期刊文献+
共找到2,611篇文章
< 1 2 131 >
每页显示 20 50 100
Blending Sensor Scheduling Strategy with Particle Filter to Track a Smart Target 被引量:6
1
作者 Bin LIU Chunlin JI +1 位作者 Yangyang ZHANG Chengpeng HAO 《Wireless Sensor Network》 2009年第4期300-305,共6页
We discuss blending sensor scheduling strategies with particle filtering (PF) methods to deal with the prob-lem of tracking a ‘smart’ target, that is, a target being able to be aware it is being tracked and act in a... We discuss blending sensor scheduling strategies with particle filtering (PF) methods to deal with the prob-lem of tracking a ‘smart’ target, that is, a target being able to be aware it is being tracked and act in a manner that makes the future track more difficult. We concern here how to accurately track the target with a care on concealing the observer to a possible extent. We propose a PF method, which is tailored to mix a sensor scheduling technique, called covariance control, within its framework. A Rao-blackwellised unscented Kal-man filter (UKF) is used to produce proposal distributions for the PF method, making it more robust and computationally efficient. We show that the proposed method can balance the tracking filter performance with the observer’s concealment. 展开更多
关键词 PARTICLE filter sensor Scheduling SMART TARGET Tracking
暂未订购
Subwavelength filter and sensor design based on end-coupled composited ring-groove resonator 被引量:1
2
作者 Kunhua Wen Yihua Hu +4 位作者 Li Chen Jinyun Zhou Miao He Liang Lei Ziming Meng 《光电工程》 CAS CSCD 北大核心 2017年第2期192-197,共6页
A plasmonic filter and sensor is designed based on an end-coupled ring-groove composited resonator(RGCR).According to the magnetic field distributions of the resonance modes,a horizontal or vertical groove is added to... A plasmonic filter and sensor is designed based on an end-coupled ring-groove composited resonator(RGCR).According to the magnetic field distributions of the resonance modes,a horizontal or vertical groove is added to the perfect ring resonator,and the transmission peaks for the 1st and the 2nd modes can be linearly changed by the length of the groove.In this case,the proposed structure can act as an on-chip optical filter with flexible wavelength manipulation.When the groove is rotated with an angle of?/4,Fano resonance arises due to the mode interference.Dual asymmetric sharp transmission peaks are achieved around the wavelength of the former 2nd resonance mode.High figure of merit and high sensitivity are obtained for the structure,and it is believed that the device can find widely applications in the biochemistry sensing area.The corresponding spectra and the propagation characteristics are numerically investigated by using the finite-difference time-domain method. 展开更多
关键词 plasmonic filter sensor Fano resonance
在线阅读 下载PDF
Sensor Fusion with Square-Root Cubature Information Filtering 被引量:8
3
作者 Ienkaran Arasaratnam 《Intelligent Control and Automation》 2013年第1期11-17,共7页
This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Informa... This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is therefore numerically robust. The SCIF is applied to a highly maneuvering target tracking problem in a distributed sensor network with feedback. The SCIF’s performance is finally compared with the regular cubature information filter and the traditional extended information filter. The results, presented herein, indicate that the SCIF is the most reliable of all three filters and yields a more accurate estimate than the extended information filter. 展开更多
关键词 KALMAN filter Information filter MULTI-sensor Fusion Square-Root filtering
暂未订购
A multi-rate sensor fusion approach using information filters for estimating aero-engine performance degradation 被引量:5
4
作者 Feng LU Chunyu JIANG +1 位作者 Jinquan HUANG Xiaojie QIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第7期1603-1617,共15页
Gas-path performance estimation plays an important role in aero-engine health management, and Kalman Filter(KF) is a well-known technique to estimate performance degradation. In previous studies, it is assumed that di... Gas-path performance estimation plays an important role in aero-engine health management, and Kalman Filter(KF) is a well-known technique to estimate performance degradation. In previous studies, it is assumed that different kinds of sensors are with the same sampling rate, and they are used for state estimation by the KF simultaneously. However, it is hard to achieve state estimation using various kinds of sensor measurements at the same sampling rate due to a complex network and physical characteristic differences between sensors, especially in an advanced multisensor architecture. For this purpose, a multi-rate sensor fusion using the information filtering approach is proposed based on the square-root cubature rule, which is called Multi-rate Squareroot Cubature Information Filter(MSCIF) to track engine performance degradation. Soft measurement synchronization of the MSCIF is designed to provide a sensor fusion condition for multiple sampling rates of measurement, and a fault sensor is isolated by maximum likelihood validation before state estimation. The contribution of this paper is to supply a novel multi-rate informationfilter approach for sensor fault tolerant health estimation of an aero-engine in a multi-sensor system. Tests are conducted for aero-engine performance degradation estimation with multiple sampling rates of sensor measurement on both digital simulation and semi-physical experiment.Experimental results illustrate the superiority of the proposed algorithm in terms of degradation estimation accuracy and robustness to sensor failure in a multi-sensor system. 展开更多
关键词 AERO-ENGINE CUBATURE information filter Performance DEGRADATION sensor FUSION State estimation
原文传递
Attitude sensor fault diagnosis based on Kalman filter of discrete-time descriptor system 被引量:8
5
作者 ZhenhuaWang Yi Shen Xiaolei Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期914-920,共7页
To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary stat... To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary state vector, the attitude measurement system subjected to the attitude sensor fault is modeled by the discrete-time descriptor system. The condition of estimability of such systems is given. And then a Kalman filter of the discrete-time descriptor system is established based on the methodology of the maximum likelihood estimation. With the descriptor Kalman filter, the state vector of the original system and sensor fault can be estimated simultaneously. The proposed method is able to esti-mate an abrupt sensor fault as well as the incipient one. Moreover, it is also effective in the multiple faults scenario. Simulations are conducted to confirm the effectiveness of the proposed method. 展开更多
关键词 DISCRETE-TIME descriptor system Kalman filter satel-lite attitude sensor fault estimation.
在线阅读 下载PDF
Design of on-board calibration methods for a digital sun sensor based on Levenberg–Marquardt algorithm and Kalman filters 被引量:7
6
作者 Ali RAHDAN Hossein BOLANDI Mostafa ABEDI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第1期339-351,共13页
Digital sun sensor is one of the most important sensors used in the Attitude Determination System(ADS)of the satellite.Due to the harsh environmental conditions that exist in the space,various distortions may occur in... Digital sun sensor is one of the most important sensors used in the Attitude Determination System(ADS)of the satellite.Due to the harsh environmental conditions that exist in the space,various distortions may occur in the sun sensor optical system that lead to the reduced accuracy of this equipment.So,it is necessary to recalibrate the optical parameters of the aforementioned sensors.For this purpose,first a novel attitude independent error model is proposed for the SS-411 sun sensor that includes the central point of the CCD array,installation error,filter thickness and sensor misalignment.So,the mutual interfaces between the sensor parameters are considered in the developed model.In order to extract the sensor parameters,a nonlinear optimization technique called the Levenberg–Marquardt is applied to the developed model as a batch algorithm.In addition,the Extended Kalman Filter(EKF)and the Unscented Kalman Filter(UKF)have been utilized as sequential strategies.It will be shown that by considering a worst case of variation amount for sensor parameters,an accuracy improvement of about 17°is achieved by the developed calibration algorithms.Comparison between the developed algorithms represents that UKF has higher accuracy,shorter time convergence but higher computational load. 展开更多
关键词 Digital SUN sensor EXTENDED KALMAN filter Levenberg–Marquardt ON-BOARD CALIBRATION Unscented KALMAN filter
原文传递
Distributed H∞ Filtering with Consensus Strategies in Sensor Networks: Considering Consensus Tracking Error 被引量:4
7
作者 WAN Yi-Ming DONG Wei YE Hao 《自动化学报》 EI CSCD 北大核心 2012年第7期1211-1217,共7页
关键词 分布式算法 跟踪误差 传感器网络 过滤 估计误差 滤波算法 采样周期 传感器节点
在线阅读 下载PDF
A novel particle filter approach for indoor positioning by fusing WiFi and inertial sensors 被引量:8
8
作者 Zhu Nan Zhao Hongbo +1 位作者 Feng Wenquan Wang Zulin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第6期1725-1734,共10页
WiFi fingerprinting is the method of recording WiFi signal strength from access points (AP) along with the positions at which they were recorded, and later matching those to new mea- surements for indoor positioning... WiFi fingerprinting is the method of recording WiFi signal strength from access points (AP) along with the positions at which they were recorded, and later matching those to new mea- surements for indoor positioning. Inertial positioning utilizes the accelerometer and gyroscopes for pedestrian positioning. However, both methods have their limitations, such as the WiFi fluctuations and the accumulative error of inertial sensors. Usually, the filtering method is used for integrating the two approaches to achieve better location accuracy. In the real environments, especially in the indoor field, the APs could be sparse and short range. To overcome the limitations, a novel particle filter approach based on Rao Blackwellized particle filter (RBPF) is presented in this paper. The indoor environment is divided into several local maps, which are assumed to be independent of each other. The local areas are estimated by the local particle filter, whereas the global areas are com- bined by the global particle filter. The algorithm has been investigated by real field trials using a WiFi tablet on hand with an inertial sensor on foot. It could be concluded that the proposed method reduces the complexity of the positioning algorithm obviously, as well as offers a significant improvement in position accuracy compared to other conventional algorithms, allowing indoor positioning error below 1.2 m. 展开更多
关键词 Fusion algorithm Indoor positioning Inertial sensor Rao Blackwellized par ticle filter WiFi fingerprinting
原文传递
Multiple vehicle signals separation based on particle filtering in wireless sensor network 被引量:1
9
作者 Yah Kai Huang Qi Wei Jianming Liu Haitao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期440-446,共7页
A novel statistical method based on particle filtering is presented for multiple vehicle acoustic signals separation problem in wireless sensor network. The particle filtering method is able to deal with non-Gaussian ... A novel statistical method based on particle filtering is presented for multiple vehicle acoustic signals separation problem in wireless sensor network. The particle filtering method is able to deal with non-Gaussian and nonlinear models and non-stationary sources. Using some instantaneously mixed observations of several real-world vehicle acoustic signals, the proposed statistical method is compared with a conventional non-stationary Blind Source Separation algorithm and attractive simulation results are achieved. Moreover, considering the natural convenience to transmit particles between sensor nodes, the algorithm based on particle filtering is believed to have potential to enable the task of multiple vehicles recognition collaboratively performed by sensor nodes in distributed wireless sensor network. 展开更多
关键词 wireless sensor network Bayesian source separation particle filtering sequential Monte Carlo.
在线阅读 下载PDF
Particle filter for nonlinear systems with multi-sensor asynchronous random delays 被引量:4
10
作者 Junyi Zuo Xiaoping Zhong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第6期1064-1071,共8页
This paper is concerned with the recursive filtering problem for a class of discrete-time nonlinear stochastic systems in the presence of multi-sensor measurement delay. The delay occurs in a multi-step and asynchrono... This paper is concerned with the recursive filtering problem for a class of discrete-time nonlinear stochastic systems in the presence of multi-sensor measurement delay. The delay occurs in a multi-step and asynchronous manner, and the delay probability of each sensor is assumed to be known or unknown. Firstly, a new model is constructed to describe the measurement process, based on which a new particle filter is developed with the ability to fuse multi-sensor information in the case of known delay probability.In addition, an online delay probability estimation module is introduced in the particle filtering framework, which leads to another new filter that can be implemented without the prior knowledge of delay probability. More importantly, since there is no complex iterative operation, the resulting filter can be implemented recursively and is suitable for many real-time applications. Simulation results show the effectiveness of the proposed filters. 展开更多
关键词 particle filter nonlinear dynamic system state estima tion measurement delay multiple sensors
在线阅读 下载PDF
Fuzzy Based Assignment Method of Filtering Nodes in Wireless Sensor Networks
11
作者 Soo Young Moon Tae Ho Cho 《Wireless Sensor Network》 2012年第2期40-44,共5页
Wireless sensor networks (WSNs) are networked systems that are able to sense various events and report the events to a user to enable appropriate responses. One of security threats to a WSN is false data injection att... Wireless sensor networks (WSNs) are networked systems that are able to sense various events and report the events to a user to enable appropriate responses. One of security threats to a WSN is false data injection attacks in which an attacker steals some sensor nodes in the network and injects forged event messages into the network through the captured nodes. As a result, the intermediate nodes on the forwarding paths of the false event messages waste their limited energy. Additionally, the network cannot provide the user with correct information. There have been many studies on en-route detection of false event messages for WSNs. Yang et al. proposed the commutative cipher-based en-route filtering scheme (CCEF) which establishes a secure session between a sink node and a cluster head (CH) based on the commutative cipher. In CCEF, each intermediate node on the path between the sink node and the CH receives an event message and verifies the authenticity of the session based on a probability. Due to the probabilistic approach, it is hard to adapt to the change of false traffic ratio in the network and energy inefficiency may occur. We propose a filtering scheme which applies a deterministic approach to assign filtering nodes to a given session. The proposed method consumes less energy than that of CCEF without sacrificing security. 展开更多
关键词 WIRELESS sensor Network WSN False Data filterING SCHEME
暂未订购
基于测距信息的行人惯性定位方法
12
作者 刘宇 刘小玮 +3 位作者 陈燕苹 黄江峰 邹梦强 彭慧 《压电与声光》 北大核心 2025年第2期368-375,共8页
行人惯性导航系统在解算过程中随时间产生累积误差,使定位结果发散,而使用传统的广义似然比检测(GLRT)的零速修正算法不能抑制定位误差的发散,因此提出了以低成本、高精度检测为目标,设计一种基于对地的超声波测距传感器辅助GLRT零速修... 行人惯性导航系统在解算过程中随时间产生累积误差,使定位结果发散,而使用传统的广义似然比检测(GLRT)的零速修正算法不能抑制定位误差的发散,因此提出了以低成本、高精度检测为目标,设计一种基于对地的超声波测距传感器辅助GLRT零速修正的方法(简称:UA-GLRT)。以标准篮球场为实验场地,利用5次独立重复性实验,将所设计的UA-GLRT算法与GLRT算法的有效性进行对比,且通过位置误差和闭环误差对两种零速检测算法进行评估。实验结果表明,UA-GLRT算法相比于GLRT算法,其终点与起点之间的位置误差平均值由1.02 m降至0.43 m,闭环误差平均值由1.19%D降至0.5%D。 展开更多
关键词 惯性导航 零速更新 卡尔曼滤波 超声波传感器 足绑式惯性测量单元
在线阅读 下载PDF
基于扩展卡尔曼滤波的磁干扰解耦姿态估计算法 被引量:1
13
作者 乔美英 杜衡 +1 位作者 韩昊天 邱运强 《中国惯性技术学报》 北大核心 2025年第7期680-687,697,共9页
在利用磁惯性传感器组合解算姿态角的过程中,磁干扰对俯仰角和横滚角的估计精度产生显著影响。为此,提出一种基于扩展卡尔曼滤波的磁干扰解耦姿态估计算法(DMI-EKF)。首先,在乘性扩展卡尔曼滤波框架内,将四元数分解为估计四元数和误差... 在利用磁惯性传感器组合解算姿态角的过程中,磁干扰对俯仰角和横滚角的估计精度产生显著影响。为此,提出一种基于扩展卡尔曼滤波的磁干扰解耦姿态估计算法(DMI-EKF)。首先,在乘性扩展卡尔曼滤波框架内,将四元数分解为估计四元数和误差四元数,并将误差四元数作为状态量优化。接着,通过深入分析磁力计干扰信息对俯仰角和横滚角的影响机制,利用惯性传感器数据计算出的四元数提取水平磁矢量,结合加速度信息构建观测方程,实现磁干扰分离。动态实验表明:与传统EKF算法相比,所提算法的俯仰角和横滚角解算精度分别提升44.5%和50.2%,显著增强复杂环境下姿态估计的可靠性与准确性。 展开更多
关键词 四元数 扩展卡尔曼滤波 姿态估计 磁惯性传感器
在线阅读 下载PDF
Real-time localization estimator of mobile node in wireless sensor networks based on extended Kalman filter
14
作者 田金鹏 郑国莘 《Journal of Shanghai University(English Edition)》 CAS 2011年第2期128-131,共4页
Localization of the sensor nodes is a key supporting technology in wireless sensor networks (WSNs). In this paper, a real-time localization estimator of mobile node in WSNs based on extended Kalman filter (KF) is ... Localization of the sensor nodes is a key supporting technology in wireless sensor networks (WSNs). In this paper, a real-time localization estimator of mobile node in WSNs based on extended Kalman filter (KF) is proposed. Mobile node movement model is analyzed and online sequential iterative method is used to compute location result. The detailed steps of mobile sensor node self-localization adopting extended Kalman filter (EKF) is designed. The simulation results show that the accuracy of the localization estimator scheme designed is better than those of maximum likelihood estimation (MLE) and traditional KF algorithm. 展开更多
关键词 wireless sensor networks (WSNs) node location localization algorithm Kalman filter (KF)
在线阅读 下载PDF
毫米波雷达与视觉一体机化多目标协同感知与跟踪方法
15
作者 刘明 方勇军 +3 位作者 吴函 李乾坤 李冬冬 张朝阳 《无线电工程》 2025年第11期2131-2141,共11页
在交通监控领域,雷视一体机对目标协同感知与跟踪时,对目标定位和测速有较高的跟踪精度要求。因透视成像原理,距离越远的目标对应的图像区域越小,且视觉目标检测框抖动显著。当雷视标定存在适量误差、遮挡或视觉目标框抖动时,远处视觉... 在交通监控领域,雷视一体机对目标协同感知与跟踪时,对目标定位和测速有较高的跟踪精度要求。因透视成像原理,距离越远的目标对应的图像区域越小,且视觉目标检测框抖动显著。当雷视标定存在适量误差、遮挡或视觉目标框抖动时,远处视觉目标位置信息从图像坐标系映射到雷达坐标系时会存在较大的偏差,从而影响远处多目标跟踪的准确率。特别是多个传感器协同感知和跟踪目标时,进一步增加了目标跟踪的难度。针对上述问题,提出一种基于二阶段匹配和自适应卡尔曼滤波的多传感器多目标协同感知与跟踪方法。该方法在鸟瞰图(Bird’s-Eye View, BEV)平面关联前后帧数据之后,增加图像视角(Perspective View, PV)平面的匹配过程,通过提升关联准确率,有效解决跟踪(较远)目标跟踪精度低的问题。基于图像点与距离位置抖动关系模型,提出自适应多传感器多目标跟踪方法,利用图像点与距离关系模型更新卡尔曼滤波器参数,根据目标传感器数据源,自适应选择合适的观测矩阵和测量协方差矩阵,对目标位置速度参数进行估计,有效提高对目标空间位置和速度的实时预测精度,进而提高BEV平面的目标关联准确率。实验结果表明,所提方法相较于未添加二阶段匹配策略且仅使用普通卡尔曼滤波器时多目标跟踪准确率(Multiple Object Tracking Accuracy, MOTA)指标提升16.3%,显著提高了交通场景毫米波雷达和视觉一体机进行目标感知和跟踪的准确率。 展开更多
关键词 多目标跟踪 卡尔曼滤波 多传感器跟踪 自适应卡尔曼 路侧场景
在线阅读 下载PDF
多模型的运载火箭姿态控制系统故障检测与隔离 被引量:1
16
作者 谢昌霖 程玉强 +1 位作者 杨述明 宋立军 《国防科技大学学报》 北大核心 2025年第2期60-67,共8页
针对运载火箭姿态控制系统结构复杂、故障高发的问题,提出一种基于多模型的故障检测与隔离算法。建立运载火箭小偏差姿态动力学模型,设计系统的卡尔曼滤波器;结合专用观测器思想,利用多个不同结构的卡尔曼滤波器组生成对应残差,使得单... 针对运载火箭姿态控制系统结构复杂、故障高发的问题,提出一种基于多模型的故障检测与隔离算法。建立运载火箭小偏差姿态动力学模型,设计系统的卡尔曼滤波器;结合专用观测器思想,利用多个不同结构的卡尔曼滤波器组生成对应残差,使得单个残差仅对于传感器或执行机构的某一故障敏感,并通过理论推导了故障隔离策略,以实现运载火箭不同故障类型的检测和隔离。仿真分析表明,无故障时,残差结果均没有超出设定阈值,算法未出现报警;传感器或执行机构故障时,提出的隔离策略可以准确定位故障,从而验证了该算法的有效性。 展开更多
关键词 运载火箭 故障检测与隔离 卡尔曼滤波器 传感器 执行机构
在线阅读 下载PDF
基于激光和视觉SLAM的自主导航机器人系统设计
17
作者 邓开连 唐志伟 +3 位作者 刘浩 陈根龙 李晓丽 黄荣 《计算机工程与设计》 北大核心 2025年第6期1592-1600,共9页
针对导航机器人在复杂环境下可能会出现导航陷入局部最优解、建图环境映射不充分的问题,提出一种基于激光和视觉SLAM的多传感器融合机器人设计方案。机器人采用基于萤火虫算法优化的建图算法Gmapping和自适应蒙特卡罗定位算法实现二维... 针对导航机器人在复杂环境下可能会出现导航陷入局部最优解、建图环境映射不充分的问题,提出一种基于激光和视觉SLAM的多传感器融合机器人设计方案。机器人采用基于萤火虫算法优化的建图算法Gmapping和自适应蒙特卡罗定位算法实现二维同步定位与建图;采用多传感器融合算法融合激光雷达、深度相机、轮式里程计、IMU实现三维同步定位与建图;提出一种分层并行A*(hierarchical parallel A*,HPA*)全局路径规划算法。实验结果表明,融合方案实现了对复杂环境的建图、定位和路径规划,导航的RMSE和MAE比传统方案分别下降了27.27%和26.76%。 展开更多
关键词 ROS机器人操作系统 移动机器人 自主导航 同步定位与建图 路径规划 多传感器融合 粒子滤波
在线阅读 下载PDF
改进容积卡尔曼滤波的多目标多模态跟踪算法
18
作者 刘德儿 程健康 刘峻廷 《传感技术学报》 北大核心 2025年第7期1253-1261,共9页
高效安全的多目标跟踪技术是智能汽车行驶过程中的重要环节,然而目前许多方法忽略了误检目标可能对行驶安全性造成的潜在影响。为了减少误检目标的出现,提出了一种基于多传感器融合的双重关联机制,首先将轨迹与点云域和图像域中同时检... 高效安全的多目标跟踪技术是智能汽车行驶过程中的重要环节,然而目前许多方法忽略了误检目标可能对行驶安全性造成的潜在影响。为了减少误检目标的出现,提出了一种基于多传感器融合的双重关联机制,首先将轨迹与点云域和图像域中同时检测到的目标相关联并使用卡尔曼滤波进行更新,其次将未关联的轨迹与仅出现在点云域中的目标相关联,其中第一步未关联的目标定义为新轨迹,而第二步未关联的目标删除,所提方法可以极大地减少智能车辆行驶过程中误检目标的出现,从而显著提升行驶的安全性。同时,针对一些采用非线性卡尔曼滤波器的方法中在转弯过程中目标框偏移的问题,提出了一种改进的容积卡尔曼滤波器。该方法利用IMU数据来判断车辆的行驶状态,并自适应地调整估计误差矩阵,有效消除了车辆转弯对目标行驶状态估计的负面影响。在Kitti多目标跟踪数据集上进行测试的结果显示,所提算法有很高的优越性,HOTA(High Object Track Accuracy)达到78.00,MOTA(Multi-Object Track Accuracy)达到88.85,FPS达到200,在保持高精度的同时能很好满足实时性要求。 展开更多
关键词 自动驾驶 多目标跟踪 改进容积卡尔曼滤波 非线性运动模型 传感器融合
在线阅读 下载PDF
基于传感器网络的量化信息重建随机场的研究
19
作者 李勇燕 《河北科技工程职业技术大学学报》 2025年第1期115-122,共8页
为提升线传感器网络整个系统的性能,已有的研究是通过有限个数的传感器节点,并且在具有最佳部署位置的传感器节点中传输测量值给融合中心(Fusion center,FC)。使用一种让多比特传输变成二比特随机传输的方法,借由量化区间,将传感器接收... 为提升线传感器网络整个系统的性能,已有的研究是通过有限个数的传感器节点,并且在具有最佳部署位置的传感器节点中传输测量值给融合中心(Fusion center,FC)。使用一种让多比特传输变成二比特随机传输的方法,借由量化区间,将传感器接收到的信号做量化,使用新的过滤数据方法,经由反复试验不断迭代的方式,以达到传送能量减少的目的。最后由模拟结果分析来验证方法的有效性。 展开更多
关键词 传感器 融合中心 量化 过滤
在线阅读 下载PDF
基于多传感器融合的液压支架位姿精确感知方法 被引量:1
20
作者 马长青 李旭阳 +3 位作者 李峰 毛俊杰 魏祥宇 马肖杨 《工矿自动化》 北大核心 2025年第4期114-119,共6页
为精确感知扰动环境下液压支架位姿信息,提出了一种基于多传感器融合的液压支架位姿精确感知方法。首先,在液压支架顶梁、掩护梁、后连杆和底座4个构件上部署九轴姿态传感器,利用其陀螺仪、加速度计和磁力计分别解算出其所在构件的横滚... 为精确感知扰动环境下液压支架位姿信息,提出了一种基于多传感器融合的液压支架位姿精确感知方法。首先,在液压支架顶梁、掩护梁、后连杆和底座4个构件上部署九轴姿态传感器,利用其陀螺仪、加速度计和磁力计分别解算出其所在构件的横滚角、俯仰角和偏航角等位姿数据;然后,通过无迹卡尔曼滤波(UKF)算法和梯度下降(IGD)算法(IGD-UKF算法)对位姿数据进行滤波处理,降低扰动因素对位姿数据的干扰;最后,采用自适应加权融合算法对滤波处理后的液压支架顶梁和底座的偏航角和横滚角数据进行融合处理,消除外界振动、噪声等因素引起的液压支架顶梁和底座传感器数据误差。对施加扰动下液压支架顶梁低头和抬头、底座低头和抬头、液压支架左倾和右倾、液压支架左偏和右偏等工况下顶梁、掩护梁、后连杆和底座的位姿进行感知实验,结果表明:经IGD-UKF算法处理后的数据曲线波动趋于平缓,在抑制振荡、减小振幅上的效果明显;液压支架偏航角误差为0.001 8~0.025 1°,平均绝对误差为0.004 8°,横滚角误差为0.001 4~0.028 1°,平均绝对误差为0.004 7°,实现了扰动环境下液压支架位姿的精确感知。 展开更多
关键词 液压支架 支架位姿感知 多传感器融合 无迹卡尔曼滤波 梯度下降 自适应加权融合 九轴姿态传感器
在线阅读 下载PDF
上一页 1 2 131 下一页 到第
使用帮助 返回顶部