A novel numerical algorithm for fault location estimation of single-phase-to-earth fault on EHV transmission lines is presented in this paper. The method is based on one-terminal voltage and current data and is used i...A novel numerical algorithm for fault location estimation of single-phase-to-earth fault on EHV transmission lines is presented in this paper. The method is based on one-terminal voltage and current data and is used in a procedure that provides the automatic determination of faulted types and phases, rather than requires engineer to specify them. The loop and nodal equations comparing the faulted phase to non-fauhed phases of multi-parallel lines are introduced in the fauh location estimation models, in which source impedance of remote end is not involved. Precise algorithms of locating fault are derived. The effect of load flow and fauh resistance, on the location accuracy, are effectively eliminated. The algorithms are demonstrated by digital computer simulations.展开更多
A novel numerical algorithm of fault location estimation for four-line fault without ground connection involving phases from each of the parallel lines is presented in this paper. It is based on one-terminal voltage a...A novel numerical algorithm of fault location estimation for four-line fault without ground connection involving phases from each of the parallel lines is presented in this paper. It is based on one-terminal voltage and current data. The loop and nodal equations comparing faulted phase to non-faulted phase of two-parallel lines are introduced in the fault location estimation model, in which the source impedance of a remote end is not involved. The effects of load flow and fault resistance on the accuracy of fault location are effectively eliminated, therefore a precise algorithm of locating fault is derived. The algorithm is demonstrated by digital computer simulations.展开更多
An accurate numerical algorithm for three-line fault involving different phases from each of two-parallel lines is presented. It is based on one-terminal voltage and current data. The loop and nodel equations comparin...An accurate numerical algorithm for three-line fault involving different phases from each of two-parallel lines is presented. It is based on one-terminal voltage and current data. The loop and nodel equations comparing faulted phase to non-faulted phase of two-parallel lines are introduced in the fault location estimation modal, in which the faulted impedance of remote end is not involved. The effect of load flow and fault resistance on the accuracy of fault location are effectively eliminated, therefore an accurate algorithm of locating fault is derived. The algorithm is demonstrated by digital computer simulations and the results show that errors in locating fault are less than 1%.展开更多
This paper presents fault detection,classification,and location for a PV-Wind-based DC ring microgrid in the MATLAB/SIMULINK platform.Initially,DC fault signals are collected from local measurements to examine the out...This paper presents fault detection,classification,and location for a PV-Wind-based DC ring microgrid in the MATLAB/SIMULINK platform.Initially,DC fault signals are collected from local measurements to examine the outcomes of the proposed system.Accurate detection is carried out for all faults,(i.e.,cable and arc faults)under two cases of fault resistance and distance variation,with the assistance of primary and secondary detection techniques,i.e.second-order differential current derivatived2I3 dt2and sliding mode window-based Pearson’s correlation coefficient.For fault classification a novel approach using modified multifractal detrended fluctuation analysis(M-MFDFA)is presented.The advantage of this method is its ability to estimate the local trends of any order polynomial function with the help of polynomial and trigonometric functions.It also doesn’t require any signal processing algorithm for decomposition resulting and this results in a reduction of computational burden.The detected fault signals are directly passed through the M-MFDFA classifier for fault type classification.To enhance the performance of the proposed classifier,statistical data is obtained from the M-MFDFA feature vectors,and the obtained data is plotted in 2-D and 3-D scatter plots for better visualization.Accurate fault distance estimation is carried out for all types of faults in the DC ring bus microgrid with the assistance of recursive least squares with a forgetting factor(FF-RLS).To verify the performance and superiority of the proposed classifier,it is compared with existing classifiers in terms of features,classification accuracy(CA),and relative computational time(RCT).展开更多
基金Sponsored by the Key Science Fund of Tianjin (Grant No. 023801211)
文摘A novel numerical algorithm for fault location estimation of single-phase-to-earth fault on EHV transmission lines is presented in this paper. The method is based on one-terminal voltage and current data and is used in a procedure that provides the automatic determination of faulted types and phases, rather than requires engineer to specify them. The loop and nodal equations comparing the faulted phase to non-fauhed phases of multi-parallel lines are introduced in the fauh location estimation models, in which source impedance of remote end is not involved. Precise algorithms of locating fault are derived. The effect of load flow and fauh resistance, on the location accuracy, are effectively eliminated. The algorithms are demonstrated by digital computer simulations.
文摘A novel numerical algorithm of fault location estimation for four-line fault without ground connection involving phases from each of the parallel lines is presented in this paper. It is based on one-terminal voltage and current data. The loop and nodal equations comparing faulted phase to non-faulted phase of two-parallel lines are introduced in the fault location estimation model, in which the source impedance of a remote end is not involved. The effects of load flow and fault resistance on the accuracy of fault location are effectively eliminated, therefore a precise algorithm of locating fault is derived. The algorithm is demonstrated by digital computer simulations.
文摘An accurate numerical algorithm for three-line fault involving different phases from each of two-parallel lines is presented. It is based on one-terminal voltage and current data. The loop and nodel equations comparing faulted phase to non-faulted phase of two-parallel lines are introduced in the fault location estimation modal, in which the faulted impedance of remote end is not involved. The effect of load flow and fault resistance on the accuracy of fault location are effectively eliminated, therefore an accurate algorithm of locating fault is derived. The algorithm is demonstrated by digital computer simulations and the results show that errors in locating fault are less than 1%.
文摘This paper presents fault detection,classification,and location for a PV-Wind-based DC ring microgrid in the MATLAB/SIMULINK platform.Initially,DC fault signals are collected from local measurements to examine the outcomes of the proposed system.Accurate detection is carried out for all faults,(i.e.,cable and arc faults)under two cases of fault resistance and distance variation,with the assistance of primary and secondary detection techniques,i.e.second-order differential current derivatived2I3 dt2and sliding mode window-based Pearson’s correlation coefficient.For fault classification a novel approach using modified multifractal detrended fluctuation analysis(M-MFDFA)is presented.The advantage of this method is its ability to estimate the local trends of any order polynomial function with the help of polynomial and trigonometric functions.It also doesn’t require any signal processing algorithm for decomposition resulting and this results in a reduction of computational burden.The detected fault signals are directly passed through the M-MFDFA classifier for fault type classification.To enhance the performance of the proposed classifier,statistical data is obtained from the M-MFDFA feature vectors,and the obtained data is plotted in 2-D and 3-D scatter plots for better visualization.Accurate fault distance estimation is carried out for all types of faults in the DC ring bus microgrid with the assistance of recursive least squares with a forgetting factor(FF-RLS).To verify the performance and superiority of the proposed classifier,it is compared with existing classifiers in terms of features,classification accuracy(CA),and relative computational time(RCT).