice stabilities of Rh and Ir are ΔG^ bcc-hcp 〉 Δ G^fcc-hcp 〉 0, agreeing well with those of the projector augmented wave method in first-principles and the CALPHAD method in spite of elemental Co. Analyses of the electronic structures to lattice stability show that crystalline Rh and Ir with fcc structures have the obvious characteristic of a stable phase, agreeing with the results of total energy calculations. Analyses of atomic populations show that the transition rate of electrons from the s state to the p or d state for hcp, fcc, and bcc crystals of Co and Rh increases with the elemental period number to form a stronger cohesion, a higher cohesive energy, or a more stable lattice between atoms in heavier metals.
文摘The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential formalism. For description of the structure, well known Percus-Yevick (PY) hard sphere model is used as a reference system. By applying a variation method the best hard core diameters have been found which correspond to minimum free energy. With this procedure the thermodynamic properties such as entropy and heat of mixing have been computed. The influence of local field correction function viz; Hartree (H), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) is also investigated. The computed results of the excess entropy compares favourably in the case of liquid alloys while the agreement with experiment is poor in the case of heats of mixing. This may be due to the sensitivity of the heats of mixing with the potential parameters and the dielectric function.
基金Funded by the National Natural Science Foundation for Young Scholars of China(No.51302073)the Hubei Provincial Key Laboratory of Green Materials for Light IndustryHubei University of Technology(No.202307B07)。
文摘We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it forms an intermediate product Ti_(3)CuC_(2),and then reacts with Ti_(3)CuC_(2)to obtain Ti_(3)C_(2)Cl_(2).The reaction of Ti_(3)AlC_(2)and CuCl_(2)at a temperature of 800℃for 2 h to obtain Ti_(3)C_(2)Cl_(2)with an optimal lamellar structure is shown in SEM results.The pseudopotential plane-wave(PP-PW)method is used to calculate on the electronic structure.The etching mechanism is investigated by the total energies of each substance.The chemical reaction of Ti_(3)AlC_(2)and CuCl_(2)will first become Ti_(3)CuC_(2)and Cu,and then become Ti_(3)C_(2)Cl_(2)during the Lewis acid etching process,which are consistent with the experimental results.
文摘Introduction Frequency-dependent dielectric response is one of the important properties of ferroelectrics,reflecting the polarization response to high-frequency electric fields.Polarizations are closely related to ferroelectric domain structures,such as single domain,which represents the region with homogeneous polarizations direction.Ferroelectrics usually possess complex domain structures with domain walls(DWs)separating adjacent homogeneously polarized domains.DWs have attracted much attention during the past two decades due to their properties and potential for device designing.The related issues include DW motion,nonvolatile memory,topological defects,enhanced susceptibility,enhanced quality factor,low dielectric loss,and others.(Ba0.8,Sr0.2)TiO3(BST0.8)is a ferroelectric usually with multi-domain structures.Previous work identified two typical types of domain walls(DWs),i.e.,90°DWs and 180°DWs.The enhancement of dielectric response in systems with 90°DWs is now well understood,and the behavior of dielectric response in multi-domain systems with 180°DWs remains unclear.Therefore,gaining insights into how 180°DWs affect the dielectric response can clarify the effects in multidomain systems.Methods We performed molecular dynamics simulations using the ALFE-H code with the first-principles-based effective Hamiltonian method to study the BST0.8 system.All the calculations were performed in the NPT ensemble using the Evans-Hoover thermostat,and periodic boundary condition(PBC)along all three directions.To simulate the substrate,a uniform biaxial strain was fixed to the 1.55%in-plane strain.To analyze the multi-domain with different DWs,the simulations started with a self-constructed initial multi-domain polarization configuration.Subsequent 50 ps MD simulation was performed under chosen strains for structural relaxation.In the initial configuration,the magnitude of non-zero components of soft mode on each site was set to 0.1Å,atomic occupations(alloying)were randomized,and unless otherwise specified,all other mode variables were set to zero.The trajectory of local mode averaged over the supercell during MD simulations was extracted to calculate the dielectric response.The 8 ns MD simulations were performed to obtain an autocorrelation function for any time t ranging from 0 to 1 ns by one step of 10 fs.The fast Fourier transformation(FFT)was performed to calculate the dielectric response.Then two uncoupled damped harmonic oscillators(DHOs)were used to fit the data of dielectric response.Results and discussion The dielectric response of single domain at 300 K with the different electric fields along[110]from 0 to 2 MV/cm was computed.The computational results can be well fitted with the model of two uncoupled DHOs.The real and imaginary parts of the predicted dielectric response at each chosen electric field both exhibit two peaks.As the electric field increases,the low-frequency mode with 300 GHz at zero field in the system gradually disappears,and a high-frequency mode of larger than 8 THz appears when electric field is larger than 1 MV/cm.The high frequencies modes of 3 THz at zero filed and 8 THz under 1 MV/cm shift towards higher frequencies as the electric field increases.In other words,the present simulations reveal that it is possible to manipulate the frequency of peaks in dielectric response via changing the magnitude of the external electric field.The dielectric responses of multi-domain with 90°DWs and 180°DWs are further analyzed.According to the experimental PFM results,the multi-domain structures are simulated and the dielectric response through MD simulations is calculated.The analysis of the dielectric response of single domain structure and multi-domain structures shows that the single domain structures exhibit high-frequency peaks at>300 GHz,whereas the multi-domain structures exhibit low-frequency peaks at 8 GHz and 120 GHz for 180°DWs system and at 10 GHz for 90°DWs system,revealing that there exists a low-frequency mode related to collective oscillation of DWs in multi-domain structures.In addition,the frequencies of peaks in multi-domain with DWs are in a gigahertz range,whereas the single domain structure exhibits peaks in a terahertz range.The contribution of DWs to the dielectric response primarily arises from the timescale of DWs motion,such as sliding or breathing,which differs significantly from the high-frequency vibrations of optical phonon modes.The vibrational frequency of DWs is much lower,with relaxation times in the order of nanoseconds,resulting in a response frequency in GHz range,which is far below the terahertz range of optical phonon modes.Therefore,DWs oscillations dominate the dielectric response at a low frequency.Moreover,multi-domain structure with 180°DWs exhibits a unique low frequency mode at 120 GHz,which is significantly different from single domain and 90°DWs system.In other words,multi-domain structures with 180°DWs and 90°DWs exhibit different dielectric responses.There exists a common low-frequency mode related to the oscillations of DWs in BST0.8.Conclusions It was possible to manipulate the frequency of peaks in dielectric response of single domain through changing the magnitude of the external electric field.Domain walls oscillations dominated the dielectric response in a low frequency gigahertz range,whereas the single domain structures exhibited resonant peaks in a terahertz range.Moreover,multi-domain structures with different domain walls in BST0.8 had different dielectric responses,but the both have a same low-frequency mode at 10 GHz related to the domain walls oscillations.The results of this study indicated the dielectric response behaviors of ferroelectrics induced in an external electric field and internal multi-domain configurations and provided the potential mechanisms and guidance for optimizing application performance.
基金This work was financially supported by the National Natural Science Foundation of China,and the number was 50081001.
文摘The discrete-variational method within the framework of density functional theory was used to investigate the process of O2 adsorption occurring on the surface of NiTi alloy. The calculated results showed that O2 exhibits the adsorption state of O2- (0.36< 8 <0.70).O2 only interact with one nearest surface Ti atom, and the Ti atom only adsorbs one oxygen atom of the O2 molecule. Other cluster atoms would not be influenced in the adsorption process. The density of state analysis showed that the interaction between Ti and 0 atom is mainly contributed to 2p (0) and 4s (Ti) orbitals.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No. BUPT2009RC0412the National Natural Science Foundation of China under Grant Nos. 60908028 and 60971068
文摘A first-principles study has been performed to calculate the electronic and optical properties of the SbxSn1xO system.The simulations are based upon the method of generalized gradient approximations with the Perdew-Burke-Ernzerhof form in the framework of density functional theory.The supercell structure shows a trend from expanding to shrinking with the increasing Sb concentration.The increasing Sb concentration induces the band gap narrowing.Optical transition has shifted to the low energy range with increasing Sb concentration.Other important optical constants such as the dielectric function,reflectivity,refractive index,and electron energy loss function for Sb-doped SnO2 are discussed.The optical absorption edge of SnO2 doped with Sb also shows a redshift.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10675115)the Important Direction Project of the Chinese Academy of Sciences
文摘Many methods are used to calculate the positron lifetime, these methods could be divided into two main types. The first method is atomic superposition approximation method and the second one is the so called energy band calculation method. They are also known as the non-self-consistent field method and self-consistent field method respectively. In this paper, we first introduce the two basic methods and then, we take Si as an example and give our calculation results, these results coincide with our latest experimental results, finally, we discuss the advantages and disadvantages of the two methods.
基金Project supported by the National Natural Science Foundation of China(Grant No.51701180)the Foundation of the State Key Laboratory of Coal Conversion,China(Grant No.J22-23-103)。
文摘The structural transformation from a liquid into a crystalline solid is an important subject in condensed matter physics and materials science. In the present study, first-principles molecular dynamics calculations are performed to investigate the structure and properties of aluminum during the solidification which is induced by cooling and compression. In the cooling process and compression process, it is found that the icosahedral short-range order is initially enhanced and then begin to decay, the face-centered cubic short-range order eventually becomes dominant before it transforms into a crystalline solid.
基金supported by the National Natural Science Foundation of China(No.52171022,No.22105214)Zhejiang Provincial Natural Science Foundation of China(Grant No.LXR22B030001)+3 种基金Fujian Institute of Innovation and Chinese Academy of Sciences.K.C.Wong Education Foundation(GJTD-2019-13)the National Key Research and Development Program of China(2019YFB2203400)Ningbo Yongjiang Talent Introduction Programme(2021A-036-B)NingBo S&T Innovation 2025 Major Special Programme(No:2020z059)and the“111 Project”(B20030).
文摘Oxygenated carbon materials exhibit outstanding electrocatalytic performance in the production of hydrogen peroxide(H2O2)through a two-electron oxygen reduction reaction.The nature of the active functional group and underlying reaction mechanism,however,remain unclear.Here,a comprehensive workflow was established to identify the active sites from the numerous possible structures.The common hydroxyl group at the notched edge demonstrates a key role in the two-electron process.The local chemical environment weakens the binding of OOH intermediate to substrate while enhancing interaction with solution,thereby promoting the H_(2)O_(2)production.With increasing pH,the intramolecular hydrogen bond between OOH intermediate and hydroxyl decreases,facilitating OOH desorption.Furthermore,the rise in selectivity with increasing potential stems from the suppression of the four-electron process.The active site was further validated through experiments.Guided by theoretical understanding,optimal performance was achieved with high selectivity(>95%)and current density(2.06 mA/cm^(2))in experiment.
基金supported by the National Natural Science Foundation of China(Nos.52371014 and U22B20132)the Shenzhen Science and Technology Program(No.JCYJ20230807091401004)+1 种基金the Fundamental Research Funds for the Central Universities(No.20720230036)the Guided Subject of Dean’s Fund(No.YZJJ-YDL-0004).
文摘The new developedγ/γʹCo–Al–Nb-base alloys show great potentials as high-temperature materials.However,finding appropriate compositions to improve performance of alloys still poses a great challenge to the development of Co–Al–Nb-base alloys.Motivated by the lack of alloying effects on fundamental properties of criticalγʹphase,we systematically performed a theoretical investigation on the effect of alloying elements TM(TM:Ti,V,Cr,Zr,Mo,Ta,W,Re,and Ru)on phase stabilities and mechanical properties of L1_(2)-typeγʹ(Co,Ni)_(3)(Al,Nb).By analyzing the stability ofγʹphase with respect to its competitive B2 and D0_(19) phases,the results shown that Ti,V,and Cr enhance the L1_(2) stability and widen the L1_(2)–D0_(19) energy barrier,in which V yields the maximum influence.The analysis of electronic structure indicated that the alternation of valence electrons at fermi level would be the atomic origin for doping TM inγʹphase.The calculated results of mechanical properties shown that V and Cr are expected to be optimal dopant for enhancing the strength and the ductility ofγʹphase.The addition of Ta is also beneficial for enhancing the strength at the slight expense of ductility ofγʹphase.By drawing the mechanical maps,the preferred composition range for the phases with desired properties is roughly demarcated in theory for the multi-addition of V/Cr and V/Ta inγʹphase.The findings would be useful for optimizing the performance of novelγ/γʹCo–Al–Nb-base superalloys.