Vertical tire forces are essential for vehicle modelling and dynamic control.However,an evaluation of the vertical tire forces on a multi-axle truck is difficult to accomplish.The current methods require a large amoun...Vertical tire forces are essential for vehicle modelling and dynamic control.However,an evaluation of the vertical tire forces on a multi-axle truck is difficult to accomplish.The current methods require a large amount of experimental data and many sensors owing to the wide variation of the parameters and the over-constraint.To simplify the design process and reduce the demand of the sensors,this paper presents a practical approach to estimating the vertical tire forces of a multi-axle truck for dynamic control.The estimation system is based on a novel vertical force model and a proposed adaptive treble extend Kalman filter(ATEKF).To adapt to the widely varying parameters,a sliding mode update is designed to make the ATEKF adaptive,and together with the use of an initial setting update and a vertical tire force adjustment,the overall system becomes more robust.In particular,the model aims to eliminate the effects of the over-constraint and the uneven weight distribution.The results show that the ATEKF method achieves an excellent performance in a vertical force evaluation,and its performance is better than that of the treble extend Kalman filter.展开更多
Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is pro...Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.展开更多
In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated...In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.展开更多
Estimation of state-of-charge and state-of-health for batteries is one of the most important feature for modern battery management system(BMS).Robust or adaptive methods are the most investigated because a more intell...Estimation of state-of-charge and state-of-health for batteries is one of the most important feature for modern battery management system(BMS).Robust or adaptive methods are the most investigated because a more intelligent BMS could lead to sensible cost reduction of the entire battery system.We propose a new robust method,called ERMES(extendible range multi-model estimator),for determining an estimated state-of-charge(SoC),an estimated state-of-health(SoH)and a prediction of uncertainty of the estimates(state-of-uncertainty—SoU),thanks to which it is possible to monitor the validity of the estimates and adjust it,extending the robustness against a wider range of uncertainty,if necessary.Specifically,a finite number of models in state-space form are considered starting from a modified Thevenin battery model.Each model is characterized by a hypothesis of SoH value.An iterated extended Kalman filter(EKF)is then applied to each model in parallel,estimating for each one the SoC state variable.Residual errors are then considered to fuse both the estimated SoC and SoH from the bank of EKF,yielding the overall SoC and SoH estimates,respectively.In addition,a figure of uncertainty of such estimates is also provided.展开更多
基金Supported by Basic and Applied Basic Research Foundation of Guangdong Province of China(Grant No.2019A1515110763).
文摘Vertical tire forces are essential for vehicle modelling and dynamic control.However,an evaluation of the vertical tire forces on a multi-axle truck is difficult to accomplish.The current methods require a large amount of experimental data and many sensors owing to the wide variation of the parameters and the over-constraint.To simplify the design process and reduce the demand of the sensors,this paper presents a practical approach to estimating the vertical tire forces of a multi-axle truck for dynamic control.The estimation system is based on a novel vertical force model and a proposed adaptive treble extend Kalman filter(ATEKF).To adapt to the widely varying parameters,a sliding mode update is designed to make the ATEKF adaptive,and together with the use of an initial setting update and a vertical tire force adjustment,the overall system becomes more robust.In particular,the model aims to eliminate the effects of the over-constraint and the uneven weight distribution.The results show that the ATEKF method achieves an excellent performance in a vertical force evaluation,and its performance is better than that of the treble extend Kalman filter.
文摘Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.
文摘In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.
文摘Estimation of state-of-charge and state-of-health for batteries is one of the most important feature for modern battery management system(BMS).Robust or adaptive methods are the most investigated because a more intelligent BMS could lead to sensible cost reduction of the entire battery system.We propose a new robust method,called ERMES(extendible range multi-model estimator),for determining an estimated state-of-charge(SoC),an estimated state-of-health(SoH)and a prediction of uncertainty of the estimates(state-of-uncertainty—SoU),thanks to which it is possible to monitor the validity of the estimates and adjust it,extending the robustness against a wider range of uncertainty,if necessary.Specifically,a finite number of models in state-space form are considered starting from a modified Thevenin battery model.Each model is characterized by a hypothesis of SoH value.An iterated extended Kalman filter(EKF)is then applied to each model in parallel,estimating for each one the SoC state variable.Residual errors are then considered to fuse both the estimated SoC and SoH from the bank of EKF,yielding the overall SoC and SoH estimates,respectively.In addition,a figure of uncertainty of such estimates is also provided.