期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Experimental Study on Failure Process and Hydrological Response of Granite Residual Soil Slope with Different Fissure Positions in Southern China
1
作者 Liping Liao Minghao Gong +3 位作者 Zhiquan Yang Yingzi Xu Wenzhi Wei Yao Wei 《Journal of Earth Science》 2025年第5期1963-1976,共14页
Granite residual soil slope is often destroyed,which poses great threats to Rong County in southeastern Guangxi,China.Heavy rainfall and fissures are the major triggering and internal factors.The fissure that controls... Granite residual soil slope is often destroyed,which poses great threats to Rong County in southeastern Guangxi,China.Heavy rainfall and fissures are the major triggering and internal factors.The fissure that controls the slope stability and the associated failure mechanisms remain unclear.The purpose of this study was to identify the controlling fissures through field investigation,elucidate the effect of its position,and analyze the failure process and hydrological response of residual soil slope through artificial flume model tests.The results comprised five aspects.(1)Surface weathering and unloading fissures could affect slope stability.(2)The failure processes with different fissure positions exhibited inconsistent characteristics.(3)The volume moisture content(VMC)had the most direct response at the fissure tip.The corresponding infiltration rate was the highest.The response time of pore water pressure(PWP)was longer than that of VMC.Fluctuations in PWP were associated with VMC and changes in the soil microstructure due to local deformation.(4)Slope failure was accompanied by serious soil erosion.This could be attributed to the infiltration direction and the interaction between soil and water.(5)Fissured soil slopes experienced five similar failure processes:sheet erosion and partial failure of the slope foot,occurrence of preferential flow and enlargement of the sliding area,creep deformation and tension fissure emergence,block sliding and gully erosion,and flow-slip. 展开更多
关键词 failure process fissure position granite residual soil slope hydrological response RAINFALL engineering geology
原文传递
Pressure stimulated current in progressive failure process of combined coal-rock under uniaxial compression:Response and mechanism 被引量:2
2
作者 Tiancheng Shan Zhonghui Li +7 位作者 Xin Zhang Haishan Jia Xiaoran Wang Enyuan Wang Yue Niu Dong Chen Weichen Sun Dongming Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期227-243,共17页
Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in undergroun... Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment. 展开更多
关键词 Combined coal-rock Pressure stimulated current Progressive failure process MECHANISM Flow model
在线阅读 下载PDF
Reliability assessment considering dependent competing failure process and shifting-threshold 被引量:11
3
作者 苏春 瞿众洲 郝会兵 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期52-56,共5页
The reliability assessment problem for products subject to degradation and random shocks is investigated. Two kinds of probabilistic models are constructed, in which the dependent competing failure process is consider... The reliability assessment problem for products subject to degradation and random shocks is investigated. Two kinds of probabilistic models are constructed, in which the dependent competing failure process is considered. First, based on the assumption of cumulative shock, the probabilistic models for hard failure and soft failure are built respectively. On this basis, the dependent competing failure model involving degradation and shock processes is established. Furthermore, the situation of the shifting-threshold is also considered, in which the hard failure threshold value decreases to a lower level after the arrival of a certain number of shocks. A case study of fatigue crack growth is given to illustrate the proposed models. Numerical results show that shock has a significant effect on the failure process; meanwhile, the effect will be magnified when the value of the hard threshold shifts to a lower level. 展开更多
关键词 degradation hard failure dependent competing failure process cumulative shock model shifting-threshold
在线阅读 下载PDF
Failure Process and Energy Transmission for Single-Layer Reticulated Domes Under Impact Loads 被引量:4
4
作者 王多智 支旭东 +1 位作者 范峰 沈世钊 《Transactions of Tianjin University》 EI CAS 2008年第B10期551-557,共7页
No failure, moderate failure, severe failure, and slight failure are the four failure modes generalized observed in the dynamic response of the single-layer reticulated dome under vertical impact load on apex. TE (the... No failure, moderate failure, severe failure, and slight failure are the four failure modes generalized observed in the dynamic response of the single-layer reticulated dome under vertical impact load on apex. TE (the time that the end of impact force) and TF (the time that members are broken) are two key times in the failure process. Characteristics of dynamic responses at the two key times are shown in order to make the failure mechanism clear. Then three steps of energy transfer are summarized, i.e. energy applying, energy loss and energy transfer, energy consump-tion. Based on the three steps, energy transfer process for the failure reticulated dome under once impact is introduced. Energy transmissibility and local loss ratio are put forward firstly to obtain EL F(the energy left in the main reticulated dome) from the initial kinetic energy of impactor. More-over, the distribution of failure modes is decided by EL F which leads to the maximum dynamic re-sponse of the reticulated dome, but not by the initial impact kinetic energy of impactor. 展开更多
关键词 reticulated domes impact loads ENERGY failure process energy transmissibility local loss ratio
在线阅读 下载PDF
Progressive failure processes of reinforced slopes based on general particle dynamic method 被引量:4
5
作者 赵毅 周小平 钱七虎 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4049-4055,共7页
In order to resolve grid distortions in finite element method(FEM), the meshless numerical method which is called general particle dynamics(GPD) was presented to simulate the large deformation and failure of geomateri... In order to resolve grid distortions in finite element method(FEM), the meshless numerical method which is called general particle dynamics(GPD) was presented to simulate the large deformation and failure of geomaterials. The Mohr-Coulomb strength criterion was implemented into the code to describe the elasto-brittle behaviours of geomaterials while the solid-structure(reinforcing pile) interaction was simulated as an elasto-brittle material. The Weibull statistical approach was applied to describing the heterogeneity of geomaterials. As an application of general particle dynamics to slopes, the interaction between the slopes and the reinforcing pile was modelled. The contact between the geomaterials and the reinforcing pile was modelled by using the coupling condition associated with a Lennard-Jones repulsive force. The safety factor, corresponding to the minimum shear strength reduction factor "R", was obtained, and the slip surface of the slope was determined. The numerical results are in good agreement with those obtained from limit equilibrium method and finite element method. It indicates that the proposed geomaterial-structure interaction algorithm works well in the GPD framework. 展开更多
关键词 general particle dynamic algorithm(GPD) slope stability progressive failure process geomaterial-structure interaction
在线阅读 下载PDF
Numerical analysis of tunnel reinforcing influences on failure process of surrounding rock under explosive stress waves 被引量:3
6
作者 左宇军 唐春安 +2 位作者 朱万成 李地元 李术才 《Journal of Central South University of Technology》 2008年第5期632-638,共7页
Based on mesoscopic damage mechanics, numerical code RFPA2D (dynamic edition) was developed to analyze the influence of tunnel reinforcing on failure process of surrounding rock under explosive stress waves. The res... Based on mesoscopic damage mechanics, numerical code RFPA2D (dynamic edition) was developed to analyze the influence of tunnel reinforcing on failure process of surrounding rock under explosive stress waves. The results show that the propagation phenomenon of stress wave in the surrounding rock of tunnel and the failure process of surrounding rock under explosive stress waves are reproduced realistically by using numerical code RFPA2O; from the failure process of surrounding rock, the place at which surrounding rock fractures is transferred because of tunnel reinforcing, and the rockfall and collapse caused by failure of surrounding rock are restrained by tunnel reinforcing; furthermore, the absolute values of peak values of major principal stress, and the minimal principal stress and shear stress at center point of tunnel roof are reduced because of tunnel reinforcing, and the displacement at center point of runnel roof is reduced as well, consequently the stability of tunnel increases. 展开更多
关键词 tunnel reinforcing numerical simulation explosive stress wave failure process INHOMOGENEITY
在线阅读 下载PDF
Mechanical response features and failure process of soft surrounding rock around deeply buried three-centered arch tunnel 被引量:1
7
作者 赵瑜 张志刚 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4064-4073,共10页
Due to the extreme complexity of mechanical response of soft surrounding rock(SR) around a tunnel under high geostatic stress conditions, the integration of physical and numerical modeling techniques was adopted. Base... Due to the extreme complexity of mechanical response of soft surrounding rock(SR) around a tunnel under high geostatic stress conditions, the integration of physical and numerical modeling techniques was adopted. Based on the similarity theory, new composite-similar material was developed, which showed good agreement with the similarity relation and successfully simulated physico-mechanical properties(PMP) of deep buried soft rock. And the 800 mm×800 mm×200 mm physical model(PM) was conducted, in which the endoscopic camera technique was adopted to track the entire process of failure of the model all the time. The experimental results indicate that the deformation of SR around a underground cavern possessed the characteristics of development by stages and in delay, and the initial damage of SR could induce rapid failure in the later stage, and the whole process could be divided into three stages, including the localized extension of crack(the horizontal load(HL) was in the range of 130 k N to 170 k N, the vertical load(VL) was in the range of 119 k N to 153.8 k N), rapid crack coalescence(the HL was in the range of 170 k N to 210 k N, the VL was in the range of 153.8 k N to 182.5 k N) and residual strength(the HL was greater than 210 k N, the VL was greater than 182.5 k N). Under the high stress conditions, the phenomenon of deformation localization in the SR became serious and different space positions show different deformation characteristics. In order to further explore the deformation localization and progressive failure phenomenon of soft SR around the deeply buried tunnel, applying the analysis software of FLAC3 D three-dimensional explicit finite-difference method, based on the composite strain-softening model of Mohr-Coulomb shear failure and tensile failure, the calculation method of large deformation was adopted. Then, the comparative analysis between the PM experiment and numerical simulation of the three centered arch tunnels was implemented and the relationship of deformation localization and progressive failure of SR around a tunnel under high stress conditions was discussed. 展开更多
关键词 deeply buried tunnel physical model(PM) surrounding rock(SR) failure process
在线阅读 下载PDF
Deformation tests and failure process analysis of an anchorage structure 被引量:4
8
作者 Zhao Tongbin Yin Yanchun +1 位作者 Tan Yunliang Song Yimin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期237-242,共6页
In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). T... In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail- ure process of an anchorage structure: elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a "V" shape, in the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-cracl~ The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock. 展开更多
关键词 Anchorage structure Digital speckle correlation methods Deformation field Interface stress failure process
在线阅读 下载PDF
Numerical Simulation on Failure Process in Brittle and Heterogeneous Matrix Filled with Randomly Distributed Particles
9
作者 张亚芳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第2期150-153,共4页
Based on an essential assumption of meso-heterogeneity of material, the macro characteristic of composite reinfiorced with particles, the crack initiation, propagation and the failure process in composite were studied... Based on an essential assumption of meso-heterogeneity of material, the macro characteristic of composite reinfiorced with particles, the crack initiation, propagation and the failure process in composite were studied by using a numerical code. The composite is subjected to a uniaxial tension, aact stiff or soft particles are distributed at random manner but without overlapping or contacting. The effect of reinforcement particle properties on the fracture process aact mechanism of composite with brittle matrix, furthermore, the influence of the particle volumetric fraction is also investigated. Numerical results present the different failure mode and re-produce the crack initiation, propagation aurl coalescence in brittle aurl heterogeneons matrix. The mechanism of sach failure was also elucidated. 展开更多
关键词 composite PARTICLE failure process numerical simulation
在线阅读 下载PDF
Two-Stage Inspection Model Based on a Three-Stage Failure Process
10
作者 杨瑞锋 康建设 王广彦 《Journal of Donghua University(English Edition)》 EI CAS 2016年第2期215-218,共4页
As the non-periodic inspections are common in practice,a two-stage inspection model based on a three-stage failure process is proposed. The two-stage inspection means that the system is inspected with the first inspec... As the non-periodic inspections are common in practice,a two-stage inspection model based on a three-stage failure process is proposed. The two-stage inspection means that the system is inspected with the first inspection interval T_1 and the second inspection interval T_2. Because of the three color schemes commonly used in industry,three stages are divided by the system lifetime:normal, minor defective and severe defective stages. Upon the failure of the system,replacement is carried out. Maintenance is done once identifying the severe defective stage. However,when the minor defective stage is identified by the second inspection interval T_2,action of halving the subsequent inspection interval is adopted.Otherwise,no action is required. Our objective function is to optimize the inspection intervals so as to minimize the expected cost per unit time. Finally,a numerical example is presented to illustrate the effectiveness of the proposed model. 展开更多
关键词 delay time two-stage inspection three-stage failure process preventive maintenance(PM)
在线阅读 下载PDF
RFPA Realistic Failure Process Analysis
11
《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第5期423-423,共1页
RFPA is a numerical testing tool for realistic failure process analysis(RFPA)of rock,concrete,composites,and engineering structures.The RFPA solution offers perfect simulation tools for robust modelling of brittle mat... RFPA is a numerical testing tool for realistic failure process analysis(RFPA)of rock,concrete,composites,and engineering structures.The RFPA solution offers perfect simulation tools for robust modelling of brittle material failure and engineering structural damage.The RFPA family of 2D and 3D core products offers the full depth of analysis tools—from a conceptual simulation to advanced 展开更多
关键词 RFPA Realistic failure process Analysis ROCK
在线阅读 下载PDF
Analysis of Ancient Rongcharong Landslide Dam Failure Events in the Suwalong Reach of the Upper Reaches of the Jinsha River
12
作者 Yongchao Li Songfeng Guo +8 位作者 Bowen Zheng Yu Zou Shengyuan Song Yiwei Zhang Jianhua Yan Muhammad Faisal Waqar Khan Zada Shengwen Qi Jianping Chen 《Journal of Earth Science》 2025年第5期2005-2022,共18页
Active tectonic movements and geological disasters frequently occur in the upper reaches of the Jinsha River,increasing the likelihood of landslides obstructing the river.Taking the ancient Rongcharong landslide dam f... Active tectonic movements and geological disasters frequently occur in the upper reaches of the Jinsha River,increasing the likelihood of landslides obstructing the river.Taking the ancient Rongcharong landslide dam failure events in the Suwalong reach as an example,this paper first analyzes the accuracy and applicability of the commonly used methods in calculating the peak flow of the dam failure,such as the empirical formula,the numerical method based on the physical mechanism,and the computational fluid dynamics(CFD)method.Then,the peak flood flow of the Rongcharong-dammed lake when it overflows the dam is determined to be 28393-64272 m~3/s.At the same time,the failure process of landslide dam due to flood erosion was elucidated using the CFD method,which can be divided into three stages:gradual erosion in the initial stage,rapid development in the middle stage,and gradual expansion in the final stage.Finally,the factors that affect the peak flow of floods are analyzed,and suggestions for emergency treatment of landslide dams are put forward.The findings of this research can serve as a valuable reference for disaster prevention and mitigation strategies to adapt to the increasing frequency of landslide-induced river blockages. 展开更多
关键词 LANDSLIDES failure process dam-break flood propagation process computational fluid dynamics method engineering geology
原文传递
Failure Analysis of Composite Pre-tightened Multi-hierarchy Tooth Joint Based on Suture Structure
13
作者 Fei Li Weizhao Chen +2 位作者 Yong Xiao Linjian Ma Yifeng Gao 《Journal of Bionic Engineering》 2025年第1期262-281,共20页
The connection efficiency of composite pre-tightened multi-tooth joint is low because of uneven load distribution and single load transmission path.In this paper,based on the principle of bio-tooth(suture)structure,co... The connection efficiency of composite pre-tightened multi-tooth joint is low because of uneven load distribution and single load transmission path.In this paper,based on the principle of bio-tooth(suture)structure,combining soft material with fractal,a composite pre-tightened multi-hierarchy tooth joint is proposed,and the bearing performance and failure process of the joint through experiments and finite element method under tensile load.First,the ultimate bearing capacity,load distribution ratio,and failure process of different hierarchies of teeth joints are studied through experiments.Then,the progressive damage models of different hierarchies of tooth joints are established,and experiments verify the validity of the finite element model.Finally,the effects of soft material and increasing tooth hierarchy on the failure process and bearing capacity of composite pre-tightened tooth joints are analyzed by the finite element method.The following conclusions can be drawn:(1)The embedding of soft materials changed the failure process of the joint.Increasing the tooth hierarchy can give the joint more load transfer paths,but the failure process of the joint is complicated.(2)Embedding soft materials and increasing the tooth hierarchy simultaneously can effectively improve the bearing capacity of composite pre-tightened tooth joints,which is 87.8%higher than that of traditional three-tooth joints. 展开更多
关键词 Composite pre-tightened multi-hierarchy teeth joint Tensile experiment Finite element analysis failure process Suture structure
在线阅读 下载PDF
Impact Failure of Flattened Brazilian Disc with Cracks——Process and Mechanism 被引量:2
14
作者 ZHANG Yafang LIU Hao +3 位作者 YIN Guoqi OU Chenggui LU Juan HE Juan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第5期1003-1010,共8页
Split Hopkinson pressure bar(SHPB)has been used to study the dynamic failure pattern of flattened mortar Brazilian disc under impact load.Each disc contains several prefabricated cracks paralleled to each other.Dynami... Split Hopkinson pressure bar(SHPB)has been used to study the dynamic failure pattern of flattened mortar Brazilian disc under impact load.Each disc contains several prefabricated cracks paralleled to each other.Dynamic FEM has also been adopted to simulate such failure behavior.The mechanism of crack initiation,propagation and cut-through have been scrutinized with both experimental and numerical approaches.Influence of the number of the prefabricated cracks on the specimen strength and acoustic emission(AE)performance can be observed and studied.The results show that the strength decreases and AE counts increases,when the number of the prefabricated cracks increases. 展开更多
关键词 paralleled cracks flattened brazilian disc impact load SHPB failure process acoustic emission
原文传递
Numerical modeling of the failure process of the heterogeneous karst rock mass using the DDA-SPH method
15
作者 Jingyao Gao Guangqi Chen +6 位作者 Zhijie Wang Liping Li Yasuhiro Mitani Changze Li Hongyun Fan Xinyan Peng Yifan Jiang 《Underground Space》 SCIE EI CSCD 2023年第6期1-22,共22页
The sanding process caused by karstification in dolomite creates a special sandy dolomite stratum,where the frequent catastrophic instability of the surrounding rock occurred during tunnel construction.In this study,t... The sanding process caused by karstification in dolomite creates a special sandy dolomite stratum,where the frequent catastrophic instability of the surrounding rock occurred during tunnel construction.In this study,the micro-origin and macro-performance of the sandy dolomite stratum are first discussed.Then,a numerical model based on the coupling method between the discontinuous deformation analysis and smoothed particle hydrodynamics is proposed to depict the heterogeneous dolomite formation with different sanding degrees.Following,the mechanical behaviors of the heterogeneous dolomite samples under uniaxial compression are studied after calibrating the numerical parameters with the two single materials sampled from the tunnel site respectively.Further,the instability disasters of the dolomite surrounding rock with different sanding degrees are reproduced,and the failure behaviors of tunnels are explained with respect to the stress distribution and plastic zone.The obtained results show that the rotation and dislocation of the remained dolomite block contribute to the unsmooth stress–strain curve and deterioration in uniaxial compressive strength.However,the block serves as the skeleton in the transmission of field stress in underground space,which improves the stability of the formation. 展开更多
关键词 Karst sanding effect DDA-SPH method Uniaxial compressive test Tunnel excavation failure process
在线阅读 下载PDF
Numerical investigation of hydro-morphodynamic characteristics of a cascading failure of landslide dams
16
作者 ZHONG Qiming CHEN Lingchun +3 位作者 MEI Shengyao SHAN Yibo WU Hao ZHAO Kunpeng 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1868-1885,共18页
A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the t... A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the three-dimensional Reynoldsaveraged Navier-Stokes equations(RANS),the renormalization group(RNG)k-εturbulence model,suspended and bed load transport equations,and the instability discriminant formula of dam breach side slope,and the explicit finite volume method(FVM),a detailed numerical simulation model for calculating the hydro-morphodynamic characteristics of cascading dam breach process has been developed.The developed numerical model can simulate the breach hydrograph and the dam breach morphology evolution during the cascading failure process of landslide dams.A model test of the breaches of two cascading landslide dams has been used as the validation case.The comparison of the calculated and measured results indicates that the breach hydrograph and the breach morphology evolution process of the upstream and downstream dams are generally consistent with each other,and the relative errors of the key breaching parameters,i.e.,the peak breach flow and the time to peak of each dam,are less than±5%.Further,the comparison of the breach hydrographs of the upstream and downstream dams shows that there is an amplification effect of the breach flood on the cascading landslide dam failures.Three key parameters,i.e.,the distance between the upstream and the downstream dams,the river channel slope,and the downstream dam height,have been used to study the flood amplification effect.The parameter sensitivity analyses show that the peak breach flow at the downstream dam decreases with increasing distance between the upstream and the downstream dams,and the downstream dam height.Further,the peak breach flow at the downstream dam first increases and then decreases with steepening of the river channel slope.When the flood caused by the upstream dam failure flows to the downstream dam,it can produce a surge wave that overtops and erodes the dam crest,resulting in a lowering of the dam crest elevation.This has an impact on the failure occurrence time and the peak breach flow of the downstream dam.The influence of the surge wave on the downstream dam failure process is related to the volume of water that overtops the dam crest and the erosion characteristics of dam material.Moreover,the cascading failure case of the Xiaogangjian and Lower Xiaogangjian landslide dams has also been used as the representative case for validating the model.In comparisons of the calculated and measured breach hydrographs and final breach morphologies,the relative errors of the key dam breaching parameters are all within±10%,which verify the rationality of the model is applicable to real-world cases.Overall,the numerical model developed in this study can provide important technical support for the risk assessment and emergency treatment of failures of cascading landslide dams. 展开更多
关键词 Cascading landslide dams Cascading dam failure process Detailed numerical simulation model Flood amplification effect Parameter sensitivity analyses
原文传递
Numerical simulation study of the failure evolution process and failure mode of surrounding rock in deep soft rock roadways 被引量:16
17
作者 Meng Qingbin Han Lijun +3 位作者 Xiao Yu Li Hao Wen Shengyong Zhang Jian 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期209-221,共13页
Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured ... Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured zone in the roadway.This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway.Using the single factor and multi-factor orthogonal test method,the evolution law of roadway surrounding rock displacements,plastic zone and stress distribution under different conditions is studied.It reveals the roadway surrounding rock burst evolution process,and obtains five kinds of failure modes in deep soft rock roadway.Using the fuzzy mathematics clustering analysis method,the deep soft surrounding rock failure model in Zhujixi mine can be classified and patterns recognized.Compared to the identification results and the results detected by geological radar of surrounding rock loose circle,the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways. 展开更多
关键词 Deep soft rock roadway Evolutionary process failure model Numerical simulation Model recognition
在线阅读 下载PDF
Model for Failure Point Process of a Repairable System and Application 被引量:1
18
作者 JIANG Renyan CHEN Hao 《International Journal of Plant Engineering and Management》 2018年第2期89-96,共8页
A engineering system is usually repairable, and failure process of a repairable by a failure point process. The power law model is a commonly used approach to model syst the em is often described failure point process... A engineering system is usually repairable, and failure process of a repairable by a failure point process. The power law model is a commonly used approach to model syst the em is often described failure point process. This paper introduces the concept and model for the failure process of repairable system. The method of parameter estimation is developed, and failure observations are fitted into a power-law model by using the least square method. Two applications of the pressent model are discussed according to the practical failure data of the central cooling system of a nuclear power plant. One application is determining the optimal overhaul time, and the other is evaluating the quality of maintenance. This paper provides references for the overhaul decision making and maintenance quality evaluation in reality. 展开更多
关键词 repairable system failure point process overhaul decision maintenance quality
在线阅读 下载PDF
A compositional method to model dependent failure behavior based on PoF models 被引量:4
19
作者 Zhiguo ZENG Yunxia CHEN +1 位作者 Enrico ZIO Rui KANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第5期1729-1739,共11页
In this paper, a new method is developed to model dependent failure behavior among failure mechanisms. Unlike the existing methods, the developed method models the root cause of the dependency explicitly, so that a de... In this paper, a new method is developed to model dependent failure behavior among failure mechanisms. Unlike the existing methods, the developed method models the root cause of the dependency explicitly, so that a deterministic model, rather than a probabilistic one, can be established. Three steps comprise the developed method. First, physics-of-failure(PoF) models are utilized to model each failure mechanism. Then, interactions among failure mechanisms are modeled as a combination of three basic relations, competition, superposition and coupling. This is the reason why the method is referred to as "compositional method". Finally, the PoF models and the interaction model are combined to develop a deterministic model of the dependent failure behavior. As a demonstration, the method is applied on an actual spool and the developed failure behavior model is validated by a wear test. The result demonstrates that the compositional method is an effective way to model dependent failure behavior. 展开更多
关键词 DEGRADATION Dependent failures Multiple dependent competing failure processes Reliability modeling Shock
原文传递
Characteristics and interpretation of the seismic signal of a field-scale landslide dam failure experiment 被引量:5
20
作者 YAN Yan CUI Peng +3 位作者 CHEN Su-chin CHEN Xiao-qing CHEN Hua-yong CHIEN Yi-liang 《Journal of Mountain Science》 SCIE CSCD 2017年第2期219-236,共18页
Outburst floods caused by breaches of landslide dams may cause serious damages and loss of lives in downstream areas; for this reason the study of the dynamic of the process is of particular interest for hazard and ri... Outburst floods caused by breaches of landslide dams may cause serious damages and loss of lives in downstream areas; for this reason the study of the dynamic of the process is of particular interest for hazard and risk assessment. In this paper we report a field-scale landslide dam failure experiment conducted in Nantou County, in the central of Taiwan.The seismic signal generated during the dam failure was monitored using a broadband seismometer and the signal was used to study the dam failure process.We used the short-time Fourier transform(STFT) to obtain the time–frequency characteristics of the signal and analyzed the correlation between the power spectrum density(PSD) of the signal and the water level. The results indicate that the seismic signal generated during the process consisted of three components: a low-frequency band(0–1.5 Hz), an intermediate-frequency band(1.5–10 Hz) and a highfrequency band(10–45 Hz). We obtained the characteristics of each frequency band and the variations of the signal in various stages of the landslide dam failure process. We determined the cause for the signal changes in each frequency band and its relationship with the dam failure process. The PSD sediment flux estimation model was used to interpret the causes of variations in the signal energy before the dam failure and the clockwise hysteresis during the failure. Our results show that the seismic signal reflects the physical characteristics of the landslide dam failure process. The method and equipment used in this study may be used to monitor landslide dams and providing early warnings for dam failures. 展开更多
关键词 Landslide dam Dam failure process Field-scale experiment Seismic signal
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部