A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is di...A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is divided into two phases:aggregates and mastic.A viscoelastic constitutive relationship,which is obtained from the results of a creep test,is used to represent the mastic phase at intermittent temperatures.Model simulation results of the stiffness modulus in IDT compare favorably with experimental data.Different loading directions and velocities are employed in order to account for their influence on the modulus and the localized stress of the microstructure model.It is pointed out that the modulus is not consistent when the loading direction changes since the heterogeneous distribution of the mixture internal structure,and the loading velocity affects the localized stress as a result of the viscoelasticity of the mastic.The study results can provide a theoretical basis for the finite-element method,which can be extended to the numerical simulations of asphalt mixture micromechanical behavior.展开更多
To predict the behavior of geogrids embedded in sand under pullout loading conditions, the two dimensional plane-stress finite element model was presented. The interactions between soil and geogrid were simulated as ...To predict the behavior of geogrids embedded in sand under pullout loading conditions, the two dimensional plane-stress finite element model was presented. The interactions between soil and geogrid were simulated as non-linear springs, and the stiffness of the springs was determined from simple tests in the specially designed pullout box. The predicted behavior of the geogrid under pullout load agrees well with the observed data including the load-displacement properties, the displacement distribution along the longitudinal direction and the mobilization of the frictional and bearing resistance. (Edited author abstract) 8 Refs.展开更多
The finite-element modeling and simulations of the intra-body communication (IBC) were investigated to provide a theoretical basis for biomedical monitoring. A finite-element model for the whole human body was devel...The finite-element modeling and simulations of the intra-body communication (IBC) were investigated to provide a theoretical basis for biomedical monitoring. A finite-element model for the whole human body was developed to simulate the IBC. The simulation of galvanic coupling IBC and electrostatic coupling IBC were implemented along with different signal transmission paths, and their attenuations were calculated. Our study showed that the position near the signal electrode had higher potential than other positions in the two types of IBC, while the potential generally decreased along the axis of the body parts. Both signal attenuations of the two types IBC increased with increasing signal transmission distance, and the electrostatic coupling IBC had comparatively higher receiving potential than the galvanic coupling IBC. The results indicated that the proposed modeling method could be used for the research of biomedical monitoring based on IBC technology.展开更多
Pilot biomechanical design of biomaterials for artificial nucleus prosthesiswas carried out based on the 3D finite-element method. Two 3D models of lumbar intervertebral discrespectively with a real human nucleus and ...Pilot biomechanical design of biomaterials for artificial nucleus prosthesiswas carried out based on the 3D finite-element method. Two 3D models of lumbar intervertebral discrespectively with a real human nucleus and with the nucleus removed were developed and validatedusing published experimental and clinical data. Then the models with a stainless steel nucleusprosthesis implanted and with polymer nucleus prostheses of various properties implanted were usedfor the 3D finite-element biomechanical analysis. All the above simulation and analysis were carriedout for the L4/L5 disc under a human worst--daily compression load of 2000 N. The results show thatthe polymer materials with Young's modulus of elasticity E = 0.1-100 MPa and Poisson's ratio v=0.35-0.5 are suitable to produce artificial nucleus prosthesis in view of biomechanicalconsideration.展开更多
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor...Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor CSAMT forward modeling using the vector finite-element method. To verify the feasibility of the algorithm, we calculate the electric field, magnetic field, and tensor impedance of the 3D CSAMT far-zone field in layered media and compare them with theoretical solutions. In addition, a three-dimensional anomaly in half-space is also simulated, and the response characteristics of the impedance tensor and the apparent resistivity and impedance phase are analyzed. The results suggest that the vector finite-element method produces high-precision electromagnetic field and impedance tensor data, satisfies the electric field discontinuity, and does not require divergence correction using the vector finite-element method.展开更多
The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such...The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization(IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4 % and 1.2 % for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models.展开更多
Three-dimensional forward modeling magnetotellurics (MT) problems. We present a is a challenge for geometrically complex new edge-based finite-element algorithm using an unstructured mesh for accurately and efficien...Three-dimensional forward modeling magnetotellurics (MT) problems. We present a is a challenge for geometrically complex new edge-based finite-element algorithm using an unstructured mesh for accurately and efficiently simulating 3D MT responses. The electric field curl-curl equation in the frequency domain was used to deduce the H (curl) variation weak form of the MT forward problem, the Galerkin rule was used to derive a linear finite-element equation on the linear-edge tetrahedroid space, and, finally, a BI-CGSTAB solver was used to estimate the unknown electric fields. A local mesh refinement technique in the neighbor of the measuring MT stations was used to greatly improve the accuracies of the numerical solutions. Four synthetic models validated the powerful performance of our algorithms. We believe that our method will effectively contribute to processing more complex MT studies.展开更多
A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been deve...A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.展开更多
Stresses in a block around a dipping fracture simulating a damage zone of a fault are reconstructed by finite-element modeling. A fracture corresponding to a fault of different lengths, with its plane dipping at diffe...Stresses in a block around a dipping fracture simulating a damage zone of a fault are reconstructed by finite-element modeling. A fracture corresponding to a fault of different lengths, with its plane dipping at different angles, is assumed to follow a lithological interface and to experience either compression or shear. The stress associated with the destruction shows an asymmetrical pattern with different distances from the highest stress sites to the fault plane in the hanging and foot walls. As the dip angle decreases,the high-stress zone becomes wider in the hanging wall but its width changes negligibly in the foot wall.The length of the simulated fault and the deformation type affect only the magnitude of maximum stress,which remains asymmetrical relative to the fault plane. The Lh/Lfratio, where Lhand Lfare the widths of high-stress zones in the hanging and foot walls of the fault, respectively, is inversely proportional to the fault plane dip. The arithmetic mean of this ratio over different fault lengths in fractures subject to compression changes from 0.29 at a dip of 80°to 1.67 at 30°. In the case of shift displacement, ratios are increasing to 1.2 and 2.94, respectively.Usually they consider vertical fault planes and symmetry in a damage zone of faults. Following that assumption may cause errors in reconstructions of stress and fault patterns in areas of complex structural setting. According geological data, we know the structures are different and asymmetric in hanging and foot walls of fault. Thus, it is important to quantify zones of that asymmetry. The modeling results have to be taken into account in studies of natural faults, especially for practical applications in seismic risk mapping, engineering geology, hydrogeology, and tectonics.展开更多
In this paper, we propose a hybrid PML (H-PML) combining the normal absorption factor of convolutional PML (C-PML) with tangential absorption factor of Mutiaxial PML (M-PML). The H-PML boundary conditions can be...In this paper, we propose a hybrid PML (H-PML) combining the normal absorption factor of convolutional PML (C-PML) with tangential absorption factor of Mutiaxial PML (M-PML). The H-PML boundary conditions can better suppress the numerical instability in some extreme models, and the computational speed of finite-element method and the dynamic range are greatly increased using this HPML. We use the finite-element method with a hybrid PML to model the acoustic reflection of the interface when wireline and well logging while drilling (LWD), in a formation with a reflector outside the borehole. The simulation results suggests that the PS- and SP- reflected waves arrive at the same time when the inclination between the well and the outer interface is zero, and the difference in arrival times increases with increasing dip angle. When there are fractures outside the well, the reflection signal is clearer in the subsequent reflection waves and may be used to identify the fractured zone. The difference between the dominant wavelength and the model scale shows that LWD reflection logging data are of higher resolution and quality than wireline acoustic reflection logging.展开更多
The accumulated large amount of satellite magnetic data strengthens our capability of resolving the electrical conductivity of Earth’s mantle.To invert these satellite magnetic data,accurate and efficient forward mod...The accumulated large amount of satellite magnetic data strengthens our capability of resolving the electrical conductivity of Earth’s mantle.To invert these satellite magnetic data,accurate and efficient forward modeling solvers are needed.In this study,a new finite-element based forward modeling solver is developed to accurately and efficiently compute the induced electromagnetic field for a realistic 3D Earth.Firstly,the nodal-based finite element method with linear shape function on tetrahedral grid is used to assemble the final system of linear equations for the magnetic vector potential and electric scalar potential.The FGMRES solver with algebraic multigrid(AMG)preconditioner is used to quickly solve the final system of linear equations.The weighted moving least-square method is employed to accurately recover the electromagnetic field from the numerical solutions of magnetic vector and electric scalar potentials.Furthermore,a local mesh refinement technique is employed to improve the accuracy of the estimated electromagnetic field.At the end,two synthetic models are used to verify the accuracy and efficiency of our newly developed forward modeling solver.A realistic 3D Earth model is used to simulate the induced magnetic field at 450 and 200 km altitudes which are the planned flying altitudes of Macao’s geomagnetic satellites.The simulation indicates that(1)the amplitude of the mantle-induced magnetic field can reach 10–30 nT at 450 km altitude,which is 10–30%of the primary magnetic field.The induced magnetic field at 200 km altitude has larger amplitudes.These mantleinduced magnetic fields can be measured by Macao geomagnetic satellites;(2)the amplitude of the ocean-induced magnetic field can reach 5–30 nT at satellite altitudes,which needs to be carefully considered in the interpretation of satellite magnetic data.We are confident that our newly developed forward modeling solver will become a key tool for interpreting satellite magnetic data.展开更多
The electromagnetic(EM)telemetry systems,employed for real-time data transmission from the borehole and the earth surface during drilling,are widely used in measurement-while-drilling(MWD)and logging-while-drilling(LW...The electromagnetic(EM)telemetry systems,employed for real-time data transmission from the borehole and the earth surface during drilling,are widely used in measurement-while-drilling(MWD)and logging-while-drilling(LWD).Several numerical methods,including the method of moments(MoM),the electric field integral equation(EFIE)method,and the finite-element(FE)method have been developed for the simulation of EM telemetry systems.The computational process of these methods is complicated and time-consuming.To solve this problem,we introduce an axisymmetric semi-analytical FE method(SAFEM)in the cylindrical coordinate system with the virtual layering technique for rapid simulation of EM telemetry in a layered earth.The proposed method divides the computational domain into a series of homogeneous layers.For each layer,only its cross-section is discretized,and a high-precision integration method based on Riccati equations is employed for the calculation of longitudinally homogeneous sections.The block-tridiagonal structure of the global coefficient matrix enables the use of the block Thomas algorithm,facilitating the efficient simulation of EM telemetry problems in layered media.After the theoretical development,we validate the accuracy and efficiency of our algorithm through a series of numerical experiments and comparisons with the Multiphysics modeling software COMSOL.We also discussed the impact of system parameters on EM telemetry signal and demonstrated the applicability of our method by testing it on a field dataset acquired from Dezhou,Shandong Province,China.展开更多
In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and cha...In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain.展开更多
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(...Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].展开更多
Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying ...Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies.展开更多
This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to use...This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.展开更多
The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is m...The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples.展开更多
To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework ba...To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.展开更多
Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frame...Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.展开更多
基金Program for New Century Excellent Talents in University(No. NCET-08-0118)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20090092110049)
文摘A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is divided into two phases:aggregates and mastic.A viscoelastic constitutive relationship,which is obtained from the results of a creep test,is used to represent the mastic phase at intermittent temperatures.Model simulation results of the stiffness modulus in IDT compare favorably with experimental data.Different loading directions and velocities are employed in order to account for their influence on the modulus and the localized stress of the microstructure model.It is pointed out that the modulus is not consistent when the loading direction changes since the heterogeneous distribution of the mixture internal structure,and the loading velocity affects the localized stress as a result of the viscoelasticity of the mastic.The study results can provide a theoretical basis for the finite-element method,which can be extended to the numerical simulations of asphalt mixture micromechanical behavior.
文摘To predict the behavior of geogrids embedded in sand under pullout loading conditions, the two dimensional plane-stress finite element model was presented. The interactions between soil and geogrid were simulated as non-linear springs, and the stiffness of the springs was determined from simple tests in the specially designed pullout box. The predicted behavior of the geogrid under pullout load agrees well with the observed data including the load-displacement properties, the displacement distribution along the longitudinal direction and the mobilization of the frictional and bearing resistance. (Edited author abstract) 8 Refs.
基金Supported by the National Natural Science Foundation of China(60801050)the Excellent Talent Fund of Beijing(2011)Excellent Young Scholars Research Fund of Beijing Institute ofTechnology(2012)
文摘The finite-element modeling and simulations of the intra-body communication (IBC) were investigated to provide a theoretical basis for biomedical monitoring. A finite-element model for the whole human body was developed to simulate the IBC. The simulation of galvanic coupling IBC and electrostatic coupling IBC were implemented along with different signal transmission paths, and their attenuations were calculated. Our study showed that the position near the signal electrode had higher potential than other positions in the two types of IBC, while the potential generally decreased along the axis of the body parts. Both signal attenuations of the two types IBC increased with increasing signal transmission distance, and the electrostatic coupling IBC had comparatively higher receiving potential than the galvanic coupling IBC. The results indicated that the proposed modeling method could be used for the research of biomedical monitoring based on IBC technology.
文摘Pilot biomechanical design of biomaterials for artificial nucleus prosthesiswas carried out based on the 3D finite-element method. Two 3D models of lumbar intervertebral discrespectively with a real human nucleus and with the nucleus removed were developed and validatedusing published experimental and clinical data. Then the models with a stainless steel nucleusprosthesis implanted and with polymer nucleus prostheses of various properties implanted were usedfor the 3D finite-element biomechanical analysis. All the above simulation and analysis were carriedout for the L4/L5 disc under a human worst--daily compression load of 2000 N. The results show thatthe polymer materials with Young's modulus of elasticity E = 0.1-100 MPa and Poisson's ratio v=0.35-0.5 are suitable to produce artificial nucleus prosthesis in view of biomechanicalconsideration.
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
基金supported by the National Natural Science Foundation of China(No.41104068)the Deep Exploration in China,Sino Probe-03-05
文摘Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor CSAMT forward modeling using the vector finite-element method. To verify the feasibility of the algorithm, we calculate the electric field, magnetic field, and tensor impedance of the 3D CSAMT far-zone field in layered media and compare them with theoretical solutions. In addition, a three-dimensional anomaly in half-space is also simulated, and the response characteristics of the impedance tensor and the apparent resistivity and impedance phase are analyzed. The results suggest that the vector finite-element method produces high-precision electromagnetic field and impedance tensor data, satisfies the electric field discontinuity, and does not require divergence correction using the vector finite-element method.
基金financially supported by the National Natural Science Foundation of China(No.41204055,41164003,and 41104074)Opening Project(No.SMIL-2014-06) of Hubei Subsurface Multi-scale Imaging Lab(SMIL),China University of Geosciences(Wuhan)
文摘The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization(IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4 % and 1.2 % for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models.
基金National High Technology Research and Development Program(863 Program)(No.2006AA06Z105,2007AA06Z134)
文摘Three-dimensional forward modeling magnetotellurics (MT) problems. We present a is a challenge for geometrically complex new edge-based finite-element algorithm using an unstructured mesh for accurately and efficiently simulating 3D MT responses. The electric field curl-curl equation in the frequency domain was used to deduce the H (curl) variation weak form of the MT forward problem, the Galerkin rule was used to derive a linear finite-element equation on the linear-edge tetrahedroid space, and, finally, a BI-CGSTAB solver was used to estimate the unknown electric fields. A local mesh refinement technique in the neighbor of the measuring MT stations was used to greatly improve the accuracies of the numerical solutions. Four synthetic models validated the powerful performance of our algorithms. We believe that our method will effectively contribute to processing more complex MT studies.
基金Projects(41674080,41674079)supported by the National Natural Science Foundation of China
文摘A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.
文摘Stresses in a block around a dipping fracture simulating a damage zone of a fault are reconstructed by finite-element modeling. A fracture corresponding to a fault of different lengths, with its plane dipping at different angles, is assumed to follow a lithological interface and to experience either compression or shear. The stress associated with the destruction shows an asymmetrical pattern with different distances from the highest stress sites to the fault plane in the hanging and foot walls. As the dip angle decreases,the high-stress zone becomes wider in the hanging wall but its width changes negligibly in the foot wall.The length of the simulated fault and the deformation type affect only the magnitude of maximum stress,which remains asymmetrical relative to the fault plane. The Lh/Lfratio, where Lhand Lfare the widths of high-stress zones in the hanging and foot walls of the fault, respectively, is inversely proportional to the fault plane dip. The arithmetic mean of this ratio over different fault lengths in fractures subject to compression changes from 0.29 at a dip of 80°to 1.67 at 30°. In the case of shift displacement, ratios are increasing to 1.2 and 2.94, respectively.Usually they consider vertical fault planes and symmetry in a damage zone of faults. Following that assumption may cause errors in reconstructions of stress and fault patterns in areas of complex structural setting. According geological data, we know the structures are different and asymmetric in hanging and foot walls of fault. Thus, it is important to quantify zones of that asymmetry. The modeling results have to be taken into account in studies of natural faults, especially for practical applications in seismic risk mapping, engineering geology, hydrogeology, and tectonics.
基金supported by the National Natural Science Foundation of China(No.41204094)Science Foundation of China University of Petroleum,Beijing(No.2462015YQ0506)
文摘In this paper, we propose a hybrid PML (H-PML) combining the normal absorption factor of convolutional PML (C-PML) with tangential absorption factor of Mutiaxial PML (M-PML). The H-PML boundary conditions can better suppress the numerical instability in some extreme models, and the computational speed of finite-element method and the dynamic range are greatly increased using this HPML. We use the finite-element method with a hybrid PML to model the acoustic reflection of the interface when wireline and well logging while drilling (LWD), in a formation with a reflector outside the borehole. The simulation results suggests that the PS- and SP- reflected waves arrive at the same time when the inclination between the well and the outer interface is zero, and the difference in arrival times increases with increasing dip angle. When there are fractures outside the well, the reflection signal is clearer in the subsequent reflection waves and may be used to identify the fractured zone. The difference between the dominant wavelength and the model scale shows that LWD reflection logging data are of higher resolution and quality than wireline acoustic reflection logging.
基金supported by the National Natural Science Foundation of China(Grant Nos.72088101,41922027,41830107,41811530010)Innovation-Driven Project of Central South University(Grant No.2020CX0012)+1 种基金the National Natural Science Foundation of Hunan Province of China(Grant No.2019JJ20032)Macao Foundation and the pre-research project on Civil Aerospace Technologies funded by China’s National Space Administration(Grant Nos.D020308,D020303).
文摘The accumulated large amount of satellite magnetic data strengthens our capability of resolving the electrical conductivity of Earth’s mantle.To invert these satellite magnetic data,accurate and efficient forward modeling solvers are needed.In this study,a new finite-element based forward modeling solver is developed to accurately and efficiently compute the induced electromagnetic field for a realistic 3D Earth.Firstly,the nodal-based finite element method with linear shape function on tetrahedral grid is used to assemble the final system of linear equations for the magnetic vector potential and electric scalar potential.The FGMRES solver with algebraic multigrid(AMG)preconditioner is used to quickly solve the final system of linear equations.The weighted moving least-square method is employed to accurately recover the electromagnetic field from the numerical solutions of magnetic vector and electric scalar potentials.Furthermore,a local mesh refinement technique is employed to improve the accuracy of the estimated electromagnetic field.At the end,two synthetic models are used to verify the accuracy and efficiency of our newly developed forward modeling solver.A realistic 3D Earth model is used to simulate the induced magnetic field at 450 and 200 km altitudes which are the planned flying altitudes of Macao’s geomagnetic satellites.The simulation indicates that(1)the amplitude of the mantle-induced magnetic field can reach 10–30 nT at 450 km altitude,which is 10–30%of the primary magnetic field.The induced magnetic field at 200 km altitude has larger amplitudes.These mantleinduced magnetic fields can be measured by Macao geomagnetic satellites;(2)the amplitude of the ocean-induced magnetic field can reach 5–30 nT at satellite altitudes,which needs to be carefully considered in the interpretation of satellite magnetic data.We are confident that our newly developed forward modeling solver will become a key tool for interpreting satellite magnetic data.
基金supported by the Major Research Project on Scientific Instrument Development of the National Natural Science Foundation of China(42327901)National Natural Science Foundation of China(42030806,42074120,41904104,423B2405).
文摘The electromagnetic(EM)telemetry systems,employed for real-time data transmission from the borehole and the earth surface during drilling,are widely used in measurement-while-drilling(MWD)and logging-while-drilling(LWD).Several numerical methods,including the method of moments(MoM),the electric field integral equation(EFIE)method,and the finite-element(FE)method have been developed for the simulation of EM telemetry systems.The computational process of these methods is complicated and time-consuming.To solve this problem,we introduce an axisymmetric semi-analytical FE method(SAFEM)in the cylindrical coordinate system with the virtual layering technique for rapid simulation of EM telemetry in a layered earth.The proposed method divides the computational domain into a series of homogeneous layers.For each layer,only its cross-section is discretized,and a high-precision integration method based on Riccati equations is employed for the calculation of longitudinally homogeneous sections.The block-tridiagonal structure of the global coefficient matrix enables the use of the block Thomas algorithm,facilitating the efficient simulation of EM telemetry problems in layered media.After the theoretical development,we validate the accuracy and efficiency of our algorithm through a series of numerical experiments and comparisons with the Multiphysics modeling software COMSOL.We also discussed the impact of system parameters on EM telemetry signal and demonstrated the applicability of our method by testing it on a field dataset acquired from Dezhou,Shandong Province,China.
基金the World Climate Research Programme(WCRP),Climate Variability and Predictability(CLIVAR),and Global Energy and Water Exchanges(GEWEX)for facilitating the coordination of African monsoon researchsupport from the Center for Earth System Modeling,Analysis,and Data at the Pennsylvania State Universitythe support of the Office of Science of the U.S.Department of Energy Biological and Environmental Research as part of the Regional&Global Model Analysis(RGMA)program area。
文摘In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain.
文摘Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].
文摘Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies.
基金funded by the Office of the Vice-President for Research and Development of Cebu Technological University.
文摘This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.
基金supported by the Science and Technology Research Project of Henan Province(242102241055)the Industry-University-Research Collaborative Innovation Base on Automobile Lightweight of“Science and Technology Innovation in Central Plains”(2024KCZY315)the Opening Fund of State Key Laboratory of Structural Analysis,Optimization and CAE Software for Industrial Equipment(GZ2024A03-ZZU).
文摘The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples.
基金supported by the confidential research grant No.a8317。
文摘To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.
基金supported by the National Natural Science Foundation of China(Grant No.72161034).
文摘Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.