Modern wireless communications gadgets demand multi-standard communications facilities with least overlap between different input radio channels. A sharp digital filter of extremely narrow transition-width with lower ...Modern wireless communications gadgets demand multi-standard communications facilities with least overlap between different input radio channels. A sharp digital filter of extremely narrow transition-width with lower stop band ripples offers alias-free switching among the preferred frequency bands. A computationally competent low pass filter (LPF) structure based on the multistage frequency response masking (FRM) approach is proposed for the design of sharp finite impulse response (FIR) filters which are suitable for wireless communications applications. In comparison of basic FRM with other existing multistage FRM structures, the proposed structure has a narrow transition bandwidth and higher stop band attenuation with significant reduction in terms of the number of computational steps. A design example is incorporated to demonstrate the efficiency of the proposed approach. Simulation results establish the improvement of the proposed scheme over other recently published design strategies.展开更多
This paper presents a study of a non-uniform pitch helical resonator (NPHR) structure and the coupling mechanisms to design dual-passband filters. The previous research analyzes NPHR as a type of step impedance resona...This paper presents a study of a non-uniform pitch helical resonator (NPHR) structure and the coupling mechanisms to design dual-passband filters. The previous research analyzes NPHR as a type of step impedance resonator (SIR), however, it does not give analytical equations or prediction for the dual-resonance characteristics of the NPHR structure discussed in this paper. Consequently, a circuit model is proposed to analyze the dual-resonance characteristics of NPHRs. Analytical equations are derived, showing that the frequency ratio of a dual-band NPHR can be determined by the ratio of turns. EM simulation and experimental results have shown good agreement with the circuit analysis. The derived analytical equations from circuit model can be used for fast design of NPHRs. A step-width aperture is proposed to independently control the coupling coefficients at the each band of NPHRs. A third order dual-passband filter has been designed and fabricated. The filter has 3.3% and 3% fractional bandwidths at 789 MHz and 2402 MHz, respectively. The designed prototype filter shows that NPHRs can be utilized to realize compact filters with dual-band characteristics. The filter design can be extended from engineering perspective for application in wireless communication systems.展开更多
Active power filter (APF) using novel virtual line-flux-linkage oriented control strategy can not only realizes no phase-locked-loop (PLL) control, but also achieves a good inhibitory effect to interfere. However, the...Active power filter (APF) using novel virtual line-flux-linkage oriented control strategy can not only realizes no phase-locked-loop (PLL) control, but also achieves a good inhibitory effect to interfere. However, there are some problems in the conventional method, such as the error of amplitude, the shift of phase angle and the non-determinacy of initial oriented angle. In this paper, two one-order low-pass filters are adopted instead of the pure integrator in the virtual line-flux-linkage observer, which can steady the phase and amplitude. Furthermore, an original scheme of harmonics detection under the rotating coordinate is advanced based on the simplified space vector pulse width modulation (SVPWM) strategy. Meanwhile, by using the new SVPWM algorithm, the voltage space vector diagram of the three-level inverter can be simplified and applied into that of two-level inverter, and this makes the control for Neutral Point potential easier.展开更多
文摘Modern wireless communications gadgets demand multi-standard communications facilities with least overlap between different input radio channels. A sharp digital filter of extremely narrow transition-width with lower stop band ripples offers alias-free switching among the preferred frequency bands. A computationally competent low pass filter (LPF) structure based on the multistage frequency response masking (FRM) approach is proposed for the design of sharp finite impulse response (FIR) filters which are suitable for wireless communications applications. In comparison of basic FRM with other existing multistage FRM structures, the proposed structure has a narrow transition bandwidth and higher stop band attenuation with significant reduction in terms of the number of computational steps. A design example is incorporated to demonstrate the efficiency of the proposed approach. Simulation results establish the improvement of the proposed scheme over other recently published design strategies.
文摘This paper presents a study of a non-uniform pitch helical resonator (NPHR) structure and the coupling mechanisms to design dual-passband filters. The previous research analyzes NPHR as a type of step impedance resonator (SIR), however, it does not give analytical equations or prediction for the dual-resonance characteristics of the NPHR structure discussed in this paper. Consequently, a circuit model is proposed to analyze the dual-resonance characteristics of NPHRs. Analytical equations are derived, showing that the frequency ratio of a dual-band NPHR can be determined by the ratio of turns. EM simulation and experimental results have shown good agreement with the circuit analysis. The derived analytical equations from circuit model can be used for fast design of NPHRs. A step-width aperture is proposed to independently control the coupling coefficients at the each band of NPHRs. A third order dual-passband filter has been designed and fabricated. The filter has 3.3% and 3% fractional bandwidths at 789 MHz and 2402 MHz, respectively. The designed prototype filter shows that NPHRs can be utilized to realize compact filters with dual-band characteristics. The filter design can be extended from engineering perspective for application in wireless communication systems.
文摘Active power filter (APF) using novel virtual line-flux-linkage oriented control strategy can not only realizes no phase-locked-loop (PLL) control, but also achieves a good inhibitory effect to interfere. However, there are some problems in the conventional method, such as the error of amplitude, the shift of phase angle and the non-determinacy of initial oriented angle. In this paper, two one-order low-pass filters are adopted instead of the pure integrator in the virtual line-flux-linkage observer, which can steady the phase and amplitude. Furthermore, an original scheme of harmonics detection under the rotating coordinate is advanced based on the simplified space vector pulse width modulation (SVPWM) strategy. Meanwhile, by using the new SVPWM algorithm, the voltage space vector diagram of the three-level inverter can be simplified and applied into that of two-level inverter, and this makes the control for Neutral Point potential easier.