期刊文献+
共找到141,358篇文章
< 1 2 250 >
每页显示 20 50 100
Application of 1D/3D finite elements coupling for structural nonlinear analysis 被引量:13
1
作者 岳健广 A.Fafitis +1 位作者 钱江 雷拓 《Journal of Central South University》 SCIE EI CAS 2011年第3期889-897,共9页
An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) ... An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) solid elements and one-dimensional (1D) beam element were coupled by the multi-point constraint equations.A reduced scale 1?8 model test was simulated by the ECM and a full three dimensional model (3DM) contrastively.The results show that the global behavior and local damages of ECM agree well with the test and 3DM.It is indicated that the proposed method can be used in the structural nonlinear analysis accurately and efficiently. 展开更多
关键词 elements coupling model global behavior local damage multi-point constraint equations nonlinear analysis
在线阅读 下载PDF
Application of Finite Elements Method for Structural Analysis in a Coffee Harvester
2
作者 Evandro Pereira da Silva Fabio Moreira da Silva Ricardo Rodrigues Magalhaes 《Engineering(科研)》 2014年第3期138-147,共10页
Stress concentration and large displacements are usual problems in the components of the structure of agricultural machinery such harvesters coffee, and that finite element method (FEM) can be a tool to minimize its e... Stress concentration and large displacements are usual problems in the components of the structure of agricultural machinery such harvesters coffee, and that finite element method (FEM) can be a tool to minimize its effects. The goal of this paper is to get results of stresses and displacements of a coffee harvester structure by using FEM for static simulation. The main parts of the coffee harvester analyzed were: engine frame, body right and left sides, front and rear end, main beam, coffee reservoir, wheels and fuel tank. Two different design concepts of a coffee harvester machine were analyzed (structure with rear wheels aligned and misaligned) and the results were compared. It was observed that the model with rear wheels misaligned showed maximum displacement lower than the model with rear wheels aligned. Although higher stress was found in the rear wheels misaligned, it was observed that average stresses for the misaligned wheels design were lower in most structural components analyzed. Based on FEM results, the coffee harvester machine with misaligned rear wheels was built and subjected to operational tests without showing any structural failure. 展开更多
关键词 finite elements Method Stress Concentration Static Simulation Coffee Harvester
暂未订购
Distribution of Traditional Chinese Medicine Syndromes and Syndrome Elements of Chronic Heart Failure Based on Network Analysis and Hierarchical Cluster Analysis
3
作者 ZHOU Yi HUANG Pinxian +1 位作者 LI Xiaoqian HE Jiancheng 《Chinese Medicine and Culture》 2025年第1期50-60,共11页
Traditional Chinese medicine(TCM)has played a significant role in the prevention and treatment of chronic heart failure(CHF).To study TCM diagnosis of CHF,a total of 278 Chinese clinical research articles on the study... Traditional Chinese medicine(TCM)has played a significant role in the prevention and treatment of chronic heart failure(CHF).To study TCM diagnosis of CHF,a total of 278 Chinese clinical research articles on the study of CHF syndromes in recent 40 years retrieved from Web of Science,Scopus,Pub Med,Embase,CNKI,Wanfang Data,Cq VIP,and Sino Med.According to cumulative frequency analysis,network analysis,and hierarchical cluster analysis,the study found the distribution of CHF syndromes was syndrome of qi deficiency with blood stasis,syndrome of qi and yin deficiency,syndrome of yang deficiency with water flooding,syndrome of heart blood stasis obstruction,syndrome of turbid phlegm,and syndrome of collapse due to primordial yang deficiency.The syndrome elements on location of illness were heart,kidney,lung,and spleen.The syndrome elements on nature of illness were qi deficiency,blood stasis,yang deficiency,yin deficiency,water retention,and turbid phlegm.These findings can provide reference to the research on diagnosis and treatment of CHF,and contribute to the study on syndrome standardization and objective research of TCM diagnosis. 展开更多
关键词 Chronic heart failure Traditional Chinese medicine Hierarchical cluster analysis Network analysis SYNDROME Syndrome differentiation Syndrome element
暂未订购
Unified analysis for stabilized methods of low-order mixed finite elements for stationary Navier-Stokes equations 被引量:2
4
作者 陈刚 冯民富 何银年 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第8期953-970,共18页
A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements f... A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements for the stationary Navier-Stokes equa- tions. The existence and uniqueness of the solution and the optimal error estimates are proved. 展开更多
关键词 Navier-Stokes equation Ladyzhenskaya-Babu^ka-Brezzi (LBB) condition low-order finite element pressure projection method pressure gradient local projectionmethod
在线阅读 下载PDF
Rock-soil slope stability analysis by two-phase random media and finite elements 被引量:9
5
作者 Yong Liu Huawen Xiao +2 位作者 Kai Yao Jun Hu Hong Wei 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1649-1655,共7页
To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simul... To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simulate the two-phase random media, such that the soil(or rock) volume fraction and the inclination of the soil layer can be examined. The finite element method with random media incorporated as the material properties is used to determine the factor of safety of the rock-soil slope. Monte-Carlo simulations are used to estimate the statistical characteristics of the factor of safety. The failure mode of the rock-soil slope is examined by observing the maximum principal plastic strain at incipient slope failure. It is found that the critical surface of a rock-soil slope is fairly irregular, and it significantly differs from that of a pure soil slope. The factor of safety is sensitive to the soil volume faction, but it is predictable. The average factor of safety could be well predicted by the weighted harmonic average between the strength of soil and rock; the prediction model is practical and simple. Parametric studies on the inclination of the soil layer demonstrate that the most instable scenario occurs when the slope angle is consistent with the inclination of the soil layer. 展开更多
关键词 SLOPES stability Numerical computation STATISTICAL analysis finite-ELEMENT modelling Random FIELDS Monte-Carlo simulations
在线阅读 下载PDF
New Finite Elements in Shear Stress Analysis of Saint Venant′s Torsional Loaded Beam Structures
6
作者 J. Brnic G. Turkalj 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第z1期151-153,共3页
Recent engineering design as well as material processing on the optimization procedure are based and computeroriented. Finite element stress and sensitivity analysis are the most important things in such modern determ... Recent engineering design as well as material processing on the optimization procedure are based and computeroriented. Finite element stress and sensitivity analysis are the most important things in such modern determinationof optimal solution. According to high computer capacity finite element continuum discretization and load applicationindependent of the coming fields become unlimited. This paper deals with the development of a new finite elementsgeneration used in shear stress analysis caused by S.Venant′s torsional load and bending with shear. Their stiffnessmatrices and load vectors on the basis of their geometrical properties are derived. For justification of new finiteelements application some examples are presented. 展开更多
关键词 NEW finite elements SHEAR stress analysis Optimal design
在线阅读 下载PDF
Simple Efficient Smart Finite Elements for the Analysis of Smart Composite Beams
7
作者 M.C.Ray L.Dong S.N.Atluri 《Computer Modeling in Engineering & Sciences》 SCIE EI 2016年第5期437-471,共35页
This paper is concerned with the development of new simple 4-noded locking-alleviated smart finite elements for modeling the smart composite beams.The exact solutions for the static responses of the overall smart comp... This paper is concerned with the development of new simple 4-noded locking-alleviated smart finite elements for modeling the smart composite beams.The exact solutions for the static responses of the overall smart composite beams are also derived for authenticating the new smart finite elements.The overall smart composite beam is composed of a laminated substrate conventional composite beam,and a piezoelectric layer attached at the top surface of the substrate beam.The piezoelectric layer acts as the actuator layer of the smart beam.Alternate finite element models of the beams,based on an“equivalent single layer high order shear deformation theory”,and a“layer-wise high order shear deformation theory”,are also derived for the purpose of investigating the required number of elements across the thickness of the overall smart composite beams.Several cross-ply substrate beams are considered for presenting the results.The responses computed by the present new“smart finite element model”excellently match with those obtained by the exact solutions.The new smart finite elements developed here reveal that the development of finite element models of smart composite beams does not require the use of conventional first order or high order or layer-wise shear deformation theories of beams.Instead,the use of the presently developed locking-free 4-node elements based on conventional linear piezo-elasticity is sufficient. 展开更多
关键词 PIEZOELECTRICITY EXACT SOLUTIONS SMART finite ELEMENT SMART structures
在线阅读 下载PDF
Research on structural design and mechanical properties of precision electroplating machinery for automobiles based on finite element analysis
8
作者 Wang Jie Jiang Xiaobei 《电镀与精饰》 北大核心 2025年第11期10-21,共12页
Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS... Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS parametric modeling technology is used to construct its three-dimensional geometric model,and geometric simplification is carried out.Two surface treatment processes,HK-35 zinc nickel alloy electroplating and pure zinc electroplating,were designed,and the influence of different coatings on the mechanical properties of steering knuckles was compared and analyzed through numerical simulation.At the same time,standard specimens were prepared for salt spray corrosion testing and scratch method combined strength testing to verify the numerical simulation results.The results showed that under emergency braking and composite working conditions,the peak Von Mises stress of the zinc nickel alloy coating was 119.85 MPa,which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Its equivalent strain value was 652×10^(-6),which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Experimental data confirms that zinc nickel alloy coatings exhibit significant advantages in stress distribution uniformity,strain performance,and load-bearing capacity in high stress zones.The salt spray corrosion test further indicates that the coating has superior corrosion resistance and coating substrate interface bonding strength,which can significantly improve the mechanical stability and long-term reliability of automotive precision electroplating mechanical structures. 展开更多
关键词 finite element analysis electroplating machinery structure mechanical properties electroplating process salt spray corrosion bonding strength
在线阅读 下载PDF
Development of a Methodology for Determination and Analysis of Thermal Displacements of Machine Tools Using Finite Elements Method and Artificial Neural Network
9
作者 Romualdo Figueiredo de Sousa Fracisco Augusto Vieira da Silva Joao Bosco Aquino Silva Jose Carlos de Lima Junior 《Journal of Mechanics Engineering and Automation》 2014年第6期488-498,共11页
In the processes of manufacturing, MT (machine tools) plays an important role in the manufacture of work pieces with complex and high dimensional and geometric accuracy. Much of the errors of a machine tool are thos... In the processes of manufacturing, MT (machine tools) plays an important role in the manufacture of work pieces with complex and high dimensional and geometric accuracy. Much of the errors of a machine tool are those which are thermally induced which are from internal and external heat sources acting on the machine. In this paper, a methodology for determining and analyzing the thermal deformation of machine tools using FEM (finite element method) and ANN (artificial neural networks) is presented. After modeling the machine using FEM is defined the location of the heat sources, it is possible to obtain the temperature gradient and the corresponding thermal deformation at predetermined periods. Results obtained with simulations using the software NX.7.5 showed that this methodology is an effective tool in determining the thermal deformation of the machine, correlating the temperature reading at strategic points with volumetric deformation at the tool tip. Therefore, the thermal analysis of the errors in the pair tool part can be established. After training and validation process, the network will be able to make the prediction of thermal errors just stating the temperature values of specific points of each heat source, providing a way for compensation of thermally induced errors. 展开更多
关键词 Thermal displacement machine tool finite element method artificial neural network.
在线阅读 下载PDF
The Finite Element Analysis of Optimal Orthodontic Force for Canine Distalization with Long-Arm Brackets
10
作者 Zhidan Zhu Xiaojing Sun +4 位作者 Bin Lu Qijie Shi Yun Tang Siyu Zou Qian Jiang 《Journal of Biosciences and Medicines》 2025年第1期196-205,共10页
Objective: To compare the stress distribution in the periodontal ligament under different orthodontic forces during canine distalization using long-arm brackets, and to determine the optimal force value for this devic... Objective: To compare the stress distribution in the periodontal ligament under different orthodontic forces during canine distalization using long-arm brackets, and to determine the optimal force value for this device in orthodontic treatment. Methods: A finite element model was constructed after extracting the mandibular first premolar, and a long-arm bracket with a traction height of 6 mm was placed on the labial side of the mandibular canine. Three working conditions of 50 g, 100 g, and 150 g were simulated, and the magnitude and distribution of von Mises stress in the periodontal ligament were compared for each condition. Results: The maximum von Mises stress in the periodontal ligament was 0.013281 MPa in the 50 g condition, 0.02536 MPa in the 100 g condition, and 0.035549 MPa in the 150 g condition. As the orthodontic force increased, the stress distribution area in the periodontal ligament also expanded. Conclusion: A 100 g orthodontic force is the most suitable when using long-arm brackets, providing a relatively uniform stress distribution in the periodontal ligament and keeping the stress within a reasonable range. 展开更多
关键词 Orthodontic Force Tooth Movement finite Element analysis Periodontal Ligament Stress
暂未订购
In-Plane Static Analysis of Curved Nanobeams Using Exact-Solution-Based Finite Element Formulation
11
作者 Omer Ekim Genel Hilal Koc Ekrem Tufekci 《Computers, Materials & Continua》 2025年第2期2043-2059,共17页
Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nano... Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that were expressed via the differential form of the nonlocal theory of elasticity. Therefore, the effects of shear strain and axial extension included in the analytical formulation are also inherited by the curved finite element developed here. The rigidity matrix and the consistent force vector are developed for a circular finite element. To demonstrate the applicability of the method, static analyses of various curved nanobeams subjected to different boundary conditions and loading scenarios are performed, and the obtained results are compared with the exact analytical ones. The presented study provides an accurate and low computational cost method for researchers to investigate the in-plane static behavior of curved nanobeams. 展开更多
关键词 Nonlocal elasticity finite element exact solution static analysis nanobeam curved
在线阅读 下载PDF
Design and Finite Element Analysis of a New Type of Skeleton-Free,Traversing Secondary Lining Trolley
12
作者 Liang He 《Journal of Architectural Research and Development》 2025年第3期150-158,共9页
To effectively address the challenge where the speed of tunnel lining construction struggles to match that of tunnel face and inverted arch construction,and to enhance the quality of secondary lining,a new type of ske... To effectively address the challenge where the speed of tunnel lining construction struggles to match that of tunnel face and inverted arch construction,and to enhance the quality of secondary lining,a new type of skeleton-free,traversing secondary lining trolley has been developed.This trolley features a set of gantries paired with two sets of formwork.The formwork adopts a multi-segment hinged and strengthened design,ensuring its own strength can meet the requirements of secondary lining concrete pouring without relying on the support of the gantries.When retracted,the formwork can be transported by the gantries through another set of formwork in the supporting state,enabling early formwork support,effectively accelerating the construction progress of the tunnel’s secondary lining,and extending the maintenance time of the secondary lining with the formwork.Finite element software modeling was used for simulation calculations,and the results indicate that the structural strength,stiffness,and other performance parameters of the new secondary lining trolley meet the design requirements,verifying the rationality of the design. 展开更多
关键词 TUNNEL Secondary lining trolley Skeleton-free Traversing finite element analysis
在线阅读 下载PDF
Inverse identification of damage and fracture properties in fine‑grained nuclear graphite using finite element analysis
13
作者 Jie Shen Hong‑Niao Chen +2 位作者 DKLTsang Xiao Li Shi‑Gui Zhao 《Nuclear Science and Techniques》 2025年第10期192-210,共19页
Identifying the damage and fracture properties of nuclear graphite materials and accurately simulating them are crucial when designing graphite core structures.To simulate the damage evolution and crack propagation of... Identifying the damage and fracture properties of nuclear graphite materials and accurately simulating them are crucial when designing graphite core structures.To simulate the damage evolution and crack propagation of graphite under stress in a finite element model,compression tests on disks and three-point bending tests on center-notched beams for fine-grained graphite(CDI-1D and IG11 graphite)were conducted.During these tests,digital image correlation and electronic speckle pattern interferometry techniques were utilized to observe the surface full-field displacements of the specimens.A segmented finite element inverse analysis method was developed to characterize the graphite’s damage evolution by quantifying the reduction in Young’s modulus with tensile and compressive strains in disk specimens.The fracture energy and bilinear tensile softening curve of the graphite were determined by comparing the load–displacement responses of the three-point bending tests and the finite element simulation.Finally,by combining the identified damage laws with a fracture criterion based on fracture energy,a damage–fracture model was established and used to simulate tensile tests on L-shaped specimens with different fillet radii.Simulations indicate that the damage area at the fillet expands with increasing radius,creating a blunting effect that enhances the load-bearing capacity of the specimens.This damage–fracture model can be applied to simulate graphite components in core structures. 展开更多
关键词 GRAPHITE Fracture energy Damage characterization finite element analysis
在线阅读 下载PDF
Finite element analysis and experimental study on the sealing performance of low-phenyl silicone rubber sealing rings
14
作者 Ming Gao Dongkai Li +6 位作者 Kun Liu Shuliang Xu Feng Zhao Ben Guo Anhui Pan Xiao Xie Huanre Han 《Railway Sciences》 2025年第1期123-137,共15页
Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability an... Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability and short service life.To address these issues,low-phenyl silicone rubber was prepared and tested,and the finite element analysis and experimental studies on the sealing performance of its sealing rings were carried out.Design/methodology/approach–The low-temperature resistance and thermal stability of the prepared lowphenyl silicone rubber were studied using low-temperature tensile testing,differential scanning calorimetry,dynamic thermomechanical analysis and thermogravimetric analysis.The sealing performance of the lowphenyl silicone rubber sealing ring was studied by using finite element analysis software abaqus and experiments.Findings–The prepared low-phenyl silicone rubber sealing ring possessed excellent low-temperature resistance and thermal stability.According to the finite element analysis results,the finish of the flange sealing surface and groove outer edge should be ensured,and extrusion damage should be avoided.The sealing rings were more susceptible to damage in high compression ratio and/or low-temperature environments.When the sealing effect was ensured,a small compression ratio should be selected,and rubbers with hardness and elasticity less affected by temperature should be selected.The prepared low-phenyl silicone rubber sealing ring had zero leakage at both room temperature(RT)and�508C.Originality/value–The innovation of this study is that it provides valuable data and experience for the future development of the sealing rings used in the brake pipe flange joints of the railway freight cars in China. 展开更多
关键词 Low-phenyl silicone rubber Sealing ring Sealing performance finite element analysis LEAKAGE
在线阅读 下载PDF
Integrating finite element analysis in total hip arthroplasty for childhood hip disorders:Enhancing precision and outcomes
15
作者 Muhammad Imam Ammarullah 《World Journal of Orthopedics》 2025年第1期1-11,共11页
Total hip arthroplasty for adults with sequelae from childhood hip disorders poses significant challenges due to altered anatomy.The paper published by Oommen et al reviews the essential management strategies for thes... Total hip arthroplasty for adults with sequelae from childhood hip disorders poses significant challenges due to altered anatomy.The paper published by Oommen et al reviews the essential management strategies for these complex cases.This article explores the integration of finite element analysis(FEA)to enhance surgical precision and outcomes.FEA provides detailed biomechanical insights,aiding in preoperative planning,implant design,and surgical technique optimization.By simulating implant configurations and assessing bone quality,FEA helps in customizing implants and evaluating surgical techniques like subtrochanteric shortening osteotomy.Advanced imaging techniques,such as 3D printing,virtual reality,and augmented reality,further enhance total hip arthroplasty precision.Future research should focus on validating FEA models,developing patient-specific simulations,and promoting multidisciplinary collaboration.Integrating FEA and advanced technologies in total hip arthroplasty can improve functional outcomes,reduce complications,and enhance quality of life for patients with childhood hip disorder sequelae. 展开更多
关键词 finite element analysis Total hip arthroplasty Childhood hip disorders IMPLANT BIOMECHANICAL
暂未订购
Advanced 3D finite element limit analysis for assessing blowout stability in water main bursts
16
作者 Jim Shiau Tan Nguyen Bishal Chudal 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期5348-5358,共11页
The increasing occurrence of sinkholes caused by water main bursts has attracted significant research attention in recent years.This study addresses the gap in evaluating soil blowout stability resulting from water ma... The increasing occurrence of sinkholes caused by water main bursts has attracted significant research attention in recent years.This study addresses the gap in evaluating soil blowout stability resulting from water main failures by investigating the three-dimensional stability of blowouts with circular,hemispherical,and spherical openings.Advanced finite element limit analysis(FELA)combined with adaptive meshing is employed to analyze critical factors,including soil cover depth,surcharge pressure,and internal water pressure,that contribute to blowout failure.In addition,dimensionless ratios are used throughout the paper to assess the influence of these factors.Numerical findings are rigorously validated,ensuring reliability and accuracy.Practical design charts are provided to accommodate a wide range of design scenarios,offering valuable guidance for engineers.This study introduces a pioneering sinkhole simulation methodology,leading to the understanding of three-dimensional blowout stability mechanisms. 展开更多
关键词 Blowout stability CAVITY SINKHOLE finite element limit analysis(FELA)
在线阅读 下载PDF
Investigation of mechanical strength and deformation properties of Y25 bogie suspension systems by finite element analysis
17
作者 Celalettin Baykara 《Railway Sciences》 2025年第6期685-710,共26页
Purpose–This paper aims to offer a novel viewpoint for improving performance and reliability by developing and optimizing suspension components in a Y25 bogie through material optimization based on wheel–rail intera... Purpose–This paper aims to offer a novel viewpoint for improving performance and reliability by developing and optimizing suspension components in a Y25 bogie through material optimization based on wheel–rail interactions under variable load and track conditions.Design/methodology/approach–The suspension system,a critical component ensuring adaptation to road and load conditions in all vehicle types,is especially vital in heavy freight and passenger trains.In this context,the suspension set of the Y25 bogie–commonly used in T€urkiye and Europe–was modelled using CATIAV5,and stress analyses have been performed by way of ANSYS using the finite element analysis(FEA)method.E300-520-M cast steel was selected for the bogie frame,while two different spring steels,61SiCr7 and 51CrV4,were considered for the suspension springs.The modeled system was subjected to numerical analysis under loading conditions.The resulting stresses and displacements were compared with the mechanical properties of the selected materials to validate the design.Findings–The results demonstrate that the mechanical strength and deformation characteristics of the suspension components vary according to the applied external loads.The stress and displacement responses of the system were found to be within the allowable limits of the selected materials,confirming the structural integrity and reliability of the design.The suspension set is deemed suitable for the prescribed material and environmental conditions,suggesting potential for practical application in real-world rail systems.Originality/value–This research contributes to the design and optimization of bogie suspension systems using advanced CAD/CAE tools.It thinks that the material selection and numerical validation approach presented here can guide future designs in heavy load rail applications and potentially improve both safety and performance. 展开更多
关键词 finite element analysis Y25 railway bogie Suspension system Railway vehicles Wheel-rail interaction
在线阅读 下载PDF
Finite element analysis of the impact of graphene filler dispersion on local hotspots in HMX-based PBX explosives
18
作者 Xuanyi Yang Xin Huang +2 位作者 Chaoyang Zhang Yanqing Wang Yuxiang Ni 《Chinese Physics B》 2025年第5期467-472,共6页
The incorporation of graphene fillers into polymer matrices has been recognized for its potential to enhance thermal conductivity,which is particularly beneficial for applications in thermal management.The uniformity ... The incorporation of graphene fillers into polymer matrices has been recognized for its potential to enhance thermal conductivity,which is particularly beneficial for applications in thermal management.The uniformity of graphene dispersion is pivotal to achieving optimal thermal conductivity,thereby directly influencing the effectiveness of thermal management,including the mitigation of local hot-spot temperatures.This research employs a quantitative approach to assess the distribution of graphene fillers within a PBX(plastic-bonded explosive)matrix,focusing specifically on the thermal management of hot spots.Through finite element method(FEM)simulations,we have explored the impact of graphene filler orientation,proximity to the central heat source,and spatial clustering on heat transfer.Our findings indicate that the strategic distribution of graphene fillers can create efficient thermal conduction channels,which significantly reduce the temperatures at local hot spots.In a model containing 0.336%graphene by volume,the central hot-spot temperature was reduced by approximately 60 K compared to a pure PBX material,under a heat flux of 600 W/m^(2).This study offers valuable insights into the optimization of the spatial arrangement of low-concentration graphene fillers,aiming to improve the thermal management capabilities of HMX-based PBX explosives. 展开更多
关键词 thermal management graphene fillers spatial distribution optimization finite element analysis hot-spot temperature
原文传递
Finite element analysis and optimization of the rubber diaphragms in type-120 relief valves
19
作者 Ming Gao Dongkai Li +5 位作者 Kun Liu Lijun Liu Ben Guo Anhui Pan Xiao Xie Huanre Han 《Railway Sciences》 2025年第5期598-612,共15页
Purpose–Type-120 relief valves are critical components of locomotive braking systems,and they rapidly discharge the air pressure during brake release to enable swift pressure relief.In order to develop type-120 relie... Purpose–Type-120 relief valves are critical components of locomotive braking systems,and they rapidly discharge the air pressure during brake release to enable swift pressure relief.In order to develop type-120 relief valve rubber diaphragms with long life and high performance,the damaged faulty samples were analyzed and studied.Design/methodology/approach–Finite element analysis(FEA)was used to investigate the stress distribution and failure mechanism of the rubber diaphragms within the type-120 relief valves under dynamic loading conditions.The Ogden hyperelastic constitutive model was used to fit the diaphragm data obtained from the uniaxial tensile tests,and its suitability for the modeling of large deformations was confirmed.Findings–The FEA results indicated that,when the rubber diaphragms reached their maximum deformation,the peak stress on their upper surfaces was 5.44 MPa.Thus,this region is highly susceptible to fatigue damage.The service life of the rubber diaphragms could be extended by using rubber compounds with high tensile moduli or a fabric-reinforced rubber diaphragm.Originality/value–This study provides valuable data and experience for the development of the rubber diaphragms in the type-120 valves and other long-life rubber products in the railway field. 展开更多
关键词 Type-120 relief valve Rubber diaphragm Damage failure finite element analysis
在线阅读 下载PDF
Integrated Discrete Cell Complexes and Finite Element Analysis for Microstructure Topology Evolution during Severe Plastic Deformation
20
作者 Siying Zhu Weijian Gao +1 位作者 Min Yi Zhuhua Zhang 《Computers, Materials & Continua》 2025年第10期657-679,共23页
Microstructure topology evolution during severe plastic deformation(SPD)is crucial for understanding and optimising the mechanical properties of metallic materials,though its prediction remains challenging.Herein,we c... Microstructure topology evolution during severe plastic deformation(SPD)is crucial for understanding and optimising the mechanical properties of metallic materials,though its prediction remains challenging.Herein,we combine discrete cell complexes(DCC),a fully discrete algebraic topology model-with finite element analysis(FEA)to simulate and analyse the microstructure topology of pure copper under SPD.Using DCC,we model the evolution of microstructure topology characterised by Betti numbers(β_(0),β_(1),β_(2))and Euler characteristic(χ).This captures key changes in GBNs and topological features within representative volume elements(RVEs)containing several hundred grains during SPD-induced recrystallisation.As SPD cycles increase,high-angle grain boundaries(HAGBs)progressively form.Topological analysis reveals an overall decrease in β_(0)values,indicating fewer isolated HAGB substructures,while β_(2) values show a steady upward trend,highlighting new grain formation.Leveraging DCC-derived RVE topology and FEA-generated plastic strain data,we directly simulate the evolution and spatial distribution of microstructure topology and HAGB fraction in a copper tube undergoing cyclic parallel tube channel angular pressing(PTCAP),a representative SPD technique.Within the tube,the HAGB fraction continuously increases with PTCAP cycles,reflecting the microstructure’s gradual transition from subgrains to fully-formed grains.Analysis of Betti number distribution and evolution reveals the microstructural reconstruction mechanism underpinning this subgrain to grain transition during PTCAP.We further demonstrate the significant influence of spatially non-uniform plastic strain distribution on microstructure reconstruction kinetics.This study demonstrates a feasible approach for simulating microstructure topology evolution of metals processed by cyclic SPD via the integration of DCC and FEA. 展开更多
关键词 Microstructure topology betti numbers discrete cell complexes finite element analysis severe plastic deformation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部