Under the National Innovation-Driven Development Strategy,establishing a scientifically sound evaluation system for normal university students’innovation and entrepreneurship capabilities serves as a crucial foundati...Under the National Innovation-Driven Development Strategy,establishing a scientifically sound evaluation system for normal university students’innovation and entrepreneurship capabilities serves as a crucial foundation for optimizing innovation education models and enhancing teacher candidates’comprehensive competencies.Based on existing indicator frameworks,we designed a questionnaire and applied exploratory factor analysis(EFA)to screen indicators,reduce dimensionality,and analyze weighting.This process identified key metrics for evaluating pedagogical students’innovation capacities,ultimately constructing a targeted assessment system for normal university students.The study provides theoretical support for cultivating teacher trainees’innovative capabilities while contributing to the national innovation strategy implementation.展开更多
The study aims to determine the validity and reliability of the Wechsler Preschool and Primary Scale of Intelligence–Third Edition(WPPSI-III)scores in a sample of kindergarten and lower primary pupils from Khartoum S...The study aims to determine the validity and reliability of the Wechsler Preschool and Primary Scale of Intelligence–Third Edition(WPPSI-III)scores in a sample of kindergarten and lower primary pupils from Khartoum State,Sudan.It also aims to examine whether test’s factor structure in this sample replicated that of the original WPPSI-III.The study sample consisted of 384 kindergarten and primary school children in Khartoum State(females=50%mean age=4.14,SD=1.37),selected using stratified random sampling across its seven localities:Khartoum,Jebel Awliya,Khartoum Bahri,East Nile,Omdurman,Ombada,Karari.For concurrent validation,the children additionally completed the Goodenough Draw-a-Man Test,and the Colored Progressive Matrices.WPPSI-III scores demonstrated high internal consistency across the subtest items.Confirmatory factor analysis indicators for total,verbal,and performance intelligence were all excellent.The scale also showed weak to strong score stability ranging from 0.25(weak)to 0.88(strong)based on the Spearman-Brown equation,0.25 to 0.75 based on the Guttman split-half method.The Cronbach’s alpha coefficient scores ranged from 0.54 to 0.93.The WPPSI-III and Goodenough Draw-a-Man Test scores concurrent validity scores were poor(0.05)to modest(0.31),and while those with the Colored Progressive Matrices test were poor(r=0.04–0.18).Thesefindings provide evidence to suggest that the WPPSI-III is appropriate for research use with kindergarten and lower primary school students in Khartoum State,Sudan.展开更多
BACKGROUND Cardiovascular(CV)complications are common in intensive care unit(ICU)patients after gastrointestinal surgery and are associated with increased mortality and prolonged hospital stay.The optimization of post...BACKGROUND Cardiovascular(CV)complications are common in intensive care unit(ICU)patients after gastrointestinal surgery and are associated with increased mortality and prolonged hospital stay.The optimization of postoperative nursing interventions,particularly pain management,is crucial for reducing such complications.AIM To investigate the effects of enhanced recovery nursing on CV complications after gastrointestinal surgery in ICU patients and associated risk factors.METHODS A retrospective analysis was conducted on 78 adult patients who underwent gastrointestinal surgery in the ICU of our hospital between February 2023 and September 2024.Among them,40 patients received standard care(control group),while 38 received enhanced recovery nursing(observation group).We compared the incidence of CV complications and nursing satisfaction between the two groups.Patients were divided into CV complication and non-complication groups based on complication occurrence,and logistic regression analysis was used to identify risk factors.RESULTS In the control and observation groups,the incidence of CV complications was 30.0%(12/40)and 18.4%(7/38),with a nursing satisfaction rate of 70.0%(28/40)and 92.1%(35/38),respectively.The postoperative pain score at 14 days was significantly lower in the observation group(0.27±0.15)compared to the control group(1.65±0.37),with all differences being statistically significant(P<0.05).Univariate analysis indicated significant differences in age,body mass index,hypertension,diabetes,smoking history,history of heart failure,and previous myocardial infarction(P<0.05).Multivariate logistic regression identified heart failure history,previous myocardial infarction,age,hypertension,and diabetes as independent risk factors,with odds ratios of 1.195,1.528,1.062,1.836,and 1.942,respectively(all P<0.05).CONCLUSION Implementing enhanced recovery nursing for ICU patients after gastrointestinal surgery is beneficial in reducing the incidence of CV complications and improving nursing satisfaction.展开更多
The endpoint carbon content in the converter is critical for the quality of steel products,and accurately predicting this parameter is an effective way to reduce alloy consumption and improve smelting efficiency.Howev...The endpoint carbon content in the converter is critical for the quality of steel products,and accurately predicting this parameter is an effective way to reduce alloy consumption and improve smelting efficiency.However,most scholars currently focus on modifying methods to enhance model accuracy,while overlooking the extent to which input parameters influence accuracy.To address this issue,in this study,a prediction model for the endpoint carbon content in the converter was developed using factor analysis(FA)and support vector machine(SVM)optimized by improved particle swarm optimization(IPSO).Analysis of the factors influencing the endpoint carbon content during the converter smelting process led to the identification of 21 input parameters.Subsequently,FA was used to reduce the dimensionality of the data and applied to the prediction model.The results demonstrate that the performance of the FA-IPSO-SVM model surpasses several existing methods,such as twin support vector regression and support vector machine.The model achieves hit rates of 89.59%,96.21%,and 98.74%within error ranges of±0.01%,±0.015%,and±0.02%,respectively.Finally,based on the prediction results obtained by sequentially removing input parameters,the parameters were classified into high influence(5%-7%),medium influence(2%-5%),and low influence(0-2%)categories according to their varying degrees of impact on prediction accuracy.This classi-fication provides a reference for selecting input parameters in future prediction models for endpoint carbon content.展开更多
Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- a...Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- and Q-factors is possible, this may lead to model error. Accordingly, loading estimates resulting from R-factor analysis of sample data drawn from a population based on a combination of R- and Q-factors will be biased. It was shown in a simulation study that a large amount of Q-factor variance induces an increase in the variation of R-factor loading estimates beyond the chance level. Tests of the multivariate kurtosis of observed variables are proposed as an indicator of possible Q-factor variance in observed variables as a prerequisite for R-factor analysis.展开更多
Population growth and expanding urbanization have caused persistent shortages and contamination of groundwater resources in Mali,Africa.The increase in groundwater salinity makes it more difficult for residents to obt...Population growth and expanding urbanization have caused persistent shortages and contamination of groundwater resources in Mali,Africa.The increase in groundwater salinity makes it more difficult for residents to obtain drinking water,it is necessary to clarify the causes and control factors of groundwater mineralization in Gao region,northern Mali.Based on the analysis of the hydrochemical composition of groundwater in 24 boreholes,Piper and Sch?eller diagrams,principal component analysis(PCA)and hierarchical cluster analysis(HCA)are used to carry out multivariate statistical analysis on the main ions.The results show that the groundwater samples are weakly alkaline,with pH values ranging from 5.83 to 8.40,and the average values of boreholes are 7.50,respectively.The average electrical conductivity(EC)value is 354.4(μS/cm),and the extreme value is between 124.0 and 1247(μS/cm).Water is usually mineralized and presents nine types of water phase.The three principal components explain 84.42%of the total variance for 13 parameters.The factor F1(58.85%),the factor F2(16.88%)and the factor F3(8.69%)present for the majority of the total data set.In addition,multivariate statistical analysis confirmed the genetic relationship among aquifers and identified three main clusters.Clustering related to groundwater mineralization(F1),clustering related to oxide reduction and iron enrichment(F2),and clustering of groundwater pollution caused by nitrate and magnesium(F3).We found that agriculture,weathering activities and dissolution of geological materials promote the mineralization of groundwater.Groundwater quality in the Gao region is becoming less and less potable because of increasing salinity.展开更多
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear...High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable requirements.However, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational efficiency.Hence, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices.展开更多
The concept, fundamental theory, analytical steps and formulae of grey relational analysis (GRA)-a new statistical method or multifactorial analysis in the field of medicine were introduced. GRA of grouping sequence t...The concept, fundamental theory, analytical steps and formulae of grey relational analysis (GRA)-a new statistical method or multifactorial analysis in the field of medicine were introduced. GRA of grouping sequence that is applied to medical study was built by the authors. An example was given to demonstrate it. The superiority of GRA was recounted briefly.展开更多
Three-point bending fatigue experiments were conducted on a typical Zr-based bulk metallic glass(BMG)at ambient temperature to investigate the fatigue behavior under cyclic loading conditions.Results show that the str...Three-point bending fatigue experiments were conducted on a typical Zr-based bulk metallic glass(BMG)at ambient temperature to investigate the fatigue behavior under cyclic loading conditions.Results show that the stress amplitude-cycles to failure(S-N)curve of the Zr-based BMG is determined,and the fatigue endurance limit is 442 MPa(stress amplitude).To evaluate the probability-stress amplitude-cycles to failure(P-S-N)curve,an estimation method based on maximum likelihood was proposed,which relies on statistical principles to estimate the fatigue life of the material and allows for a reduction in the number of samples required,offering a cost-effective and efficient alternative to traditional testing methods.The experimental results align with the American Society for Testing and Materials(ASTM)standard,indicating the reliability and accuracy of this estimation method in evaluating the fatigue behavior of Zr-based BMG.展开更多
This study focuses on designing a solution to the perennial issue of clothing fit in Fashion Industry using tools offered by digital technology and statistical analysis, in particular, the data gathered on Asian women...This study focuses on designing a solution to the perennial issue of clothing fit in Fashion Industry using tools offered by digital technology and statistical analysis, in particular, the data gathered on Asian women (Bangladeshi and Chinese). The study reveals that managing information can significantly enhance the capability of the industry to cater to the needs of its consumers and increase diversity. It centers on the effectiveness of turning dressmaking patterns into digital ones, thus transecting from traditional cutting and stitching to remote techniques. This entails the requirement to have correct self-measures and probable errors, which can arise in the process. Thus, with the help of regression analysis, the study identifies, which measurements are incorrect and influence the fit of the clothes, and, therefore, digital pattern creation is more accurate. Altogether, it can be observed how digitalization and statistical methods are crucial to transforming the way clothes are created to approach an ideal standard of measurements that fulfill every customer’s needs to make operational and efficient the clothing sector.展开更多
Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NV...Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).展开更多
The operating data of an enterprise has very positive reference significance for controlling risks, improving systems and processes, and enhancing efficiency and effectiveness in the development of an enterprise. If a...The operating data of an enterprise has very positive reference significance for controlling risks, improving systems and processes, and enhancing efficiency and effectiveness in the development of an enterprise. If an enterprise can master its operating status in the form of a data report, the relevant statistical data must take into account timeliness, accuracy, standardization and completeness. The following discusses various factors that restrict the quality of statistical data, and then puts forward management measures to improve the quality of statistical data.展开更多
Understanding the controlling factor of groundwater quality can enhance promoting sustainable development of groundwater resources. To this end, multivariate statistical analysis(MA) and hydrochemical analysis were ...Understanding the controlling factor of groundwater quality can enhance promoting sustainable development of groundwater resources. To this end, multivariate statistical analysis(MA) and hydrochemical analysis were introduced in this work. The results indicate that the canonical discriminant function with 7 parameters was established using the discriminant analysis(DA) method, which can afford 100% correct assignation according to the 3 different clusters(good water(GW), poor water(PW), and very poor water(VPW)) obtained from cluster analysis(CA). According to factor analysis(FA), 8 factors were extracted from 25 hydrochemical elements and account for 80.897% of the total data variance, suggesting that groundwater with higher concentrations of sodium, calcium, magnesium, chloride, and sulfate in southeastern study area are mainly affected by the natural process; the higher level of arsenic and chromium in groundwater extracted from northwestern part of study area are derived by industrial activities; domestic and agriculture sewage have important contribution to copper, iron, iodine, and phosphate in the northern study area. Therefore, this work can help identify the main controlling factor of groundwater quality in North China plain so as to make better and more informed decisions about how to achieve groundwater resources sustainable development.展开更多
Wastewater dissolved organic matter (DOM) from different processing stages of a sewage treatment plant in Xiamen was characterized using fluorescence and absorption spectroscopy. Parallel factor analysis modeling of...Wastewater dissolved organic matter (DOM) from different processing stages of a sewage treatment plant in Xiamen was characterized using fluorescence and absorption spectroscopy. Parallel factor analysis modeling of excitation-emission matrix spectra revealed five fluorescent components occurring in sewage DOM: one protein-like (C1), three humic-like (C2, C4 and C5) and one xenobiotic-like (C3) components. During the aerated grit chamber and primary sedimentation tank stage, there was only a slight decrease in fluorescence intensity and the absorption coefficient at 350 nm (a 350 ). During the second aeration stage, high concentration of protein-like and short-wavelength-excited humic-like components were significantly degraded accompanied by significant loss of DOC (80%) and a 350 (30%), indicating that C1 and C2 were the dominant constituents of sewage DOM. As a result, long-wavelength- excited C4 and C5 became the dominant humic-like components and the DOM molecular size inferred from the variation of spectral slope S (300–650 nm) and specific absorption (a 280 /DOC) increased. Combination use of F max of C1 and the ratio of C1/C5, or a 350 may provide a quantitative indication for the relative amount of raw or treated sewage in aquatic environment.展开更多
With the rapid growth of economy in China, people's living standard has been generally improved, and people's requirements on the quality and quantity of infrastructures like transportation convenience, city greenin...With the rapid growth of economy in China, people's living standard has been generally improved, and people's requirements on the quality and quantity of infrastructures like transportation convenience, city greening have become higher and higher, which requires the government to attach importance to these livelihood is- sues. Based on the China Statistical Yearbook, 6 target factors of 31 provinces and cities in China were conducted with factor analysis, and the conditions of the infras- tructures in the 31 provinces and cities were judged and evaluated through the ex- traction of common factors and the calculation of these common factors, and corre- sponding suggestions were proposed with the aim to improve the infrastructures in China.展开更多
[Objective] The study aimed to compare several statistical analysis models for estimating the sugarcane (Saccharum spp.) genotypic stability. [Method] The data of sugarcane regional trials in Guangdong, in 2009 was ...[Objective] The study aimed to compare several statistical analysis models for estimating the sugarcane (Saccharum spp.) genotypic stability. [Method] The data of sugarcane regional trials in Guangdong, in 2009 was analyzed by three models respectively: Finlay and Wilkinson model: the additive main effects and multiplicative interaction (AMMI) model and linear regression-principal components analysis (LR- PCA) model, so as to compare the models. [Result] The Finlay and Wilkinson model was easier, but the analysis of the other two models was more comprehensive, and there was a bit difference between the additive main effects and multiplicative inter- action (AMMI) model and linear regression-principal components analysis (LR-PCA) model. [Conclusion] In practice, while the proper statistical method was usually con- sidered according to the different data, it should be also considered that the same data should be analyzed with different statistical methods in order to get a more reasonable result by comparison.展开更多
This paper summarizes a few spatial statistical analysis methods for to measuring spatial autocorrelation and spatial association, discusses the criteria for the identification of spatial association by the use of glo...This paper summarizes a few spatial statistical analysis methods for to measuring spatial autocorrelation and spatial association, discusses the criteria for the identification of spatial association by the use of global Moran Coefficient, Local Moran and Local Geary. Furthermore, a user-friendly statistical module, combining spatial statistical analysis methods with GIS visual techniques, is developed in Arcview using Avenue. An example is also given to show the usefulness of this module in identifying and quantifying the underlying spatial association patterns between economic units.展开更多
Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the t...Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.展开更多
Structural Health Monitoring(SHM) suggests the use of machine learning algorithms with the aim of understanding specific behaviors in a structural system. This work introduces a pattern recognition methodology for ope...Structural Health Monitoring(SHM) suggests the use of machine learning algorithms with the aim of understanding specific behaviors in a structural system. This work introduces a pattern recognition methodology for operational condition clustering in a structure sample using the well known Density Based Spatial Clustering of Applications with Noise(DBSCAN) algorithm.The methodology was validated using a data set from an experiment with 32 Fiber Bragg Gratings bonded to an aluminum beam placed in cantilever and submitted to cyclic bending loads under 13 different operational conditions(pitch angles). Further, the computational cost and precision of the machine learning pipeline called FA + GA-DBSCAN(which employs a combination of machine learning techniques including factor analysis for dimensionality reduction and a genetic algorithm for the automatic selection of initial parameters of DBSCAN) was measured. The obtained results have shown a good performance, detecting 12 of 13 operational conditions, with an overall precision over 90%.展开更多
Meretricis concha is a kind of marine traditional Chinese medicine(TCM), and has been commonly used for the treatment of asthma and scald burns. In order to investigate the relationship between the inorganic elemental...Meretricis concha is a kind of marine traditional Chinese medicine(TCM), and has been commonly used for the treatment of asthma and scald burns. In order to investigate the relationship between the inorganic elemental fingerprint and the geographical origin identification of Meretricis concha, the elemental contents of M. concha from five sampling points in Rushan Bay have been determined by means of inductively coupled plasma optical emission spectrometry(ICP-OES). Based on the contents of 14 inorganic elements(Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, and Zn), the inorganic elemental fingerprint which well reflects the elemental characteristics was constructed. All the data from the five sampling points were discriminated with accuracy through hierarchical cluster analysis(HCA) and principle component analysis(PCA), indicating that a four-factor model which could explain approximately 80% of the detection data was established, and the elements Al, As, Cd, Cu, Ni and Pb could be viewed as the characteristic elements. This investigation suggests that the inorganic elemental fingerprint combined with multivariate statistical analysis is a promising method for verifying the geographical origin of M. concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM.展开更多
基金Mid-term Results of the 2024 Langfang Normal University Special Teaching Reform Project on Innovation and Entrepreneurship Education Reform,“Research on the Evaluation System of Innovation and Entrepreneurship Ability for Normal University Students Based on Big Data Application-A Case Study of Langfang Normal University”(Project No.:CXJG2024-06)。
文摘Under the National Innovation-Driven Development Strategy,establishing a scientifically sound evaluation system for normal university students’innovation and entrepreneurship capabilities serves as a crucial foundation for optimizing innovation education models and enhancing teacher candidates’comprehensive competencies.Based on existing indicator frameworks,we designed a questionnaire and applied exploratory factor analysis(EFA)to screen indicators,reduce dimensionality,and analyze weighting.This process identified key metrics for evaluating pedagogical students’innovation capacities,ultimately constructing a targeted assessment system for normal university students.The study provides theoretical support for cultivating teacher trainees’innovative capabilities while contributing to the national innovation strategy implementation.
基金The authors extend their appreciation to the Ongoing Research Funding Program,number(ORF2025R705),King Saud University,Riyadh,Saudi Arabia,for funding this work.
文摘The study aims to determine the validity and reliability of the Wechsler Preschool and Primary Scale of Intelligence–Third Edition(WPPSI-III)scores in a sample of kindergarten and lower primary pupils from Khartoum State,Sudan.It also aims to examine whether test’s factor structure in this sample replicated that of the original WPPSI-III.The study sample consisted of 384 kindergarten and primary school children in Khartoum State(females=50%mean age=4.14,SD=1.37),selected using stratified random sampling across its seven localities:Khartoum,Jebel Awliya,Khartoum Bahri,East Nile,Omdurman,Ombada,Karari.For concurrent validation,the children additionally completed the Goodenough Draw-a-Man Test,and the Colored Progressive Matrices.WPPSI-III scores demonstrated high internal consistency across the subtest items.Confirmatory factor analysis indicators for total,verbal,and performance intelligence were all excellent.The scale also showed weak to strong score stability ranging from 0.25(weak)to 0.88(strong)based on the Spearman-Brown equation,0.25 to 0.75 based on the Guttman split-half method.The Cronbach’s alpha coefficient scores ranged from 0.54 to 0.93.The WPPSI-III and Goodenough Draw-a-Man Test scores concurrent validity scores were poor(0.05)to modest(0.31),and while those with the Colored Progressive Matrices test were poor(r=0.04–0.18).Thesefindings provide evidence to suggest that the WPPSI-III is appropriate for research use with kindergarten and lower primary school students in Khartoum State,Sudan.
文摘BACKGROUND Cardiovascular(CV)complications are common in intensive care unit(ICU)patients after gastrointestinal surgery and are associated with increased mortality and prolonged hospital stay.The optimization of postoperative nursing interventions,particularly pain management,is crucial for reducing such complications.AIM To investigate the effects of enhanced recovery nursing on CV complications after gastrointestinal surgery in ICU patients and associated risk factors.METHODS A retrospective analysis was conducted on 78 adult patients who underwent gastrointestinal surgery in the ICU of our hospital between February 2023 and September 2024.Among them,40 patients received standard care(control group),while 38 received enhanced recovery nursing(observation group).We compared the incidence of CV complications and nursing satisfaction between the two groups.Patients were divided into CV complication and non-complication groups based on complication occurrence,and logistic regression analysis was used to identify risk factors.RESULTS In the control and observation groups,the incidence of CV complications was 30.0%(12/40)and 18.4%(7/38),with a nursing satisfaction rate of 70.0%(28/40)and 92.1%(35/38),respectively.The postoperative pain score at 14 days was significantly lower in the observation group(0.27±0.15)compared to the control group(1.65±0.37),with all differences being statistically significant(P<0.05).Univariate analysis indicated significant differences in age,body mass index,hypertension,diabetes,smoking history,history of heart failure,and previous myocardial infarction(P<0.05).Multivariate logistic regression identified heart failure history,previous myocardial infarction,age,hypertension,and diabetes as independent risk factors,with odds ratios of 1.195,1.528,1.062,1.836,and 1.942,respectively(all P<0.05).CONCLUSION Implementing enhanced recovery nursing for ICU patients after gastrointestinal surgery is beneficial in reducing the incidence of CV complications and improving nursing satisfaction.
基金financially supported by the National Natural Science Foundation of China(No.52174297).
文摘The endpoint carbon content in the converter is critical for the quality of steel products,and accurately predicting this parameter is an effective way to reduce alloy consumption and improve smelting efficiency.However,most scholars currently focus on modifying methods to enhance model accuracy,while overlooking the extent to which input parameters influence accuracy.To address this issue,in this study,a prediction model for the endpoint carbon content in the converter was developed using factor analysis(FA)and support vector machine(SVM)optimized by improved particle swarm optimization(IPSO).Analysis of the factors influencing the endpoint carbon content during the converter smelting process led to the identification of 21 input parameters.Subsequently,FA was used to reduce the dimensionality of the data and applied to the prediction model.The results demonstrate that the performance of the FA-IPSO-SVM model surpasses several existing methods,such as twin support vector regression and support vector machine.The model achieves hit rates of 89.59%,96.21%,and 98.74%within error ranges of±0.01%,±0.015%,and±0.02%,respectively.Finally,based on the prediction results obtained by sequentially removing input parameters,the parameters were classified into high influence(5%-7%),medium influence(2%-5%),and low influence(0-2%)categories according to their varying degrees of impact on prediction accuracy.This classi-fication provides a reference for selecting input parameters in future prediction models for endpoint carbon content.
文摘Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- and Q-factors is possible, this may lead to model error. Accordingly, loading estimates resulting from R-factor analysis of sample data drawn from a population based on a combination of R- and Q-factors will be biased. It was shown in a simulation study that a large amount of Q-factor variance induces an increase in the variation of R-factor loading estimates beyond the chance level. Tests of the multivariate kurtosis of observed variables are proposed as an indicator of possible Q-factor variance in observed variables as a prerequisite for R-factor analysis.
基金funded by the China's National Natural Science Foundation(No.41440027)。
文摘Population growth and expanding urbanization have caused persistent shortages and contamination of groundwater resources in Mali,Africa.The increase in groundwater salinity makes it more difficult for residents to obtain drinking water,it is necessary to clarify the causes and control factors of groundwater mineralization in Gao region,northern Mali.Based on the analysis of the hydrochemical composition of groundwater in 24 boreholes,Piper and Sch?eller diagrams,principal component analysis(PCA)and hierarchical cluster analysis(HCA)are used to carry out multivariate statistical analysis on the main ions.The results show that the groundwater samples are weakly alkaline,with pH values ranging from 5.83 to 8.40,and the average values of boreholes are 7.50,respectively.The average electrical conductivity(EC)value is 354.4(μS/cm),and the extreme value is between 124.0 and 1247(μS/cm).Water is usually mineralized and presents nine types of water phase.The three principal components explain 84.42%of the total variance for 13 parameters.The factor F1(58.85%),the factor F2(16.88%)and the factor F3(8.69%)present for the majority of the total data set.In addition,multivariate statistical analysis confirmed the genetic relationship among aquifers and identified three main clusters.Clustering related to groundwater mineralization(F1),clustering related to oxide reduction and iron enrichment(F2),and clustering of groundwater pollution caused by nitrate and magnesium(F3).We found that agriculture,weathering activities and dissolution of geological materials promote the mineralization of groundwater.Groundwater quality in the Gao region is becoming less and less potable because of increasing salinity.
基金supported in part by the National Natural Science Foundation of China (62372385, 62272078, 62002337)the Chongqing Natural Science Foundation (CSTB2022NSCQ-MSX1486, CSTB2023NSCQ-LZX0069)the Deanship of Scientific Research at King Abdulaziz University, Jeddah, Saudi Arabia (RG-12-135-43)。
文摘High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable requirements.However, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational efficiency.Hence, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices.
文摘The concept, fundamental theory, analytical steps and formulae of grey relational analysis (GRA)-a new statistical method or multifactorial analysis in the field of medicine were introduced. GRA of grouping sequence that is applied to medical study was built by the authors. An example was given to demonstrate it. The superiority of GRA was recounted briefly.
基金Guangdong Basic and Applied Basic Research Foundation(2022A1515010207)Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices(AFMD-KFJJ-22204)。
文摘Three-point bending fatigue experiments were conducted on a typical Zr-based bulk metallic glass(BMG)at ambient temperature to investigate the fatigue behavior under cyclic loading conditions.Results show that the stress amplitude-cycles to failure(S-N)curve of the Zr-based BMG is determined,and the fatigue endurance limit is 442 MPa(stress amplitude).To evaluate the probability-stress amplitude-cycles to failure(P-S-N)curve,an estimation method based on maximum likelihood was proposed,which relies on statistical principles to estimate the fatigue life of the material and allows for a reduction in the number of samples required,offering a cost-effective and efficient alternative to traditional testing methods.The experimental results align with the American Society for Testing and Materials(ASTM)standard,indicating the reliability and accuracy of this estimation method in evaluating the fatigue behavior of Zr-based BMG.
文摘This study focuses on designing a solution to the perennial issue of clothing fit in Fashion Industry using tools offered by digital technology and statistical analysis, in particular, the data gathered on Asian women (Bangladeshi and Chinese). The study reveals that managing information can significantly enhance the capability of the industry to cater to the needs of its consumers and increase diversity. It centers on the effectiveness of turning dressmaking patterns into digital ones, thus transecting from traditional cutting and stitching to remote techniques. This entails the requirement to have correct self-measures and probable errors, which can arise in the process. Thus, with the help of regression analysis, the study identifies, which measurements are incorrect and influence the fit of the clothes, and, therefore, digital pattern creation is more accurate. Altogether, it can be observed how digitalization and statistical methods are crucial to transforming the way clothes are created to approach an ideal standard of measurements that fulfill every customer’s needs to make operational and efficient the clothing sector.
文摘Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).
文摘The operating data of an enterprise has very positive reference significance for controlling risks, improving systems and processes, and enhancing efficiency and effectiveness in the development of an enterprise. If an enterprise can master its operating status in the form of a data report, the relevant statistical data must take into account timeliness, accuracy, standardization and completeness. The following discusses various factors that restrict the quality of statistical data, and then puts forward management measures to improve the quality of statistical data.
基金supported by the Major State Basic Research Development Program (No. 2010CB428800)the Geological Survey Projects Foundation of Institute of Hydrogeology and Environmental Geology (No. SK201308)
文摘Understanding the controlling factor of groundwater quality can enhance promoting sustainable development of groundwater resources. To this end, multivariate statistical analysis(MA) and hydrochemical analysis were introduced in this work. The results indicate that the canonical discriminant function with 7 parameters was established using the discriminant analysis(DA) method, which can afford 100% correct assignation according to the 3 different clusters(good water(GW), poor water(PW), and very poor water(VPW)) obtained from cluster analysis(CA). According to factor analysis(FA), 8 factors were extracted from 25 hydrochemical elements and account for 80.897% of the total data variance, suggesting that groundwater with higher concentrations of sodium, calcium, magnesium, chloride, and sulfate in southeastern study area are mainly affected by the natural process; the higher level of arsenic and chromium in groundwater extracted from northwestern part of study area are derived by industrial activities; domestic and agriculture sewage have important contribution to copper, iron, iodine, and phosphate in the northern study area. Therefore, this work can help identify the main controlling factor of groundwater quality in North China plain so as to make better and more informed decisions about how to achieve groundwater resources sustainable development.
基金supported by the National Natural Science Foundation of China(No.40776041,40676046)the National High Technology Research and Development Program of China(No.2007AA091704)the Program for New Century Excellent Talents in Fujian Province University
文摘Wastewater dissolved organic matter (DOM) from different processing stages of a sewage treatment plant in Xiamen was characterized using fluorescence and absorption spectroscopy. Parallel factor analysis modeling of excitation-emission matrix spectra revealed five fluorescent components occurring in sewage DOM: one protein-like (C1), three humic-like (C2, C4 and C5) and one xenobiotic-like (C3) components. During the aerated grit chamber and primary sedimentation tank stage, there was only a slight decrease in fluorescence intensity and the absorption coefficient at 350 nm (a 350 ). During the second aeration stage, high concentration of protein-like and short-wavelength-excited humic-like components were significantly degraded accompanied by significant loss of DOC (80%) and a 350 (30%), indicating that C1 and C2 were the dominant constituents of sewage DOM. As a result, long-wavelength- excited C4 and C5 became the dominant humic-like components and the DOM molecular size inferred from the variation of spectral slope S (300–650 nm) and specific absorption (a 280 /DOC) increased. Combination use of F max of C1 and the ratio of C1/C5, or a 350 may provide a quantitative indication for the relative amount of raw or treated sewage in aquatic environment.
文摘With the rapid growth of economy in China, people's living standard has been generally improved, and people's requirements on the quality and quantity of infrastructures like transportation convenience, city greening have become higher and higher, which requires the government to attach importance to these livelihood is- sues. Based on the China Statistical Yearbook, 6 target factors of 31 provinces and cities in China were conducted with factor analysis, and the conditions of the infras- tructures in the 31 provinces and cities were judged and evaluated through the ex- traction of common factors and the calculation of these common factors, and corre- sponding suggestions were proposed with the aim to improve the infrastructures in China.
基金Supported by the Guangdong Technological Program (2009B02001002)the Special Funds of National Agricultural Department for Commonweal Trade Research (nyhyzx07-019)the Earmarked Fund for Modern Agro-industry Technology Research System~~
文摘[Objective] The study aimed to compare several statistical analysis models for estimating the sugarcane (Saccharum spp.) genotypic stability. [Method] The data of sugarcane regional trials in Guangdong, in 2009 was analyzed by three models respectively: Finlay and Wilkinson model: the additive main effects and multiplicative interaction (AMMI) model and linear regression-principal components analysis (LR- PCA) model, so as to compare the models. [Result] The Finlay and Wilkinson model was easier, but the analysis of the other two models was more comprehensive, and there was a bit difference between the additive main effects and multiplicative inter- action (AMMI) model and linear regression-principal components analysis (LR-PCA) model. [Conclusion] In practice, while the proper statistical method was usually con- sidered according to the different data, it should be also considered that the same data should be analyzed with different statistical methods in order to get a more reasonable result by comparison.
文摘This paper summarizes a few spatial statistical analysis methods for to measuring spatial autocorrelation and spatial association, discusses the criteria for the identification of spatial association by the use of global Moran Coefficient, Local Moran and Local Geary. Furthermore, a user-friendly statistical module, combining spatial statistical analysis methods with GIS visual techniques, is developed in Arcview using Avenue. An example is also given to show the usefulness of this module in identifying and quantifying the underlying spatial association patterns between economic units.
基金Supported by the National Natural Science Foundation of China (No.60574047) and the Doctorate Foundation of the State Education Ministry of China (No.20050335018).
文摘Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.
基金supported by the Centro de Investigación para el Desarrollo y la Innovación (CIDI) from Universidad Pontificia Bolivariana (No. 636B-06/16–57)。
文摘Structural Health Monitoring(SHM) suggests the use of machine learning algorithms with the aim of understanding specific behaviors in a structural system. This work introduces a pattern recognition methodology for operational condition clustering in a structure sample using the well known Density Based Spatial Clustering of Applications with Noise(DBSCAN) algorithm.The methodology was validated using a data set from an experiment with 32 Fiber Bragg Gratings bonded to an aluminum beam placed in cantilever and submitted to cyclic bending loads under 13 different operational conditions(pitch angles). Further, the computational cost and precision of the machine learning pipeline called FA + GA-DBSCAN(which employs a combination of machine learning techniques including factor analysis for dimensionality reduction and a genetic algorithm for the automatic selection of initial parameters of DBSCAN) was measured. The obtained results have shown a good performance, detecting 12 of 13 operational conditions, with an overall precision over 90%.
基金supposed by the Program for Science and Technology of Shandong Province (2011GHY11521)the Department of Education of Shandong Province (No. J11LB07)the Natural Science Foundation of Qingdao City (Nos. 12-1-3-52-(1)-nsh and 12-1-4-16-(7)-jch)
文摘Meretricis concha is a kind of marine traditional Chinese medicine(TCM), and has been commonly used for the treatment of asthma and scald burns. In order to investigate the relationship between the inorganic elemental fingerprint and the geographical origin identification of Meretricis concha, the elemental contents of M. concha from five sampling points in Rushan Bay have been determined by means of inductively coupled plasma optical emission spectrometry(ICP-OES). Based on the contents of 14 inorganic elements(Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, and Zn), the inorganic elemental fingerprint which well reflects the elemental characteristics was constructed. All the data from the five sampling points were discriminated with accuracy through hierarchical cluster analysis(HCA) and principle component analysis(PCA), indicating that a four-factor model which could explain approximately 80% of the detection data was established, and the elements Al, As, Cd, Cu, Ni and Pb could be viewed as the characteristic elements. This investigation suggests that the inorganic elemental fingerprint combined with multivariate statistical analysis is a promising method for verifying the geographical origin of M. concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM.