期刊文献+
共找到134,984篇文章
< 1 2 250 >
每页显示 20 50 100
A straightforward 3D polycrystal plasticity finite element method for dynamic/static recrystallization simulation
1
作者 Guowei Zhou Yuanzhe Hu +2 位作者 Ronghui Hu Peidong Wu Dayong Li 《Journal of Materials Science & Technology》 2025年第17期180-198,共19页
The microstructure and related property evolution induced by dynamic recrystallization(DRX)and static recrystallization(SRX)in thermo-mechanical process are two critical factors for the metal forming.The DRX and SRX a... The microstructure and related property evolution induced by dynamic recrystallization(DRX)and static recrystallization(SRX)in thermo-mechanical process are two critical factors for the metal forming.The DRX and SRX are determined by the grain level deformation and sequentially coupled.In order to fully capture the microstructure and mechanical property evolution,a crystal plasticity finite element based modelling method for DRX and SRX is proposed in the current work.The grain level deformation is calculated with crystal plasticity which is coupled with the recrystallization model straightforwardly,and both the grain deformation and microstructure evolution are updated simultaneously.The proposed method is validated with discontinuous DRX experiments and the effects of initial deformation conditions are well-captured.Two controversial mechanisms for recrystallization microstructure evolution,i.e.oriented nucleation and growth selection,are discussed in the current framework with the advantages of accurate grain level deformation and interaction predictions.Furthermore,the sequentially coupled DRX and SRX are modelled seamlessly in the current work which provides a critical method for fully integrated thermo-mechanical processes analysis. 展开更多
关键词 Dynamic recrystallization Static recrystallization Crystal plasticity finite element method MICROSTRUCTURE Growth selection
原文传递
Forming process study of laser power bed fusion H13 steel by finite element simulation and experiment
2
作者 Yu-hua Deng Jian-yong Wang +8 位作者 Liang-liang Zhang Ji-lie Zhu Ying-kang Wei Wei Liu Li-xiong Han Zhuo-ran Shi Yao-Jia Ren Shu-feng Yang Shi-feng Liu 《Journal of Iron and Steel Research International》 2025年第11期3994-4005,共12页
The molten pool size,residual stress and defects of H13 steel prepared by laser powder bed fusion(LPBF)under various process parameters were investigated.The residual stress range for both defective and crack-free sam... The molten pool size,residual stress and defects of H13 steel prepared by laser powder bed fusion(LPBF)under various process parameters were investigated.The residual stress range for both defective and crack-free samples was 1420-1550 MPa.High scanning speeds led to incomplete melting defects,whereas low scanning speeds resulted in crack defects.Additionally,finite element simulation was employed to elucidate the defect formation mechanisms in H13 steel produced via LPBF process.We developed optimal parameters for LPBF of H13 steel,achieving a relative density of 99.8% in the prepared samples.The analysis indicated that crack formation primarily resulted from stress concentration at grain boundaries.Furthermore,the samples comprised α-Fe phase and a minor amount of retained γ-Fe austenite phase,facilitated by high solidification rates and low residual stress.In conclusion,optimizing LPBF manufacturing process for H13 steel requires considering both the impact of parameters on defect formation and the influence of the forming process on martensite and retained austenite. 展开更多
关键词 Laser powder bed fusion H13 steel finite element Residual stress CRACKING
原文传递
Strengthening Mechanisms and Mechanical Characteristics of Heterogeneous CNT/Al Composites by Finite Element Simulation
3
作者 Hui Feng Shu Yang +3 位作者 Shengyuan Yang Li Zhou Junfan Zhang Zongyi Ma 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第12期2106-2120,共15页
The refined explicit finite element scheme considering various strengthening mechanisms and damage modes is proposed for simulation of deformation processes and mechanical properties of carbon nanotube(CNT)-reinforced... The refined explicit finite element scheme considering various strengthening mechanisms and damage modes is proposed for simulation of deformation processes and mechanical properties of carbon nanotube(CNT)-reinforced bimodal-grained aluminum matrix nanocomposites.Firstly,the detailed microstructure model is established by constructing the geometry models of CNTs and grain boundaries,which automatically incorporates grain refinement strengthening and load transfer effect.Secondly,a finite element formulation based on the conventional theory of mechanical-based strain gradient plasticity is developed.Furthermore,the deformation and fracture modes for the nanocomposites with various contents and distributions of coarse grains(CGs)are explored based on the scheme.The results indicate that ductility of the composites first increases and then decreases as the content of CGs rises.Moreover,the dispersed distribution exhibits better ductility than concentrated one.Additionally,grain boundaries proved to be the weakest component within the micromodel.A series of interesting phenomena have been observed and discussed upon the refined simulation scheme.This work contributes to the design and further development of CNT/Al nanocomposites,and the proposed scheme can be extended to various bimodal metal composites. 展开更多
关键词 Mechanical properties Carbon nanotube(CNT) Bimodal metal matrix nanocomposites Refined explicit finite element simulation Microstructure design
原文传递
Optimizing design of lattice materials based on finite element simulation
4
作者 Sun Bingbing Chen Bingqing +2 位作者 Liu Wei Qin Renyao Zhang Xuejun 《China Welding》 CAS 2024年第3期52-64,共13页
The optimized design of simple cross-truss and column lattice structures was carried out by the SolidWorks simulation module.The effective density of the structure was calculated according to the weight reduction requ... The optimized design of simple cross-truss and column lattice structures was carried out by the SolidWorks simulation module.The effective density of the structure was calculated according to the weight reduction requirements proposed by the project.Then,the vari-ation curve between the maximum bearing stress of the unit structure and the structural variables was obtained by simulation.Meanwhile,the mathematical equation between the maximum bearing stress and the structural variables could be obtained through MATLAB fitting.The results indicated that with the decrease in the number of cells,the compressive strength of the prepared column lattice increased(400 to 4 cells,compressive strength 29 MPa to 160 MPa).However,the yield strength increased with the number of cells.The compression strength of the simple cross-truss lattice samples indicated an increase trend with the decrease of the pillar size(an increase of the number of units),reaching 91 MPa(pillar diameter 0.52 mm,number of units 25).While the yield strength increased with the increasing of the number of units.In addition,the additive manufacturing processes of simple cubic lattice and simple cross-pillar lattice were investigated using selective laser melting.The compression performance obtained from the experiment is compared with the simulation results,which are in good agreement.The results of this paper can provide an important reference for optimizing design of lattice materials. 展开更多
关键词 selective laser melting lattice materials finite element simulation materials design mechanical property
在线阅读 下载PDF
Dynamic evolution mechanism of the fracturing fracture system——Enlightenments from hydraulic fracturing physical experiments and finite element numerical simulation
5
作者 Qi-Qiang Ren Li-Fei Li +3 位作者 Jin Wang Rong-Tao Jiang Meng-Ping Li Jian-Wei Feng 《Petroleum Science》 CSCD 2024年第6期3839-3866,共28页
This study aims to elucidate the dynamic evolution mechanism of the fracturing fracture system during the exploration and development of complex oil and gas reservoirs.By integrating methods of rock mechanical testing... This study aims to elucidate the dynamic evolution mechanism of the fracturing fracture system during the exploration and development of complex oil and gas reservoirs.By integrating methods of rock mechanical testing,logging calculation,and seismic inversion technology,we obtained the current insitu stress characteristics of a single well and rock mechanical parameters.Simultaneously,significant controlling factors of rock mechanical properties were analyzed.Subsequently,by coupling hydraulic fracturing physical experiments with finite element numerical simulation,three different fracturing models were configured:single-cluster,double-cluster,and triple-cluster perforations.Combined with acoustic emission technology,the fracture initiation mode and evolution characteristics during the loading process were determined.The results indicate the following findings:(1)The extension direction and length of the fracture are significantly controlled by the direction of the maximum horizontal principal stress.(2)Areas with poor cementation and compactness exhibit complex fracture morphology,prone to generating network fractures.(3)The interlayer development of fracturing fractures is controlled by the strata occurrence.(4)Increasing the displacement of fracturing fluid enlarges the fracturing fracture length and height.This research provides theoretical support and effective guidance for hydraulic fracturing design in tight oil and gas reservoirs. 展开更多
关键词 Rockmechanical parameters Petrophysical experiments Hydraulic fracturing physical experiment finite element numerical simulation Dynamic evolution mechanism Fracturing fracture
原文传递
Reliability Prediction of Wrought Carbon Steel Castings under Fatigue Loading Using Coupled Mold Optimization and Finite Element Simulation
6
作者 Muhammad Azhar Ali Khan Syed Sohail Akhtar +2 位作者 Abba AAbubakar Muhammad Asad Khaled S.Al-Athel 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2325-2350,共26页
The fatigue life and reliability of wrought carbon steel castings produced with an optimized mold design are predicted using a finite element method integrated with reliability calculations.The optimization of the mol... The fatigue life and reliability of wrought carbon steel castings produced with an optimized mold design are predicted using a finite element method integrated with reliability calculations.The optimization of the mold is carried out using MAGMASoft mainly based on porosity reduction as a response.After validating the initial mold design with experimental data,a spring flap,a common component of an automotive suspension system is designed and optimized followed by fatigue life prediction based on simulation using Fe-safe.By taking into consideration the variation in both stress and strength,the stress-strength model is used to predict the reliability of the component under fatigue loading.Under typical loading conditions of 70 kN,the analysis showed that 95%of the steel spring flaps achieve infinite life.However,under maximum loading conditions of 90 kN,reliability declined significantly,with only 65%of the spring flaps expected to withstand the stress without failure.The study also identified a safe load-induced stress of 95 MPa on the spring flap.The findings suggest that transitioning from forged to cast spring flaps is a promising option,particularly if further improvements in casting design reduce porosity to negligible levels,potentially achieving 100%reliability under typical loading conditions.This integrated approach of mold optimization coupled with reliability estimation under realistic service loading conditions offers significant potential for the casting industry to produce robust,cost-effective products. 展开更多
关键词 CASTING OPTIMIZATION simulation finite element reliability automotive suspension
在线阅读 下载PDF
Crystal plasticity finite element simulations on extruded Mg-10Gd rod with texture gradient
7
作者 Jaeseong Lee Dirk Steglich Youngung Jeong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3409-3430,共22页
The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop directio... The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop direction, essential for characterizing vascular stents, poses challenges in experimental testing based on standard specimens featuring a reduced cross section. This study utilizes an elasto-visco-plastic self-consistent polycrystal model(ΔEVPSC) with the predominant twinning reorientation(PTR) scheme as a numerical tool, offering an alternative to mechanical testing. For verification, various mechanical experiments, such as uniaxial tension, compression, notched-bar tension, three-point bending, and C-ring compression tests, were conducted. The resulting force vs. displacement curves and textures were then compared with those based on the ΔEVPSC model. The computational model's significance is highlighted by simulation results demonstrating that the differential hardening along with a weak strength differential effect observed in the Mg-10Gd sample is a result of the interplay between micromechanical deformation mechanisms and deformation-induced texture evolution. Furthermore, the study highlights that incorporating the axisymmetric texture from the as-received material incorporating the measured texture gradient significantly improves predictive accuracy on the strength in the hoop direction. Ultimately, the findings suggest that the ΔEVPSC model can effectively predict the mechanical behavior resulting from loading scenarios that are impossible to realize experimentally, emphasizing its valuable contribution as a digital twin. 展开更多
关键词 Crystal plasticity TEXTURE finite element C-ring Three-point bending
在线阅读 下载PDF
Finite Element Method Simulation of Wellbore Stability under Different Operating and Geomechanical Conditions
8
作者 Junyan Liu Ju Liu +3 位作者 Yan Wang Shuang Liu Qiao Wang Yihe Du 《Fluid Dynamics & Materials Processing》 EI 2024年第1期205-218,共14页
The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory... The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory of poro-elasticity and the Mohr-Coulomb rock damage criterion,is used here to analyze such a risk.The changes in wellbore stability before and after reservoir acidification are simulated for different pressure differences.The results indicate that the risk of wellbore instability grows with an increase in the production-pressure difference regardless of whether acidification is completed or not;the same is true for the instability area.After acidizing,the changes in the main geomechanical parameters(i.e.,elastic modulus,Poisson’s ratio,and rock strength)cause the maximum wellbore instability coefficient to increase. 展开更多
关键词 Wellbore stability finite element acidizing operation well completion
在线阅读 下载PDF
Finite element model simulation and back propagation neural network modeling of void closure for an extra-thick plate during gradient temperature rolling
9
作者 Shun-hu Zhang Wen-hao Tian +4 位作者 Li-zhi Che Wei-jian Chen Yan Li Liang-wei Wan Zi-qi Yin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第9期2236-2247,共12页
The void closure behavior in a central extra-thick plate during the gradient temperature rolling was simulated and a back propagation(BP)neural network model was established.The thermal–mechanical finite element mode... The void closure behavior in a central extra-thick plate during the gradient temperature rolling was simulated and a back propagation(BP)neural network model was established.The thermal–mechanical finite element model of the gradient temperature rolling process was first developed and validated.The prediction error of the model for the rolling force is less than 2.51%,which has provided the feasibility of imbedding a defect in it.Based on the relevant data obtained from the simulation,the BP neural network was used to establish a prediction model for the compression degree of a void defect.After statistical analysis,80%of the data had a hit rate higher than 95%,and the hit rate of all data was higher than 90%,which indicates that the BP neural network can accurately predict the compression degree.Meanwhile,the comparisons between the results with the gradient temperature rolling and uniform temperature rolling,and between the results with the single-pass rolling and multi-pass rolling were discussed,which provides a theoretical reference for developing process parameters in actual production. 展开更多
关键词 BP neural network finite element model Gradient temperature rolling Void defect Extra-thick plate
原文传递
Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions
10
作者 Jiaqi Wu Li Zhuo +4 位作者 Jianliang Pei Yao Li Hongqiang Xie Jiaming Wu Huaizhong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期621-645,共25页
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ... The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses. 展开更多
关键词 Underground engineering modularized and parametric modeling finite element method complex geological structure cloud modeling
在线阅读 下载PDF
Finite element simulation of welded thin-walled stainless steel container based on SYSWELD
11
作者 何晓祥 俞建荣 +2 位作者 郭云龙 杨德宇 王岚 《China Welding》 EI CAS 2012年第2期23-27,共5页
The temperature field and stress fields of 18 - 8 stainless steel container structure were computed during and after tungsten inert gas (TIG) arc welding based on the SYSWELD software. The convection, radiation and ... The temperature field and stress fields of 18 - 8 stainless steel container structure were computed during and after tungsten inert gas (TIG) arc welding based on the SYSWELD software. The convection, radiation and conduction were all considered during the simulation process as well as temperature-dependent material properties. The results show that the peak temperature occurs on the heat source location. Steep temperature gradients are observed ahead of the heat source. Axial tensile stress and hoop compressive stress are observed in the weld seam between cylinder and head. Axial compressive stress and hoop tensile stress are observed near the weld seam between cylinder and heads. Axial compressive stress and hoop tensile stress are observed in the axial weld seam of cylinder. Axial tensile stress and hoop compressive stress are observed near the axial weld seam of cylinder. The aim of the above research is to provide a basic theory and some calculation methods for the thin-walled container welding technology so that the failures of these structures in service due to residual stresses may be minimized. 展开更多
关键词 numerical simulation thin-walled containers finite element simulation temperature field stress field
在线阅读 下载PDF
3D finite element numerical simulation of advanced detection in roadway for DC focus method 被引量:7
12
作者 邓小康 柳建新 +2 位作者 刘海飞 童孝忠 柳卓 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2187-2193,共7页
Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detec... Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detection was carried out using a three-dimensional finite element method (FEM), meanwhile the electric-field distribution of the point source and nine-point power source were calculated and analyzed with the same electric charges. The results show that the nine-point power source array has a very good ability to focus, and the DC focus method can be used to predict the aquifer abnormality body precisely. By comparing the FEM modelling results with physical simulation results from soil sink, it is shown that the accuracy of forward simulation meets the requirement and the artificial disturbance from roadway has no impact on the DC focus method. 展开更多
关键词 ROADWAY DC focus advanced detection finite element method
在线阅读 下载PDF
Discrete element and finite element coupling simulation and experiment of hot granule medium pressure forming 被引量:3
13
作者 董国疆 赵长财 +1 位作者 押媛媛 赵建培 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4089-4101,共13页
The granule medium of discreteness is supposed to be continuous(Drucker-Prager model) in the existing finite element simulation analysis on the hot granule medium pressure forming(HGMF) process, so the granule med... The granule medium of discreteness is supposed to be continuous(Drucker-Prager model) in the existing finite element simulation analysis on the hot granule medium pressure forming(HGMF) process, so the granule medium may produce tensile stress in the process of pressure-transferring and flowing, which does not coincide with the reality. The analysis method, discrete element and finite element(DE-FE) coupling simulation, is proposed to solve the problem. The material parameters of simulation model are obtained by the pressure-transfer performance test of granule medium and the hot uniaxial tensile test of sheet metal. The DE-FE coupling simulation platform is established by adopting Visual Basic language. The features in the process that AA7075-T6 conical parts are formed by the HGMF process are analyzed and verified by the process test. The studies show that the results of DE-FE coupling simulation coincide well with the test results, which provides a new analysis method to solve the mechanics problem in the coupling of discrete and continuum. 展开更多
关键词 granule medium aluminum alloy sheet hot forming finite element discrete element
在线阅读 下载PDF
NUMERICAL SIMULATION OF UNSTEADY-STATE UNDEREXPANDED JET USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:3
14
作者 陈二云 李志刚 +3 位作者 马大为 乐贵高 赵改平 任杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期89-93,共5页
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex... A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet. 展开更多
关键词 jets computational fluid dynamics multiple Mach disks vortex ring discontinuous Galerkin finite element method
在线阅读 下载PDF
Finite element simulation of ball spinning of NiTi shape memory alloy tube based on variable temperature field 被引量:2
15
作者 江树勇 张艳秋 +2 位作者 赵亚楠 唐明 李春峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期781-787,共7页
As a new attempt,ball spinning was used to manufacture the nickel-titanium shape memory alloy(NiTi SMA) tube at elevated temperature.The NiTi bar with a nominal composition of Ni50.9Ti49.1(mole fraction,%) was sol... As a new attempt,ball spinning was used to manufacture the nickel-titanium shape memory alloy(NiTi SMA) tube at elevated temperature.The NiTi bar with a nominal composition of Ni50.9Ti49.1(mole fraction,%) was solution treated and was used as the original tube blank for ball spinning.Based on the variable temperature field and the constitutive equation,rigid-viscoplastic finite element method(FEM) was applied in order to simulate the ball spinning of NiTi SMA tube.The temperature field,the stress field,the strain field and the load prediction were obtained by means of FEM.FEM results reveal that there is a temperature increase of about 160 ℃ in the principal deformation zone of the spun part.It can be found from the stress fields and the strain fields that the outer wall of NiTi SMA tube is easier to meet the plastic yield criterion than the inner wall,and the plastic deformation zone is caused to be in a three-dimensional compressive stress state.The radial strain and the tangential strain are characterized by the compressive strain,while the axial strain belongs to the tensile strain.The variation of spinning loads with the progression of the ball is of great importance in predicting the stable flow of the spun part. 展开更多
关键词 NiTi alloy NiTi tube shape memory alloy finite element method ball spinning
在线阅读 下载PDF
Finite Element Simulation of the Vibratory Characteristics for Quartz Tuning Fork Gyroscope 被引量:2
16
作者 王莹 孙雨南 秦秉坤 《Journal of Beijing Institute of Technology》 EI CAS 2002年第2期155-158,共4页
The micro quartz crystal tuning fork gyroscope is a new type of vibratory gyroscope. The gyroscope should be analyzed and simulated early in the design stage in order to offer reliable basis for design and to shorten ... The micro quartz crystal tuning fork gyroscope is a new type of vibratory gyroscope. The gyroscope should be analyzed and simulated early in the design stage in order to offer reliable basis for design and to shorten the period of development. Thus the vibratory characteristics of the gyroscope is simulated with the finite element method of coupled field. The optimum exciting frequency and the factors which influence the gyroscope sensitivity are determined. The method for adjusting the frequency deviation between driving and detecting modes is also proposed. 展开更多
关键词 quartz gyroscope tuning fork finite element method
在线阅读 下载PDF
Finite element simulation and optimal analysis of surfacing on steel orthotropic bridge deck 被引量:2
17
作者 谭积青 徐伟 张肖宁 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期539-543,共5页
To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the ... To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the whole bridge structure and tyre load are analyzed by the finite element method of submodeling. Influence of surfacing modulus on the strain state of the overlay is analyzed for the purpose of the optimal design of the overlay structure. Analysis results show that the deformation of the whole bridge structure has no evident influence on the stress state of the overlay. The key factor of the overlay design is the transverse tensile strain in the overlay above the upper edge of web plate of rib. The stress state of the overlay is influenced evidently by the modulus of rigidity transform overlay. And the stress state of the overlay can be optimized and lowered by increasing the modulus and thickness of rigidity transform overlay, The fatigue test has been done to evaluate the fatigue performance and modulus of different deck pavement materials such as epoxy asphalt, SBS modified asphalt, rosphalt asphalt which can provide reference for deck pavement structure design. 展开更多
关键词 steel orthotropic deck bridge deck overlay finite element submodeling optimal analysis fatigue test
在线阅读 下载PDF
COUPLED SIMULATION OF 3D ELECTRO-MAGNETO-FLOW FIELD IN HALL-HEROULT CELLS USING FINITE ELEMENT METHOD 被引量:10
18
作者 J. Li W. Liu +2 位作者 Y.Q. Lai Q.Y. Li Y.X. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第2期105-116,共12页
Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the... Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad. 展开更多
关键词 coupled simulation electromagnetic field flow field aluminum reduction cell finite element analysis
在线阅读 下载PDF
Effect of stress profile on microstructure evolution of cold-drawn commercially pure aluminum wire analyzed by finite element simulation 被引量:6
19
作者 Y.K.Zhu Q.Y.Chen +6 位作者 Q.Wang H.Y.Yu R.Li J.P.Hou Z.J.Zhang G.P.Zhang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第7期1214-1221,共8页
The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress p... The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress profile on the texture evolution of the CPAW was systematically investigated by combining the numerical simulation and the microstructure observation. The results show that the tensile stress at the wire center promotes the formation of 〈111〉 texture, whereas the shear stress nearby the rim makes little contribution to the texture formation. Therefore, the 〈111 〉 texture at the wire center is stronger than that in the surface layer, which also results in a higher microhardness at the center of the CPAW under axial loading.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. 展开更多
关键词 Commercially pure aluminum wire Cold drawing TEXTURE finite element simulation Stress profile
原文传递
Finite element analysis and simulation for cold precision forging of a helical gear 被引量:13
20
作者 冯玮 华林 韩星会 《Journal of Central South University》 SCIE EI CAS 2012年第12期3369-3377,共9页
To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the bille... To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the billet geometry on the forming load and the deformation uniformity were analyzed by three-dimensional (3D) finite element method (FEM) under the commercial software DEFORM 3D. The billet geometry was optimized to meet lower forming load and better deformation uniformity requirement. Deformation mechanism was studied through the distribution of flow velocity field and effective strain field. The forging experiments of the helical gear were successfully performed using lead material as a model material under the same process conditions used in the FE simulations. The results show that the forming load decreases as the diameter of relief-hole do increases, but the effect of do on the deformation uniformity is very complicated. The forming load is lower and the deformation is more uniform when do is 10 mm. 展开更多
关键词 helical gear cold precision forging finite element simulation relief-hole principle
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部