期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于统计估计的盲信号分离算法 被引量:5
1
作者 虞晓 胡光锐 《上海交通大学学报》 EI CAS CSCD 北大核心 1999年第5期566-569,共4页
最大熵法(MaximumEntropy,ME)和最小互信息量法(MinimumMutualInformation,MMI)是两种目前最常用的盲信号分离算法.在分析ME与MMI算法的基础上,提出了一种利用反馈结构的输出... 最大熵法(MaximumEntropy,ME)和最小互信息量法(MinimumMutualInformation,MMI)是两种目前最常用的盲信号分离算法.在分析ME与MMI算法的基础上,提出了一种利用反馈结构的输出信号概率密度函数(pdf)估计的增强ME算法.与传统ME算法相比较,新算法无需给出传统ME算法中神经元非线性函数的具体表达形式,而是直接利用输出信号pdf估计来推导算法的迭代核,进行算法自适应.分析了应用几种不同pdf估计方法的新算法迭代公式.通过计算机模拟表明,新算法比传统ME算法对于解决卷积混合输入的盲信号分离问题时,具有更好的算法性能. 展开更多
关键词 盲信号分离 MMI 语音识别 统计估计 卷积
在线阅读 下载PDF
退火期望最大化算法A-EM 被引量:2
2
作者 齐英剑 罗四维 +2 位作者 黄雅平 李爱军 刘蕴辉 《计算机研究与发展》 EI CSCD 北大核心 2006年第4期654-660,共7页
使用EM算法训练随机多层前馈网具有低开销、易于实现和全局收敛的特点,在EM算法的基础上提出了一种训练随机多层前馈网络的新方法AEM.AEM算法利用热力学系统的最大熵原理计算网络中隐变量的条件概率,借鉴退火过程,引入温度参数,减小了... 使用EM算法训练随机多层前馈网具有低开销、易于实现和全局收敛的特点,在EM算法的基础上提出了一种训练随机多层前馈网络的新方法AEM.AEM算法利用热力学系统的最大熵原理计算网络中隐变量的条件概率,借鉴退火过程,引入温度参数,减小了初始参数值对最终结果的影响.该算法既保持了原EM算法的优点,又有利于训练结果收敛到全局极小.从数学角度证明了该算法的收敛性,同时,实验也证明了该算法的正确性和有效性. 展开更多
关键词 随机前馈神经网络 期望最大化算法 最大熵 退火
在线阅读 下载PDF
混合双重广义线性模型的参数估计 被引量:2
3
作者 袁巧莉 吴刘仓 戴琳 《高校应用数学学报(A辑)》 CSCD 北大核心 2017年第3期267-276,共10页
在实际应用中,不同类别的数据统计特性存在差异,所以对异质总体的研究非常有必要.基于总体一,二阶矩存在,利用双重广义线性模型对异质总体的不同子类数据的均值和散度同时建模,研究提出了混合双重广义线性模型.然后,利用EM算法构造了模... 在实际应用中,不同类别的数据统计特性存在差异,所以对异质总体的研究非常有必要.基于总体一,二阶矩存在,利用双重广义线性模型对异质总体的不同子类数据的均值和散度同时建模,研究提出了混合双重广义线性模型.然后,利用EM算法构造了模型参数的最大扩展拟似然估计和最大伪似然估计.最后,通过随机模拟和实例研究,结果表明模型和方法的有效性和有用性. 展开更多
关键词 混合双重广义线性模型 最大扩展拟似然估计 最大伪似然估计 EM算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部