A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of...A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of the modal test data from a 'healthy' structure.The trained networks which are subsequently fed with vibration measurements from the same structurein different stages have the capability of recognizing the location and the content of structuraldamage and thereby can monitor the health of the structure. A modified back-propagation neuralnetwork is proposed to solve the two practical problems encountered by the traditionalback-propagation method, i.e., slow learning progress and convergence to a false local minimum.Various training algorithms, types of the input layer and numbers of the nodes in the input layerare considered. Numerical example results from a 5-degree-of-freedom spring-mass structure andanalyses on the experimental data of an actual 5-storey-steel-frame demonstrate thatneural-networks-based method is a robust procedure and a practical tool for the detection ofstructural damage, and that the modified back-propagation algorithm could improve the computationalefficiency as well as the accuracy of detection.展开更多
In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind...In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process.展开更多
To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is propos...To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools.展开更多
Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network...Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.展开更多
The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic ...The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.展开更多
In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes...In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere without using detailed physiological information or specific parameters of the plant.展开更多
To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast typhoon storm surge. However, typhoon surge is a complex nonlinear process that is difficult to forecast accurately. We appl...To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast typhoon storm surge. However, typhoon surge is a complex nonlinear process that is difficult to forecast accurately. We applied a principal component back-propagation neural network (PCBPNN) to predict the deviation in typhoon storm surge, in which data of the typhoon, upstream flood, and historical case studies were involved. With principal component analysis, 15 input factors were reduced to five principal components, and the application of the model was improved. Observation data from Huangpu Park in Shanghai, China were used to test the feasibility of the model. The results indicate that the model is capable of predicting a 12-hour warning before a typhoon surge.展开更多
Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and ...Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and amount of additive on the phase composition of final products were detailedly investigated.The results indicated that the onset formation temperature of ZrB2-SiC was reduced to 1 400℃by the present conditions,and oxide additive(including CoSO4·7H2O,Y2O3 and TiO2)was effective in enhancing the decomposition of raw ZrSiO4,therefore accelerating the synthesis of ZrB2-SiC.Moreover,microstructural observation showed that the as-prepared ZrB2 and SiC respectively had well-defined hexagonal columnar and fibrous morphology.Furthermore,the methodology of back-propagation artificial neural networks(BP-ANNs)was adopted to establish a model for predicting the reaction extent(e g,the content of ZrB2-SiC in final product)in terms of various processing conditions.The results predicted by the as-established BP-ANNs model matched well with that of testing experiment(with a mean square error in 10^(-3) degree),verifying good effectiveness of the proposed strategy.展开更多
This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of ve...This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of vehicle interior noises under operating conditions, including idle, constant speed, accelerating and braking, are acquired. The objective psychoacoustic parameters and subjective annoyance results are respectively used as the input and output of the BPNN-SQP model. With correlation analysis and significance test, some psychoacoustic parameters, such as loudness, A-weighted sound pressure level, roughness, articulation index and sharpness, are selected for modeling. The annoyance values of unknown noise samples estimated by the BPNN-SQP model are highly correlated with the subjective annoyances. Conclusion can be drawn that the proposed BPNN-SQP model has good generalization ability and can be applied in sound quality prediction of vehicle interior noise under multiple working conditions.展开更多
Materials data deep-excavation is very important in materials genome exploration.In order to carry out materials data deep-excavation in hot die steels and obtain the relationships among alloying elements,heat treatme...Materials data deep-excavation is very important in materials genome exploration.In order to carry out materials data deep-excavation in hot die steels and obtain the relationships among alloying elements,heat treatment parameters and materials properties,a 11×12×12×4 back-propagation(BP)artificial neural network(ANN)was set up.Alloying element contents,quenching and tempering temperatures were selected as input;hardness,tensile and yield strength were set as output parameters.The ANN shows a high fitting precision.The effects of alloying elements and heat treatment parameters on the properties of hot die steel were studied using this model.The results indicate that high temperature hardness increases with increasing alloying element content of C,Si,Mo,W,Ni,V and Cr to a maximum value and decreases with further increase in alloying element content.The ANN also predicts that the high temperature hardness will decrease with increasing quenching temperature,and possess an optimal value with increasing tempering temperature.This model provides a new tool for novel hot die steel design.展开更多
Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located...Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides.展开更多
Back-propagation neural network was applied to predict and optimize the synthetic technology of 2-chloro-4,6-dinitroresorcinol. A model was established based on back-propagation neural network using the experimental d...Back-propagation neural network was applied to predict and optimize the synthetic technology of 2-chloro-4,6-dinitroresorcinol. A model was established based on back-propagation neural network using the experimental data of homogeneous design as the training sample set and the technological parameters were optimized by it. The optimal technological parameters are as follows: the reaction time is 4h, the reaction temperature is 80℃, the molar ratio of NaOH to 4,6-dinitro-1,2,3-trichlorobenzene is 5.5:1, the molar ratio of methanol to 4,6-dinitro-1,2,3- trichlorobenzene is 11:1, and the molar ratio of water to 4,6-dinitro-1,2,3-trichlorobenzene is 70:1. Under the optimal conditions, three groups of experiments were performed and the average yield of 2-chloro-4,6-dinitroresorcinol is 96.64%, the absolute error of it with the predicted value is -1.07%.展开更多
Tartary buckwheat flour is esteemed for its high nutritional value and price,yet it is susceptible to adulteration in the market.Near-infrared spectroscopy(NIRS),commonly utilized for nutrient content detection,has re...Tartary buckwheat flour is esteemed for its high nutritional value and price,yet it is susceptible to adulteration in the market.Near-infrared spectroscopy(NIRS),commonly utilized for nutrient content detection,has recently been applied to authenticate food products This study collected near-infrared spectral data from adulterated samples of whole wheat flour,oat flour,soybean flour,barley flour,and sorghum flour in tartary buckwheat.Utilizing partial least squares regression(PLSR),support vector regression(SVR),and back-propagation neural network(BPNN),we predicted the adulterant content in tartary buckwheat.The results demonstrated that the BPNN algorithm,with an determination coefficient of prediction exceeding 0.97 and root mean square error of prediction below 0.02,surpassed the PLSR and SVR models in predicting adulterated crop flour,showcasing superior accuracy and generalization capabilities.This integration of NIRS and BPNN proved effective for the quantitative analysis of crop flours in tartary buckwheat,exhibiting robust predictive performance and rapid detection of adulteration in agricultural products.展开更多
This paper describes the application of principal component analysis (PCA) and artificial neural network (ANN) to predict the air pollutant index (API) within the seven selected Malaysian air monitoring stations in th...This paper describes the application of principal component analysis (PCA) and artificial neural network (ANN) to predict the air pollutant index (API) within the seven selected Malaysian air monitoring stations in the southern region of Peninsular Malaysia based on seven years database (2005-2011). Feed-forward ANN was used as a prediction method. The feed-forward ANN analysis demonstrated that the rotated principal component scores (RPCs) were the best input parameters to predict API. From the 4 RPCs, only 10 (CO, O3, PM10, NO2, CH4, NmHC, THC, wind direction, humidity and ambient temp) out of 12 prediction variables were the most significant parameters to predict API. The results proved that the ANN method can be applied successfully as tools for decision making and problem solving for better atmospheric management.展开更多
In the oil industry, the productivity of oil wells depends on the performance of the sub-surface equipment system. These systems often have problems stemming from sand, corrosion, internal pressure variation, or other...In the oil industry, the productivity of oil wells depends on the performance of the sub-surface equipment system. These systems often have problems stemming from sand, corrosion, internal pressure variation, or other factors. In order to ensure high equipment performance and avoid high-cost losses, it is essential to identify the source of possible failures in the early stage. However, this requires additional maintenance fees and human power. Moreover, the losses caused by these problems may lead to interruptions in the whole production process. In order to minimize maintenance costs, in this paper, we introduce a model for predicting equipment failure based on processing the historical data collected from multiple sensors. The state of the system is predicted by a Feed-Forward Neural Network (FFNN) with an SGD and Backpropagation algorithm is applied in the training process. Our model’s primary goal is to identify potential malfunctions at an early stage to ensure the production process’ continued high performance. We also evaluated the effectiveness of our model against other solutions currently available in the industry. The results of our study show that the FFNN can attain an accuracy score of 97% on the given dataset, which exceeds the performance of the models provided.展开更多
In the face of the large number of people with motor function disabilities,rehabilitation robots have attracted more and more attention.In order to promote the active participation of the user's motion intention i...In the face of the large number of people with motor function disabilities,rehabilitation robots have attracted more and more attention.In order to promote the active participation of the user's motion intention in the assisted rehabilitation process of the robots,it is crucial to establish the human motion prediction model.In this paper,a hybrid prediction model built on long short-term memory(LSTM)neural network using surface electromyography(sEMG)is applied to predict the elbow motion of the users in advance.This model includes two sub-models:a back-propagation neural network and an LSTM network.The former extracts a preliminary prediction of the elbow motion,and the latter corrects this prediction to increase accuracy.The proposed model takes time series data as input,which includes the sEMG signals measured by electrodes and the continuous angles from inertial measurement units.The offline and online tests were carried out to verify the established hybrid model.Finally,average root mean square errors of 3.52°and 4.18°were reached respectively for offline and online tests,and the correlation coefficients for both were above 0.98.展开更多
The back propagation (BP)-based artificial neural nets (ANN) can identify complicated relationships among dissolved gas contents in transformer oil and corresponding fault types, using the highly nonlinear mapping nat...The back propagation (BP)-based artificial neural nets (ANN) can identify complicated relationships among dissolved gas contents in transformer oil and corresponding fault types, using the highly nonlinear mapping nature of the neural nets. An efficient BP-ALM (BP with Adaptive Learning Rate and Momentum coefficient) algorithm is proposed to reduce the training time and avoid being trapped into local minima, where the learning rate and the momentum coefficient are altered at iterations. We developed a system of transformer fault diagnosis based on Dissolved Gases Analysis (DGA) with a BP-ALM algorithm. Training patterns were selected from the results of a Refined Three-Ratio method (RTR). Test results show that the system has a better ability of quick learning and global convergence than other methods and a superior performance in fault diagnosis compared to convectional BP-based neural networks and RTR.展开更多
Neutron and gamma ray pulse signal discrimination technology is an essential part of many modern scientific fields,such as biology,geology,radiation imaging,and nuclear medicine.Neutrons are always accompanied by gamm...Neutron and gamma ray pulse signal discrimination technology is an essential part of many modern scientific fields,such as biology,geology,radiation imaging,and nuclear medicine.Neutrons are always accompanied by gamma rays due to their unique penetration characteristic;thus,the development of n-γdiscrimination methods is especially crucial.In the present study,a novel n-γdiscrimination method is proposed that implements a pulse-coupled neural network for n-γdiscrimination.In addition,experiments were conducted on the pulse signals detected by an EJ299-33 plastic scintillator,which is especially suitable for n-γdiscrimination.The proposed method was compared to three other discrimination methods,including the back-propagation neural network(BPNN),the fractal spectrum method,and the charge comparison method,with respect to two aspects:(i)the figure of merit(FoM)and(ii)discrimination time.The experimental results showed that the pulse-coupled neural network(PCNN)has a 26.49%improvement in FoM-value compared to the charge comparison method,a72.80%improvement compared to the BPNN,a 66.24%improvement compared to the fractal spectrum method,and the second-fastest discrimination time of 2.22 s.In conclusion,the PCNN treats the input signal as a whole for analysis and processing,imparting it with an excellent antinoise effect and the ability to process the dynamic information contained in a pulse signal.展开更多
An effective approach for describing complicated water quality processes is very important for river water quality management.We built two artificial neural network(ANN)models,a feed-forward back-propagation(BP)model ...An effective approach for describing complicated water quality processes is very important for river water quality management.We built two artificial neural network(ANN)models,a feed-forward back-propagation(BP)model and a radial basis function(RBF)model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P.R.China.Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds.Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior;their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement.It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River.Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error.More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models.展开更多
A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm...A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm is constructed. Month, latitude, altitude and bending angle are chosen as the input vectors and water vapor pressure as the output vector. There are 130 groups of occultation measurements from June to November 2002 in the dataset. Seventy pairs of bending angles and water vapor pressure profiles are used to train the ANN, and the sixty remaining pairs of profiles are applied to the validation of the retrieval. By comparing the retrieved profiles with the corresponding ones from the Information System and Data Center of the Challenging Mini-Satellite Payload for Geoscientific Research and Application (CHAMP-ISDC), it can be concluded that the ANN is relatively convenient and accurate. Its results can be provided as the first guess for the iterative methods or the non-linear optimal estimation inverse method.展开更多
基金the National Natural Science Foundation of China (No.59908003)the Natural Science Foundation of Hubei Province (No.99J035)
文摘A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of the modal test data from a 'healthy' structure.The trained networks which are subsequently fed with vibration measurements from the same structurein different stages have the capability of recognizing the location and the content of structuraldamage and thereby can monitor the health of the structure. A modified back-propagation neuralnetwork is proposed to solve the two practical problems encountered by the traditionalback-propagation method, i.e., slow learning progress and convergence to a false local minimum.Various training algorithms, types of the input layer and numbers of the nodes in the input layerare considered. Numerical example results from a 5-degree-of-freedom spring-mass structure andanalyses on the experimental data of an actual 5-storey-steel-frame demonstrate thatneural-networks-based method is a robust procedure and a practical tool for the detection ofstructural damage, and that the modified back-propagation algorithm could improve the computationalefficiency as well as the accuracy of detection.
基金Project(50734007) supported by the National Natural Science Foundation of China
文摘In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process.
基金The National Natural Science Foundation of China(No.51465035)the Natural Science Foundation of Gansu,China(No.20JR5R-A466)。
文摘To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools.
基金supported by the National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disasters [grant number 2018YFC1506006]the National Natural Science Foundation of China [grant numbers 41805054 and U20A2097]。
文摘Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.
基金the Research of New Intelligent Integrated Transport Information System,Technical Plan Project of Binhai New District,Tianjin(No.2015XJR21017)
文摘The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.
基金Project (No. 40328001) supported by the National Science Fund forOutstanding Youth Overseas China
文摘In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere without using detailed physiological information or specific parameters of the plant.
基金Supported by National Marine Public Scientific Research Fund of China(No. 200905010)the Talent Training Fund Project for Basic Sciences of the National Natural Science Foundation of China (No. J0730534)+2 种基金the Fundamental Research Funds for the Central Universitiesthe Open Research Funding Program of KLGIS (No. KLGIS2011A12)the Open Fund from Key Laboratory of Marine Management Technique of State Oceanic Administration (No. 201112)
文摘To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast typhoon storm surge. However, typhoon surge is a complex nonlinear process that is difficult to forecast accurately. We applied a principal component back-propagation neural network (PCBPNN) to predict the deviation in typhoon storm surge, in which data of the typhoon, upstream flood, and historical case studies were involved. With principal component analysis, 15 input factors were reduced to five principal components, and the application of the model was improved. Observation data from Huangpu Park in Shanghai, China were used to test the feasibility of the model. The results indicate that the model is capable of predicting a 12-hour warning before a typhoon surge.
基金Funded by National Natural Science Foundation of China(Nos.51502212,51672194 and 51472184)Hubei Province Natural Science Foundation of China(No.2018CFB760)+1 种基金Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province(No.T201602)Key Program of Natural Science Foundation of Hubei Province(No.2017CFA004)
文摘Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and amount of additive on the phase composition of final products were detailedly investigated.The results indicated that the onset formation temperature of ZrB2-SiC was reduced to 1 400℃by the present conditions,and oxide additive(including CoSO4·7H2O,Y2O3 and TiO2)was effective in enhancing the decomposition of raw ZrSiO4,therefore accelerating the synthesis of ZrB2-SiC.Moreover,microstructural observation showed that the as-prepared ZrB2 and SiC respectively had well-defined hexagonal columnar and fibrous morphology.Furthermore,the methodology of back-propagation artificial neural networks(BP-ANNs)was adopted to establish a model for predicting the reaction extent(e g,the content of ZrB2-SiC in final product)in terms of various processing conditions.The results predicted by the as-established BP-ANNs model matched well with that of testing experiment(with a mean square error in 10^(-3) degree),verifying good effectiveness of the proposed strategy.
文摘This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of vehicle interior noises under operating conditions, including idle, constant speed, accelerating and braking, are acquired. The objective psychoacoustic parameters and subjective annoyance results are respectively used as the input and output of the BPNN-SQP model. With correlation analysis and significance test, some psychoacoustic parameters, such as loudness, A-weighted sound pressure level, roughness, articulation index and sharpness, are selected for modeling. The annoyance values of unknown noise samples estimated by the BPNN-SQP model are highly correlated with the subjective annoyances. Conclusion can be drawn that the proposed BPNN-SQP model has good generalization ability and can be applied in sound quality prediction of vehicle interior noise under multiple working conditions.
文摘Materials data deep-excavation is very important in materials genome exploration.In order to carry out materials data deep-excavation in hot die steels and obtain the relationships among alloying elements,heat treatment parameters and materials properties,a 11×12×12×4 back-propagation(BP)artificial neural network(ANN)was set up.Alloying element contents,quenching and tempering temperatures were selected as input;hardness,tensile and yield strength were set as output parameters.The ANN shows a high fitting precision.The effects of alloying elements and heat treatment parameters on the properties of hot die steel were studied using this model.The results indicate that high temperature hardness increases with increasing alloying element content of C,Si,Mo,W,Ni,V and Cr to a maximum value and decreases with further increase in alloying element content.The ANN also predicts that the high temperature hardness will decrease with increasing quenching temperature,and possess an optimal value with increasing tempering temperature.This model provides a new tool for novel hot die steel design.
基金supported by the "Light of West China" Program of Chinese Academy of Sciences (Grant No.Y6R2250250)the National Basic Research Program of China (973 Program, Grant No.2013CB733201)+2 种基金the One-Hundred Talents Program of Chinese Academy of Sciences (LijunSu)the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No.QYZDB-SSW-DQC010)the Youth Fund of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (Grant No. Y6K2110110)
文摘Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides.
文摘Back-propagation neural network was applied to predict and optimize the synthetic technology of 2-chloro-4,6-dinitroresorcinol. A model was established based on back-propagation neural network using the experimental data of homogeneous design as the training sample set and the technological parameters were optimized by it. The optimal technological parameters are as follows: the reaction time is 4h, the reaction temperature is 80℃, the molar ratio of NaOH to 4,6-dinitro-1,2,3-trichlorobenzene is 5.5:1, the molar ratio of methanol to 4,6-dinitro-1,2,3- trichlorobenzene is 11:1, and the molar ratio of water to 4,6-dinitro-1,2,3-trichlorobenzene is 70:1. Under the optimal conditions, three groups of experiments were performed and the average yield of 2-chloro-4,6-dinitroresorcinol is 96.64%, the absolute error of it with the predicted value is -1.07%.
基金supported by the Talents Start-Up Project in Jiangsu University of Science and Technology(1182932009).
文摘Tartary buckwheat flour is esteemed for its high nutritional value and price,yet it is susceptible to adulteration in the market.Near-infrared spectroscopy(NIRS),commonly utilized for nutrient content detection,has recently been applied to authenticate food products This study collected near-infrared spectral data from adulterated samples of whole wheat flour,oat flour,soybean flour,barley flour,and sorghum flour in tartary buckwheat.Utilizing partial least squares regression(PLSR),support vector regression(SVR),and back-propagation neural network(BPNN),we predicted the adulterant content in tartary buckwheat.The results demonstrated that the BPNN algorithm,with an determination coefficient of prediction exceeding 0.97 and root mean square error of prediction below 0.02,surpassed the PLSR and SVR models in predicting adulterated crop flour,showcasing superior accuracy and generalization capabilities.This integration of NIRS and BPNN proved effective for the quantitative analysis of crop flours in tartary buckwheat,exhibiting robust predictive performance and rapid detection of adulteration in agricultural products.
文摘This paper describes the application of principal component analysis (PCA) and artificial neural network (ANN) to predict the air pollutant index (API) within the seven selected Malaysian air monitoring stations in the southern region of Peninsular Malaysia based on seven years database (2005-2011). Feed-forward ANN was used as a prediction method. The feed-forward ANN analysis demonstrated that the rotated principal component scores (RPCs) were the best input parameters to predict API. From the 4 RPCs, only 10 (CO, O3, PM10, NO2, CH4, NmHC, THC, wind direction, humidity and ambient temp) out of 12 prediction variables were the most significant parameters to predict API. The results proved that the ANN method can be applied successfully as tools for decision making and problem solving for better atmospheric management.
文摘In the oil industry, the productivity of oil wells depends on the performance of the sub-surface equipment system. These systems often have problems stemming from sand, corrosion, internal pressure variation, or other factors. In order to ensure high equipment performance and avoid high-cost losses, it is essential to identify the source of possible failures in the early stage. However, this requires additional maintenance fees and human power. Moreover, the losses caused by these problems may lead to interruptions in the whole production process. In order to minimize maintenance costs, in this paper, we introduce a model for predicting equipment failure based on processing the historical data collected from multiple sensors. The state of the system is predicted by a Feed-Forward Neural Network (FFNN) with an SGD and Backpropagation algorithm is applied in the training process. Our model’s primary goal is to identify potential malfunctions at an early stage to ensure the production process’ continued high performance. We also evaluated the effectiveness of our model against other solutions currently available in the industry. The results of our study show that the FFNN can attain an accuracy score of 97% on the given dataset, which exceeds the performance of the models provided.
基金the National Key Research and Development Program of China(No.2020YFC2007500)the Science and Technology Commission of Shanghai Municipality(No.20DZ2220400)。
文摘In the face of the large number of people with motor function disabilities,rehabilitation robots have attracted more and more attention.In order to promote the active participation of the user's motion intention in the assisted rehabilitation process of the robots,it is crucial to establish the human motion prediction model.In this paper,a hybrid prediction model built on long short-term memory(LSTM)neural network using surface electromyography(sEMG)is applied to predict the elbow motion of the users in advance.This model includes two sub-models:a back-propagation neural network and an LSTM network.The former extracts a preliminary prediction of the elbow motion,and the latter corrects this prediction to increase accuracy.The proposed model takes time series data as input,which includes the sEMG signals measured by electrodes and the continuous angles from inertial measurement units.The offline and online tests were carried out to verify the established hybrid model.Finally,average root mean square errors of 3.52°and 4.18°were reached respectively for offline and online tests,and the correlation coefficients for both were above 0.98.
文摘The back propagation (BP)-based artificial neural nets (ANN) can identify complicated relationships among dissolved gas contents in transformer oil and corresponding fault types, using the highly nonlinear mapping nature of the neural nets. An efficient BP-ALM (BP with Adaptive Learning Rate and Momentum coefficient) algorithm is proposed to reduce the training time and avoid being trapped into local minima, where the learning rate and the momentum coefficient are altered at iterations. We developed a system of transformer fault diagnosis based on Dissolved Gases Analysis (DGA) with a BP-ALM algorithm. Training patterns were selected from the results of a Refined Three-Ratio method (RTR). Test results show that the system has a better ability of quick learning and global convergence than other methods and a superior performance in fault diagnosis compared to convectional BP-based neural networks and RTR.
基金supported by the Key Science and Technology projects of Leshan(No.19SZD117)the Sichuan Science and Technology Program(No.2021JDRC0108)。
文摘Neutron and gamma ray pulse signal discrimination technology is an essential part of many modern scientific fields,such as biology,geology,radiation imaging,and nuclear medicine.Neutrons are always accompanied by gamma rays due to their unique penetration characteristic;thus,the development of n-γdiscrimination methods is especially crucial.In the present study,a novel n-γdiscrimination method is proposed that implements a pulse-coupled neural network for n-γdiscrimination.In addition,experiments were conducted on the pulse signals detected by an EJ299-33 plastic scintillator,which is especially suitable for n-γdiscrimination.The proposed method was compared to three other discrimination methods,including the back-propagation neural network(BPNN),the fractal spectrum method,and the charge comparison method,with respect to two aspects:(i)the figure of merit(FoM)and(ii)discrimination time.The experimental results showed that the pulse-coupled neural network(PCNN)has a 26.49%improvement in FoM-value compared to the charge comparison method,a72.80%improvement compared to the BPNN,a 66.24%improvement compared to the fractal spectrum method,and the second-fastest discrimination time of 2.22 s.In conclusion,the PCNN treats the input signal as a whole for analysis and processing,imparting it with an excellent antinoise effect and the ability to process the dynamic information contained in a pulse signal.
基金Funded by the Natural Science Foundation of China(No.59778021)
文摘An effective approach for describing complicated water quality processes is very important for river water quality management.We built two artificial neural network(ANN)models,a feed-forward back-propagation(BP)model and a radial basis function(RBF)model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P.R.China.Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds.Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior;their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement.It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River.Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error.More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models.
基金The authors wish to thank the anonymous reviewers who gave us useful suggestions,and we also thank CHAMP—ISDC for providing the occultation data This work was supported by the National Science Foundation of China under No.40333034 an d the Chinese Academy of Science under No.KZCX3-S、v_217.
文摘A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm is constructed. Month, latitude, altitude and bending angle are chosen as the input vectors and water vapor pressure as the output vector. There are 130 groups of occultation measurements from June to November 2002 in the dataset. Seventy pairs of bending angles and water vapor pressure profiles are used to train the ANN, and the sixty remaining pairs of profiles are applied to the validation of the retrieval. By comparing the retrieved profiles with the corresponding ones from the Information System and Data Center of the Challenging Mini-Satellite Payload for Geoscientific Research and Application (CHAMP-ISDC), it can be concluded that the ANN is relatively convenient and accurate. Its results can be provided as the first guess for the iterative methods or the non-linear optimal estimation inverse method.