It has recently become evident that the de novo emergence of genes is widespread and documented for a variety of organisms.De novo genes frequently emerge in proximity to existing genes,forming gene overlaps.Here,we p...It has recently become evident that the de novo emergence of genes is widespread and documented for a variety of organisms.De novo genes frequently emerge in proximity to existing genes,forming gene overlaps.Here,we present an analysis of the evolutionary history of a putative de novo gene,lawc,which overlaps with the conserved Trf2 gene,which encodes a general transcription factor in Drosophila melanogaster.We demonstrate that lawc emerged approximately 68 million years ago in the 5'-untranslated region(UTR)of Trf2 and displays an extensive spatiotemporal expression pattern.One of the most remarkable features of the lawc evolutionary history is that its emergence was facilitated by the engagement of Drosophilidae-specific short,highly conserved regions located in Trf2 introns.This represents a unique example of putative de novo gene birth involving conserved DNA regions localized in introns of conserved genes.The observed lawc expression pattern may be due to the overlap of lawc with the 5'-UTR of Trf2.This study not only enriches our understanding of gene evolution but also highlights the complex interplay between genetic conservation and innovation.展开更多
Kinesins are a superfamily of proteins widely present in eukaryotes,playing crucial roles in plant cell wall assembly,cell elongation regulation,gravity sensing,and fertility control.In this study,bioinformatics analy...Kinesins are a superfamily of proteins widely present in eukaryotes,playing crucial roles in plant cell wall assembly,cell elongation regulation,gravity sensing,and fertility control.In this study,bioinformatics analysis of the OsKMP2 gene(LOC_Os02g28850)was performed using online tools such as ExPASy-ProtParam,ProtScale,CD-search,and DNAMAN software.Additionally,qRT-PCR was employed to analyze the tissue expression pattern of OsKMP2.The results showed that the molecular weight of the OsKMP2 is 118.39728 kDa,and it is a hydrophilic and unstable acidic protein.Secondary structure prediction revealed that it primarily consists ofα-helices(69.45%),random coils(25.19%),and extended strands(5.36%).The gene was expressed in various rice tissues,with the highest expression level observed in leaves.These results indicate that the OsKMP2 gene exhibits high evolutionary conservation and functional diversity in rice.展开更多
Mandarin fish(Siniperca scherzeri) has high market prices and significant market potential in China because of its highquality meat and high nutritional value. However, due to the limited scale of aquaculture, meeting...Mandarin fish(Siniperca scherzeri) has high market prices and significant market potential in China because of its highquality meat and high nutritional value. However, due to the limited scale of aquaculture, meeting the market demand is difficult, making the effective development of the aquaculture potential of mandarin fish an important challenge for the industry. In this study, a 30-d breeding experiment was conducted on mandarin fish larvae under three photoperiod conditions: G1 8 h light:16 h dark(8L:16D), G2 12 h light:12 h dark(12L:12D), and G3 16 h light:8 h dark(16L:8D). The results showed that the G2 group exhibited the best growth performance and development status, with final body weights, weight gain rates, and specific growth rates all higher than those of the other two groups(P < 0.05). Observations of sections from each group revealed that the intestinal villi length and muscle thickness of the G2 group were significantly greater than those of the other two groups(P < 0.05). The G2 group inhibited the transcriptional activation of key circadian rhythm genes, including nr1d2a, nr1d1 and per1, while upregulating the expression of BMAL1 in S. scherzeri.The activation of both the insulin signalling pathway and the Fox O signalling pathway enhanced the efficient secretion of insulin, which subsequently played a critical role in regulating fatty acid metabolism. This active fatty acid metabolism provided an optimal energy supply, ensuring that other nutrients were fully utilized during the growth and development process while minimizing unnecessary nutrient loss. Consequently, this mechanism effectively promoted the overall growth and development of S. scherzeri. This study was the first to elucidate the transcriptomic expression patterns of S. scherzeri under varying photoperiod conditions. In response to the cyclic alternation of day and night, S. scherzeri regulated their metabolic levels and the transcriptional activation of downstream target genes via insulin signalling.展开更多
E3 ubiquitin ligases are participated in numerous processes, regulating the response to biotic and abiotic stresses. Botrytis susceptible1 interactor (BOI) is a RING (Really Interesting New Gene)-type E3 ligase that m...E3 ubiquitin ligases are participated in numerous processes, regulating the response to biotic and abiotic stresses. Botrytis susceptible1 interactor (BOI) is a RING (Really Interesting New Gene)-type E3 ligase that mediates the ubiquitination of BOS1 (Botrytis susceptible1), a transcription factor involved in stress and pathogen responses. Although BOI is an E3 ligase, there are reports to show that BOI interacts with target proteins such as DELLAs or CONSTANS to repress gibberellin responses and flowering without the degradation of the target proteins. In this article, we utilize diversified methods to comprehensively analyze the expression pattern, interaction network and function of BOI gene. Firstly, 1800 bp upstream region of BOI gene from Arabidopsis thaliana (Arabidopsis) genome was isolated, and fused GUS reporter gene. The resulting expression cassette was introduced into wild-type Arabidopsis through Agrobacterium-mediated transformation. The result demonstrated that BOI gene was expressed predominantly in leaves, siliques, young roots, and flowering tissues, indicating that BOI gene may be involved in multiple processes in plant growth and development in Arabidopsis. Besides, eight candidate interacting proteins were obtained from the Arabidopsis cDNA library via yeast two-hybrid technology, including EXO70E2 (AT5G61010), WRKY7 (AT4G24240), WRKY11 (AT4G31550), WRKY17 (AT2G24570), UBP20 (AT4G17895), L5 (AT1G12290), SAUR9 (AT4G36110) and TCP21 (AT5G08330). Functional analysis of these candidate interacting proteins manifested that they related to multiple pathways, including biological and abiotic stress, programmed cell death, protein degradation, material metabolism and transcriptional regulation. In addition, the results of the transient assay proclaimed that BOI protein affects the protein stability of EXO70E2 and L5 through its E3 ubiquitin ligase activity. Our results provide novel clues for a better understanding of molecular mechanisms underlying BOI-mediated regulations.展开更多
bHLH transcription factors,widely exist in various plants,and are vital for the growth and development of these plants.Among them,many have been implicated in anthocyanin biosynthesis across various plants.In the pres...bHLH transcription factors,widely exist in various plants,and are vital for the growth and development of these plants.Among them,many have been implicated in anthocyanin biosynthesis across various plants.In the present study,a PdbHLH57 gene,belonging to the bHLH IIIf group,was characterized,which was isolated and cloned from the colored-leaf poplar‘Zhongshancaiyun’(ZSCY).The cDNA sequence of PdbHLH57 was 1887 base pairs,and the protein encoded by PdbHLH57 had 628 amino acids,the isoelectric point and molecular weight of which were 6.26 and 69.75 kDa,respectively.Through bioinformatics analysis,PdbHLH57 has been classified into the IIIf bHLH subgroup,with many members of this subgroup known to participate in anthocyanin biosynthesis.The subcellular localization analysis conducted in the leaf protoplasts of‘ZSCY’revealed that the PdbHLH57 protein is specifically localized in the nucleus.The transcription activation analysis was also conducted,and the results showed that the PdbHLH57 protein had self-transcription activation.To better explore the functions of the PdbHLH57 protein,two parts of this protein(PdbHLH57-1,PdbHLH57-2)were split to detect their transcriptional activation activity.The results indicated that PdbHLH57-1(1-433aa)had self-transcription activation,and PdbHLH57-2(433-628aa)had no transcription activation.The expression of PdbHLH57 peaked in June during different developmental stages in‘ZSCY’,and it was most highly expressed in the phloem among various tissues.These findings offer a basis for understanding the role of PdbHLH57 in colored-leaf poplar.展开更多
Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development...Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development.In this study,71 members of the BpGST family were identified from the entire Betula platyphylla Suk.genome.Most of the members encode proteins with amino acid lengths ranging from 101 to 875 and were localized to the cytoplasm by a prediction.BpGSTs can be divided into seven subfamilies,with a majority of birch U and F subfamily members according to gene structure,conserved motifs and evolutionary analysis.GST family genes showed collinearity with 22 genes in Oryza sativa L.,and three genes in Arabidopsis thaliana;promoter cis-acting elements predicted that the GST gene family is functional in growth,hormone regulation,and abiotic stress response.Most members of the F subfamily of GST(BpGSTFs)were expressed in roots,stems,leaves,and petioles,with the most expression observed in leaves.On the basis of the expression profiles of F subfamily genes(BpGSTF1 to BpGSTF13)during salt,mannitol and ABA stress,BpGSTF proteins seem to have multiple functions depending on the type of abiotic stress;for instance,BpGSTs may function at different times during abiotic stress.This study enhances understanding of the GST gene family and provides a basis for further exploration of their function in birch.展开更多
The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and...The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and mixed reality applications.Alongside the controlled synthesis of high-performance QDs,a reliable QD patterning technology is crucial in overcoming this challenge.Among the various methods available,photolithography-based patterning technologies show great potentials in producing ultra-fine QD patterns at micron scale.This review article presents the recent advancements in the field of QD patterning using photolithography techniques and explores their applications in micro-display technology.Firstly,we discuss QD patterning through photolithography techniques employing photoresist(PR),which falls into two categories:PRassisted photolithography and photolithography of QDPR.Subsequently,direct photolithography techniques based on photo-induced crosslinking of photosensitive groups and photo-induced ligand cleavage mechanisms are thoroughly reviewed.Meanwhile,we assess the performance of QD arrays fabricated using these photolithography techniques and their integration into QD light emitting diode display devices as well as color conversionbased micro light emitting diode display devices.Lastly,we summarize the most recent developments in this field and outline future prospects.展开更多
Objective:To explore which pattern recognition receptors(PRRs)play a key role in the development of hand,foot,and mouth disease(HFMD)by analyzing PRR-associated genes.Methods:We conducted a comparative analysis of PRR...Objective:To explore which pattern recognition receptors(PRRs)play a key role in the development of hand,foot,and mouth disease(HFMD)by analyzing PRR-associated genes.Methods:We conducted a comparative analysis of PRR-associated gene expression in human peripheral blood mononuclear cells(PBMCs)infected with enterovirus 71(EV-A71)which were derived from patients with HFMD of different severities and at different stages.A total of 30 PRR-associated genes were identified as significantly upregulated both over time and across different EV-A71 isolates.Subsequently,ELISA was employed to quantify the expression of the six most prominent genes among these 30 identified genes,specifically,BST2,IRF7,IFI16,TRIM21,MX1,and DDX58.Results:Compared with those at the recovery stage,the expression levels of BST2(P=0.027),IFI16(P=0.016),MX1(P=0.046)and DDX58(P=0.008)in the acute stage of infection were significantly upregulated,while no significant difference in the expression levels of IRF7(P=0.495)and TRIM21(P=0.071)was found between different stages of the disease.The expression levels of BST2,IRF7,IFI16 and MX1 were significantly higher in children infected with single pathogen than those infected with mixed pathogens,and BST2,IRF7,IFI16 and MX1 expression levels were significantly lower in coxsackie B virus(COXB)positive patients than the negative patients.Expression levels of one or more of BST2,IRF7,IFI16,TRIM21,MX1 and DDX58 genes were correlated with PCT levels,various white blood cell counts,and serum antibody levels that reflect disease course of HFMD.Aspartate aminotransferase was correlated with BST2,MX1 and DDX58 expression levels.Conclusions:PRR-associated genes likely initiate the immune response in patients at the acute stage of HFMD.展开更多
The Hengduan Mountains,situated on the southeastern edge of the Qinghai-Tibet Plateau,are the longest and widest north-south-oriented mountain range in China,exerting a significant influence on the ecological and geog...The Hengduan Mountains,situated on the southeastern edge of the Qinghai-Tibet Plateau,are the longest and widest north-south-oriented mountain range in China,exerting a significant influence on the ecological and geographical pattern.Understanding the topographic and geomorphological characteristics of the Hengduan Mountains is fundamental and crucial for research in related fields such as ecology,geography,and sustainability.In this study,Digital Elevation Model(DEM)data were utilized to extract and analyze the topography and geomorphology(TG)pattern.TG maps have been developed to quantitatively classify the TG types in the Hengduan Mountains by combining the five factors of elevation,slope,aspect,relief and landform.The spatial distribution and quantitative characteristics of these factors were mapped and investigated using geographic information systems.The results revealed that:(1)The Hengduan Mountains exhibit an elongated north-south distribution,with an average elevation of approximately 3746 m,an average slope of around 25°,and an average relief of about 266 m.(2)The Hengduan Mountains display significant elevation differences,with an overall high elevation,characterized by a trend of lower elevation in the east and higher elevation in the west,as well as irregular orientations of various aspects.(3)The 19 landform types were identified,the landform types of the Hengduan Mountains are primarily composed of low-relief high-mountains(42.0618%),low-relief mid-mountains(22.4624%),and high-elevation hills(20.5839%).The results of the study can provide data and information support for the ecology,environmental protection and sustainable development of the Hengduan Mountains.展开更多
Objective weather classification methods have been extensively applied to identify dominant ozone-favorable synoptic weather patterns(SWPs),however,the consistency of different classification methods is rarely examine...Objective weather classification methods have been extensively applied to identify dominant ozone-favorable synoptic weather patterns(SWPs),however,the consistency of different classification methods is rarely examined.In this study,we apply two widely-used objective methods,the self-organizing map(SOM)and K-means clustering analysis,to derive ozone-favorable SWPs at four Chinese megacities in 2015-2022.We find that the two algorithms are largely consistent in recognizing dominant ozone-favorable SWPs for four Chinese megacities.In the case of classifying six SWPs,the derived circulation fields are highly similar with a spatial correlation of 0.99 between the two methods,and the difference in themean frequency of each SWP is less than 7%.The six dominant ozone-favorable SWPs in Guangzhou are all characterized by anomaly higher radiation and temperature,lower cloud cover,relative humidity,and wind speed,and stronger subsidence compared to climatology mean.We find that during 2015-2022,the occurrence of ozone-favorable SWPs days increases significantly at a rate of 3.2 days/year,faster than the increases in the ozone exceedance days(3.0 days/year).The interannual variability between the occurrence of ozone-favorable SWPs and ozone exceedance days are generally consistent with a temporal correlation coefficient of 0.6.In particular,the significant increase in ozone-favorable SWPs in 2022,especially the Subtropical High type which typically occurs in September,is consistent with a long-lasting ozone pollution episode in Guangzhou during September 2022.Our results thus reveal that enhanced frequency of ozone-favorable SWPs plays an important role in the observed 2015-2022 ozone increase in Guangzhou.展开更多
Rock fractures or faults could be reactivated by the thermal stress generated during the decay process of the high-level radioactive waste in deep geological repositories(DGRs).Understanding thermoshearing behavior an...Rock fractures or faults could be reactivated by the thermal stress generated during the decay process of the high-level radioactive waste in deep geological repositories(DGRs).Understanding thermoshearing behavior and its influencing factors are important for the long-term performance assessment of DGRs.We designed multistage mechanical(M)shear tests and thermomechanical(TM)shear tests on three 100 mm-cubic granite specimens,each containing a single inclined sawcut fracture with distinct microroughness of 8-15μm.M test results have shown that the static friction coefficient of the granite fracture decreases in proportion to the increase in the logarithm of the loading rate within the range of 1-15 kPa/s.For the given heating and boundary conditions,thermal loading rate,i.e.,thermal stress increment with heating time,is measured to be around 1 kPa/s in the fractured granite.Thermoshearing can be well predicted by the linear Mohr-Coulomb failure envelope deduced from M shear tests employing a loading rate that is comparable with the thermal loading rate.The granite fractures exhibited two distinct slip patterns during the mechanical shearing,i.e.,stick-slip observed in the smooth fracture and stable sliding in the relatively rough surface.In contrast,the mechanical loading rate(1-15 kPa/s)investigated in this study appears to not influence the slip pattern.Unlike those in M shear tests,thermoshearing in both smooth and relatively rough fractures show stable sliding with a very slow peak velocity of around 0.002μm/s.展开更多
In the era of the digital economy,digital trade has demonstrated strong vitality,becoming a crucial driving force for the highquality development of national and regional economies.However,understanding the resilience...In the era of the digital economy,digital trade has demonstrated strong vitality,becoming a crucial driving force for the highquality development of national and regional economies.However,understanding the resilience of digital trade in the face of external crises is an important topic.Taking the backdrop of Sino-US trade friction,this paper constructs a resilience index system for digital trade.It utilizes entropy method,kernel density estimation,and ArcGIS mapping to calculate and visually analyze the resilience of China’s digital trade from 2017 to 2021.Additionally,a Tobit model is constructed to explore the main influencing factors of digital trade resilience patterns.The research findings indicate:1)temporally,during the period of Sino-US trade friction,China’s digital trade resilience shows an overall upward trend,but there are regional differences in resilience levels across the country,with a severe polarization phenomenon.2)Spatially,high resilience is observed in the eastern and central regions of China,while the western and northeastern regions exhibit low resilience.3)From a dimensional perspective,the resistance of digital trade resilience displays a spatial distribution of high values in the east and low values in the west.The recovery force is aggregated along coastal areas,and the renewal force tends to aggregate along the eastern coastline.4)Factors such as economic scale,industrial structure,urbanization rate,government fiscal expenditure,and technological talents significantly promote the enhancement of digital trade resilience.This study reveals the dynamic characteristics and influencing factors of digital trade resilience in responding to external shocks,providing theoretical basis and policy suggestions for enhancing digital trade resilience,and promoting high-quality economic development in China.展开更多
A custom micro-arc oxidation(MAO)apparatus is employed to produce coatings under optimized constant voltage–current two-step power supply mode.Various analytical techniques,including scanning electron microscopy,conf...A custom micro-arc oxidation(MAO)apparatus is employed to produce coatings under optimized constant voltage–current two-step power supply mode.Various analytical techniques,including scanning electron microscopy,confocal laser microscopy,X-ray diffraction,X-ray photoelectron spectroscopy,transmission electron microscopy,and electrochemical analysis,are employed to characterize MAO coatings at different stages of preparation.MAO has MgO,hydroxyapatite,Ca_(3)(PO_(4))_(2),and Mg2SiO4 phases.Its microstructure of the coating is characterized by"multiple breakdowns,pores within pores",and"repaired blind pores".The porosity and the uniformity of MAO coating first declines in the constant voltage mode,then augments while the discharge phenomenon takes place,and finally decreases in the repair stage.These analyses reveal a four-stage growth pattern for MAO coatings:anodic oxidation stage,micro-arc oxidation stage,breakdown stage,and repairing stage.During anodic oxidation and MAO stages,inward growth prevails,while the breakdown stage sees outward and accelerated growth.Simultaneous inward and outward growth in the repair stage results in a denser,more uniform coating with increased thickness and improved corrosion resistance.展开更多
Rice is a poor source of folate,an essential micronutrient for the body.Biofortification offers an effective way to enhance the folate content of rice and alleviate folate deficiencies in humans.In this study,we confi...Rice is a poor source of folate,an essential micronutrient for the body.Biofortification offers an effective way to enhance the folate content of rice and alleviate folate deficiencies in humans.In this study,we confirmed that OsADCS and OsGTPCHI,encoding the initial enzymes necessary for folate synthesis,positively regulate folate accumulation in knockout mutants of both japonica and indica rice backgrounds.The folate content in the low-folate japonica variety was slightly increased by the expression of the indica alleles driven by the endosperm-specific promoter.We further obtained co-expression lines by stacking OsADCS and OsGTPCHI genes;the folate accumulation in brown rice and polished rice reached 5.65μg/g and 2.95μg/g,respectively,representing 37.9-fold and 26.5-fold increases compared with the wild type.Transcriptomic analysis of rice grains from six transgenic lines showed that folate changes affected biological pathways involved in the synthesis and metabolism of rice seed storage substances,while the expression of other folate synthesis genes was weakly regulated.In addition,we identified Aus rice as a high-folate germplasm carrying superior haplotypes of OsADCS and OsGTPCHI through natural variation.This study provides an alternative and effective complementary strategy for rice biofortification,promoting the rational combination of metabolic engineering and conventional breeding to breed high-folate varieties.展开更多
The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set inco...The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents.展开更多
Clarifying the mechanisms that control the evolution of territorial space patterns is essential for regulating and optimizing the geographical structure and processes related to sustainable development.Using the Guang...Clarifying the mechanisms that control the evolution of territorial space patterns is essential for regulating and optimizing the geographical structure and processes related to sustainable development.Using the Guangdong and Guangxi sections of the Pearl River Basin as examples,the transfer-matrix method and standard deviation ellipse model were applied to characterize the evolution of territorial space patterns from 1990 to 2020.A trend surface analysis and the Theil index were used to analyze regional differences in the evolution process,and geodetectors were used to identify the underlying mechanisms of the changes.There were three key results.(1)In these critical areas of the Pearl River Basin,agricultural and ecological spaces have rapidly declined due to urban expansion,with transfers between these spaces dominating the evolution of territorial space patterns.Spatial pattern changes in the Guangdong section were more intense than in the Guangxi section.(2)Regional differences in urban space have decreased,whereas differences in agricultural and ecological spaces have intensified.Driven by socio-economic growth,the cross-regional transfers of territorial space have created a“high in the east,while low in the west”inter-regional difference,and a“high in the south,while low in the north”intra-regional difference shaped by natural conditions.The regional differences in space patterns were greater in Guangdong than in Guangxi.(3)The evolution of watershed territorial space patterns resulted from scale changes,locational shifts,structural reorganizations,and directional changes driven by multiple factors.Natural environment,social life,economic development,and policy factors played foundational,leading,key driving,and guiding roles,respectively.Additionally,the regional differences in the evolution of watershed territorial space patterns originated from the differential transmission of the influence of various factors affecting spatial evolution.Enhancing urban space efficiency,restructuring agricultural space,and optimizing ecological space are key strategies for building a complementary and synergistic territorial space pattern in the basin.展开更多
Laminarin oligosaccharides(LOSs)with a specific degree of polymerization prepared through the laminarin degradation via laminarinase present more significant nutritional functions and application values.Human intestin...Laminarin oligosaccharides(LOSs)with a specific degree of polymerization prepared through the laminarin degradation via laminarinase present more significant nutritional functions and application values.Human intestinal bacteria are promising potential producers of novel carbohydrate-active enzymes with unique properties.Here,a novel glycoside hydrolase family 128(GH128)laminarinase OUC-BsLam26 from the intestinal bacterium Bacteroides sp.CBA7301 was heterologously expressed and characterized.The recombinant OUC-BsLam26 with a molecular mass of 49.86 kDa exhibits highest activity(6.60 U/mg)at 45℃ and pH 6.0,which shows noticeable temperature and pH stability.The purified OUC-BsLam26 could degrade laminarin via an endo-type mode with the generation of laminaripentaose,laminaritetraose,laminaritriose,and laminaribiose,among them,laminaritetraose is the principal product,which accounts for 45.25% of the total products,which is significantly different from the reported GH128 laminarinases.The minimum recognition substrate of OUC-BsLam26 is laminarihexaose.Furthermore,OUC-BsLam26 also could catalyze the transglycosylation process with the production of some novel glycosides.Altogether,the intestinal bacterium Bacteroides sp.CBA7301 contains laminarinase with unique product composition and OUC-BsLam26 is a hopeful bio-catalyst with the potential to produce laminaritetraose and some novel glycosides.展开更多
BACKGROUND Addressing oculoplastic conditions in the preoperative period ensures both the safety and functional success of any ophthalmic procedure.Some oculoplastic conditions,like nasolacrimal duct obstruction,have ...BACKGROUND Addressing oculoplastic conditions in the preoperative period ensures both the safety and functional success of any ophthalmic procedure.Some oculoplastic conditions,like nasolacrimal duct obstruction,have been extensively studied,whereas others,like eyelid malposition and thyroid eye disease,have received minimal or no research.AIM To investigate the current practice patterns among ophthalmologists while treating concomitant oculoplastic conditions before any subspecialty ophthalmic intervention.METHODS A cross-sectional survey was disseminated among ophthalmologists all over India.The survey included questions related to pre-operative evaluation,anaesthetic and surgical techniques preferred,post-operative care,the use of adjunctive therapies,and patient follow-up patterns.RESULTS A total of 180 ophthalmologists responded to the survey.Most practitioners(89%)felt that the ROPLAS test was sufficient during pre-operative evaluation before any subspecialty surgery was advised.The most common surgical techniques employed were lacrimal drainage procedures(Dacryocystorhinostomy)(63.3%),eyelid malposition repair(36.9%),and ptosis repair(58.7%).Post-operatively,47.7%of respondents emphasized that at least a 4-week gap should be maintained after lacrimal drainage procedures and eyelid surgeries.Sixty-seven percent of ophthalmologists felt that topical anaesthetic procedures should be preferred while performing ocular surgeries in thyroid eye disease patients.CONCLUSION Approximately 50%of ophthalmologists handle prevalent oculoplastic issues themselves,seeking the expertise of an oculoplastic surgeon under particular conditions.Many ophthalmologists still favor using ROPLAS as a preliminary screening method before proceeding with cataract surgery.Eyelid conditions and thyroid eye disease are not as commonly addressed before subspecialty procedures compared to issues like nasolacrimal duct obstruction and periocular infections.展开更多
Objective INF2 is a member of the formins family.Abnormal expression and regulation of INF2 have been associated with the progression of various tumors,but the expression and role of INF2 in hepatocellular carcinoma(H...Objective INF2 is a member of the formins family.Abnormal expression and regulation of INF2 have been associated with the progression of various tumors,but the expression and role of INF2 in hepatocellular carcinoma(HCC)remain unclear.HCC is a highly lethal malignant tumor.Given the limitations of traditional treatments,this study explored the expression level,clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets.Methods In this study,we used public databases to analyze the expression of INF2 in pan-cancer and HCC,as well as the impact of INF2 expression levels on HCC prognosis.Quantitative real time polymerase chain reaction(RT-qPCR),Western blot,and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues.The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples.Subsequently,the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments.Finally,the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments.Results INF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival,liver cirrhosis and pathological differentiation of HCC patients.The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC.In vivo and in vitro HCC models,upregulated expression of INF2 triggers the proliferation and migration of the HCC cell,while knockdown of INF2 could counteract this effect.INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression,thus promoting tumor progression.Conclusion INF2 is highly expressed in HCC and is associated with poor prognosis.High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression,and targeting INF2 may be beneficial for HCC patients with high expression of INF2.展开更多
基金funded by a grant from the Russian Science Foundation № 24-24-00354
文摘It has recently become evident that the de novo emergence of genes is widespread and documented for a variety of organisms.De novo genes frequently emerge in proximity to existing genes,forming gene overlaps.Here,we present an analysis of the evolutionary history of a putative de novo gene,lawc,which overlaps with the conserved Trf2 gene,which encodes a general transcription factor in Drosophila melanogaster.We demonstrate that lawc emerged approximately 68 million years ago in the 5'-untranslated region(UTR)of Trf2 and displays an extensive spatiotemporal expression pattern.One of the most remarkable features of the lawc evolutionary history is that its emergence was facilitated by the engagement of Drosophilidae-specific short,highly conserved regions located in Trf2 introns.This represents a unique example of putative de novo gene birth involving conserved DNA regions localized in introns of conserved genes.The observed lawc expression pattern may be due to the overlap of lawc with the 5'-UTR of Trf2.This study not only enriches our understanding of gene evolution but also highlights the complex interplay between genetic conservation and innovation.
基金Supported by College Student Innovation and Entrepreneurship Training Program(S202210553003)Hunan Provincial Education Department Outstanding Youth Research Project(23B0820).
文摘Kinesins are a superfamily of proteins widely present in eukaryotes,playing crucial roles in plant cell wall assembly,cell elongation regulation,gravity sensing,and fertility control.In this study,bioinformatics analysis of the OsKMP2 gene(LOC_Os02g28850)was performed using online tools such as ExPASy-ProtParam,ProtScale,CD-search,and DNAMAN software.Additionally,qRT-PCR was employed to analyze the tissue expression pattern of OsKMP2.The results showed that the molecular weight of the OsKMP2 is 118.39728 kDa,and it is a hydrophilic and unstable acidic protein.Secondary structure prediction revealed that it primarily consists ofα-helices(69.45%),random coils(25.19%),and extended strands(5.36%).The gene was expressed in various rice tissues,with the highest expression level observed in leaves.These results indicate that the OsKMP2 gene exhibits high evolutionary conservation and functional diversity in rice.
基金The Science and Technology Plan of Dalian under contract Nos 2023RO058 and 2022RQ060the Liaoning Province Natural Science Planning Fund Project under contract No. 2022-BS-273+1 种基金the Liaoning Provincial Department of Education Basic Research Project under contract No. LJKQZ20222357the Discipline Construction Funding for Marine Science Subject of Dalian Ocean University。
文摘Mandarin fish(Siniperca scherzeri) has high market prices and significant market potential in China because of its highquality meat and high nutritional value. However, due to the limited scale of aquaculture, meeting the market demand is difficult, making the effective development of the aquaculture potential of mandarin fish an important challenge for the industry. In this study, a 30-d breeding experiment was conducted on mandarin fish larvae under three photoperiod conditions: G1 8 h light:16 h dark(8L:16D), G2 12 h light:12 h dark(12L:12D), and G3 16 h light:8 h dark(16L:8D). The results showed that the G2 group exhibited the best growth performance and development status, with final body weights, weight gain rates, and specific growth rates all higher than those of the other two groups(P < 0.05). Observations of sections from each group revealed that the intestinal villi length and muscle thickness of the G2 group were significantly greater than those of the other two groups(P < 0.05). The G2 group inhibited the transcriptional activation of key circadian rhythm genes, including nr1d2a, nr1d1 and per1, while upregulating the expression of BMAL1 in S. scherzeri.The activation of both the insulin signalling pathway and the Fox O signalling pathway enhanced the efficient secretion of insulin, which subsequently played a critical role in regulating fatty acid metabolism. This active fatty acid metabolism provided an optimal energy supply, ensuring that other nutrients were fully utilized during the growth and development process while minimizing unnecessary nutrient loss. Consequently, this mechanism effectively promoted the overall growth and development of S. scherzeri. This study was the first to elucidate the transcriptomic expression patterns of S. scherzeri under varying photoperiod conditions. In response to the cyclic alternation of day and night, S. scherzeri regulated their metabolic levels and the transcriptional activation of downstream target genes via insulin signalling.
文摘E3 ubiquitin ligases are participated in numerous processes, regulating the response to biotic and abiotic stresses. Botrytis susceptible1 interactor (BOI) is a RING (Really Interesting New Gene)-type E3 ligase that mediates the ubiquitination of BOS1 (Botrytis susceptible1), a transcription factor involved in stress and pathogen responses. Although BOI is an E3 ligase, there are reports to show that BOI interacts with target proteins such as DELLAs or CONSTANS to repress gibberellin responses and flowering without the degradation of the target proteins. In this article, we utilize diversified methods to comprehensively analyze the expression pattern, interaction network and function of BOI gene. Firstly, 1800 bp upstream region of BOI gene from Arabidopsis thaliana (Arabidopsis) genome was isolated, and fused GUS reporter gene. The resulting expression cassette was introduced into wild-type Arabidopsis through Agrobacterium-mediated transformation. The result demonstrated that BOI gene was expressed predominantly in leaves, siliques, young roots, and flowering tissues, indicating that BOI gene may be involved in multiple processes in plant growth and development in Arabidopsis. Besides, eight candidate interacting proteins were obtained from the Arabidopsis cDNA library via yeast two-hybrid technology, including EXO70E2 (AT5G61010), WRKY7 (AT4G24240), WRKY11 (AT4G31550), WRKY17 (AT2G24570), UBP20 (AT4G17895), L5 (AT1G12290), SAUR9 (AT4G36110) and TCP21 (AT5G08330). Functional analysis of these candidate interacting proteins manifested that they related to multiple pathways, including biological and abiotic stress, programmed cell death, protein degradation, material metabolism and transcriptional regulation. In addition, the results of the transient assay proclaimed that BOI protein affects the protein stability of EXO70E2 and L5 through its E3 ubiquitin ligase activity. Our results provide novel clues for a better understanding of molecular mechanisms underlying BOI-mediated regulations.
基金supported by the Natural Science Foundation of Jiangsu Province,China(BK20242007)the Natural Science Foundation of China(32271916)the Jiangsu Agricultural Science and Technology Innovation Fund[CX(24)3048].
文摘bHLH transcription factors,widely exist in various plants,and are vital for the growth and development of these plants.Among them,many have been implicated in anthocyanin biosynthesis across various plants.In the present study,a PdbHLH57 gene,belonging to the bHLH IIIf group,was characterized,which was isolated and cloned from the colored-leaf poplar‘Zhongshancaiyun’(ZSCY).The cDNA sequence of PdbHLH57 was 1887 base pairs,and the protein encoded by PdbHLH57 had 628 amino acids,the isoelectric point and molecular weight of which were 6.26 and 69.75 kDa,respectively.Through bioinformatics analysis,PdbHLH57 has been classified into the IIIf bHLH subgroup,with many members of this subgroup known to participate in anthocyanin biosynthesis.The subcellular localization analysis conducted in the leaf protoplasts of‘ZSCY’revealed that the PdbHLH57 protein is specifically localized in the nucleus.The transcription activation analysis was also conducted,and the results showed that the PdbHLH57 protein had self-transcription activation.To better explore the functions of the PdbHLH57 protein,two parts of this protein(PdbHLH57-1,PdbHLH57-2)were split to detect their transcriptional activation activity.The results indicated that PdbHLH57-1(1-433aa)had self-transcription activation,and PdbHLH57-2(433-628aa)had no transcription activation.The expression of PdbHLH57 peaked in June during different developmental stages in‘ZSCY’,and it was most highly expressed in the phloem among various tissues.These findings offer a basis for understanding the role of PdbHLH57 in colored-leaf poplar.
基金supported by the National Key Research and Development Program of China(No.2021YFD2200304)FundamentalResearch Funds for the Central Universities(2572022DQ08)the National Natural Science Foundation of China(No32171738).
文摘Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development.In this study,71 members of the BpGST family were identified from the entire Betula platyphylla Suk.genome.Most of the members encode proteins with amino acid lengths ranging from 101 to 875 and were localized to the cytoplasm by a prediction.BpGSTs can be divided into seven subfamilies,with a majority of birch U and F subfamily members according to gene structure,conserved motifs and evolutionary analysis.GST family genes showed collinearity with 22 genes in Oryza sativa L.,and three genes in Arabidopsis thaliana;promoter cis-acting elements predicted that the GST gene family is functional in growth,hormone regulation,and abiotic stress response.Most members of the F subfamily of GST(BpGSTFs)were expressed in roots,stems,leaves,and petioles,with the most expression observed in leaves.On the basis of the expression profiles of F subfamily genes(BpGSTF1 to BpGSTF13)during salt,mannitol and ABA stress,BpGSTF proteins seem to have multiple functions depending on the type of abiotic stress;for instance,BpGSTs may function at different times during abiotic stress.This study enhances understanding of the GST gene family and provides a basis for further exploration of their function in birch.
基金supported by the National Natural Science Foundation of China(62374142,12175189 and 11904302)External Cooperation Program of Fujian(2022I0004)+1 种基金Fundamental Research Funds for the Central Universities(20720190005 and 20720220085)Major Science and Technology Project of Xiamen in China(3502Z20191015).
文摘The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and mixed reality applications.Alongside the controlled synthesis of high-performance QDs,a reliable QD patterning technology is crucial in overcoming this challenge.Among the various methods available,photolithography-based patterning technologies show great potentials in producing ultra-fine QD patterns at micron scale.This review article presents the recent advancements in the field of QD patterning using photolithography techniques and explores their applications in micro-display technology.Firstly,we discuss QD patterning through photolithography techniques employing photoresist(PR),which falls into two categories:PRassisted photolithography and photolithography of QDPR.Subsequently,direct photolithography techniques based on photo-induced crosslinking of photosensitive groups and photo-induced ligand cleavage mechanisms are thoroughly reviewed.Meanwhile,we assess the performance of QD arrays fabricated using these photolithography techniques and their integration into QD light emitting diode display devices as well as color conversionbased micro light emitting diode display devices.Lastly,we summarize the most recent developments in this field and outline future prospects.
文摘Objective:To explore which pattern recognition receptors(PRRs)play a key role in the development of hand,foot,and mouth disease(HFMD)by analyzing PRR-associated genes.Methods:We conducted a comparative analysis of PRR-associated gene expression in human peripheral blood mononuclear cells(PBMCs)infected with enterovirus 71(EV-A71)which were derived from patients with HFMD of different severities and at different stages.A total of 30 PRR-associated genes were identified as significantly upregulated both over time and across different EV-A71 isolates.Subsequently,ELISA was employed to quantify the expression of the six most prominent genes among these 30 identified genes,specifically,BST2,IRF7,IFI16,TRIM21,MX1,and DDX58.Results:Compared with those at the recovery stage,the expression levels of BST2(P=0.027),IFI16(P=0.016),MX1(P=0.046)and DDX58(P=0.008)in the acute stage of infection were significantly upregulated,while no significant difference in the expression levels of IRF7(P=0.495)and TRIM21(P=0.071)was found between different stages of the disease.The expression levels of BST2,IRF7,IFI16 and MX1 were significantly higher in children infected with single pathogen than those infected with mixed pathogens,and BST2,IRF7,IFI16 and MX1 expression levels were significantly lower in coxsackie B virus(COXB)positive patients than the negative patients.Expression levels of one or more of BST2,IRF7,IFI16,TRIM21,MX1 and DDX58 genes were correlated with PCT levels,various white blood cell counts,and serum antibody levels that reflect disease course of HFMD.Aspartate aminotransferase was correlated with BST2,MX1 and DDX58 expression levels.Conclusions:PRR-associated genes likely initiate the immune response in patients at the acute stage of HFMD.
基金funded by the Yunnan Provincial Basic Research Joint Special Fund Project(2019FH001(-052))Cangshan Mountain Synthetic Scientific Expeditions Fund.
文摘The Hengduan Mountains,situated on the southeastern edge of the Qinghai-Tibet Plateau,are the longest and widest north-south-oriented mountain range in China,exerting a significant influence on the ecological and geographical pattern.Understanding the topographic and geomorphological characteristics of the Hengduan Mountains is fundamental and crucial for research in related fields such as ecology,geography,and sustainability.In this study,Digital Elevation Model(DEM)data were utilized to extract and analyze the topography and geomorphology(TG)pattern.TG maps have been developed to quantitatively classify the TG types in the Hengduan Mountains by combining the five factors of elevation,slope,aspect,relief and landform.The spatial distribution and quantitative characteristics of these factors were mapped and investigated using geographic information systems.The results revealed that:(1)The Hengduan Mountains exhibit an elongated north-south distribution,with an average elevation of approximately 3746 m,an average slope of around 25°,and an average relief of about 266 m.(2)The Hengduan Mountains display significant elevation differences,with an overall high elevation,characterized by a trend of lower elevation in the east and higher elevation in the west,as well as irregular orientations of various aspects.(3)The 19 landform types were identified,the landform types of the Hengduan Mountains are primarily composed of low-relief high-mountains(42.0618%),low-relief mid-mountains(22.4624%),and high-elevation hills(20.5839%).The results of the study can provide data and information support for the ecology,environmental protection and sustainable development of the Hengduan Mountains.
基金supported by the Guangdong Basic and Applied Basic Research project (No.2020B0301030004)the Key-Area Research and Development Program of Guangdong Province (No.2020B1111360003)+1 种基金the National Natural Science Foundation of China (No.42105103)the Guangdong Basic and Applied Basic Research Foundation (No.2022A1515011554).
文摘Objective weather classification methods have been extensively applied to identify dominant ozone-favorable synoptic weather patterns(SWPs),however,the consistency of different classification methods is rarely examined.In this study,we apply two widely-used objective methods,the self-organizing map(SOM)and K-means clustering analysis,to derive ozone-favorable SWPs at four Chinese megacities in 2015-2022.We find that the two algorithms are largely consistent in recognizing dominant ozone-favorable SWPs for four Chinese megacities.In the case of classifying six SWPs,the derived circulation fields are highly similar with a spatial correlation of 0.99 between the two methods,and the difference in themean frequency of each SWP is less than 7%.The six dominant ozone-favorable SWPs in Guangzhou are all characterized by anomaly higher radiation and temperature,lower cloud cover,relative humidity,and wind speed,and stronger subsidence compared to climatology mean.We find that during 2015-2022,the occurrence of ozone-favorable SWPs days increases significantly at a rate of 3.2 days/year,faster than the increases in the ozone exceedance days(3.0 days/year).The interannual variability between the occurrence of ozone-favorable SWPs and ozone exceedance days are generally consistent with a temporal correlation coefficient of 0.6.In particular,the significant increase in ozone-favorable SWPs in 2022,especially the Subtropical High type which typically occurs in September,is consistent with a long-lasting ozone pollution episode in Guangzhou during September 2022.Our results thus reveal that enhanced frequency of ozone-favorable SWPs plays an important role in the observed 2015-2022 ozone increase in Guangzhou.
基金supported by the International Collaborative Research Program(fundamental research,2021-2023)funded by Korea Institute of Civil Engineering and Building Technology(KICT).
文摘Rock fractures or faults could be reactivated by the thermal stress generated during the decay process of the high-level radioactive waste in deep geological repositories(DGRs).Understanding thermoshearing behavior and its influencing factors are important for the long-term performance assessment of DGRs.We designed multistage mechanical(M)shear tests and thermomechanical(TM)shear tests on three 100 mm-cubic granite specimens,each containing a single inclined sawcut fracture with distinct microroughness of 8-15μm.M test results have shown that the static friction coefficient of the granite fracture decreases in proportion to the increase in the logarithm of the loading rate within the range of 1-15 kPa/s.For the given heating and boundary conditions,thermal loading rate,i.e.,thermal stress increment with heating time,is measured to be around 1 kPa/s in the fractured granite.Thermoshearing can be well predicted by the linear Mohr-Coulomb failure envelope deduced from M shear tests employing a loading rate that is comparable with the thermal loading rate.The granite fractures exhibited two distinct slip patterns during the mechanical shearing,i.e.,stick-slip observed in the smooth fracture and stable sliding in the relatively rough surface.In contrast,the mechanical loading rate(1-15 kPa/s)investigated in this study appears to not influence the slip pattern.Unlike those in M shear tests,thermoshearing in both smooth and relatively rough fractures show stable sliding with a very slow peak velocity of around 0.002μm/s.
基金Under the auspices of National Natural Science Foundation of China(No.42471205)the General Scientific Research Project of Zhejiang Provincial Department of Education(No.2024JYTYB12)the Philosophy and Social Science Planning Project of Zhejiang Province(No.23NDJC109YB)。
文摘In the era of the digital economy,digital trade has demonstrated strong vitality,becoming a crucial driving force for the highquality development of national and regional economies.However,understanding the resilience of digital trade in the face of external crises is an important topic.Taking the backdrop of Sino-US trade friction,this paper constructs a resilience index system for digital trade.It utilizes entropy method,kernel density estimation,and ArcGIS mapping to calculate and visually analyze the resilience of China’s digital trade from 2017 to 2021.Additionally,a Tobit model is constructed to explore the main influencing factors of digital trade resilience patterns.The research findings indicate:1)temporally,during the period of Sino-US trade friction,China’s digital trade resilience shows an overall upward trend,but there are regional differences in resilience levels across the country,with a severe polarization phenomenon.2)Spatially,high resilience is observed in the eastern and central regions of China,while the western and northeastern regions exhibit low resilience.3)From a dimensional perspective,the resistance of digital trade resilience displays a spatial distribution of high values in the east and low values in the west.The recovery force is aggregated along coastal areas,and the renewal force tends to aggregate along the eastern coastline.4)Factors such as economic scale,industrial structure,urbanization rate,government fiscal expenditure,and technological talents significantly promote the enhancement of digital trade resilience.This study reveals the dynamic characteristics and influencing factors of digital trade resilience in responding to external shocks,providing theoretical basis and policy suggestions for enhancing digital trade resilience,and promoting high-quality economic development in China.
文摘A custom micro-arc oxidation(MAO)apparatus is employed to produce coatings under optimized constant voltage–current two-step power supply mode.Various analytical techniques,including scanning electron microscopy,confocal laser microscopy,X-ray diffraction,X-ray photoelectron spectroscopy,transmission electron microscopy,and electrochemical analysis,are employed to characterize MAO coatings at different stages of preparation.MAO has MgO,hydroxyapatite,Ca_(3)(PO_(4))_(2),and Mg2SiO4 phases.Its microstructure of the coating is characterized by"multiple breakdowns,pores within pores",and"repaired blind pores".The porosity and the uniformity of MAO coating first declines in the constant voltage mode,then augments while the discharge phenomenon takes place,and finally decreases in the repair stage.These analyses reveal a four-stage growth pattern for MAO coatings:anodic oxidation stage,micro-arc oxidation stage,breakdown stage,and repairing stage.During anodic oxidation and MAO stages,inward growth prevails,while the breakdown stage sees outward and accelerated growth.Simultaneous inward and outward growth in the repair stage results in a denser,more uniform coating with increased thickness and improved corrosion resistance.
基金supported by the Central Public-Interest Scientific Institution Basal Research Fund,China(Grant No.CPSIBRF-CNRRI-202403)。
文摘Rice is a poor source of folate,an essential micronutrient for the body.Biofortification offers an effective way to enhance the folate content of rice and alleviate folate deficiencies in humans.In this study,we confirmed that OsADCS and OsGTPCHI,encoding the initial enzymes necessary for folate synthesis,positively regulate folate accumulation in knockout mutants of both japonica and indica rice backgrounds.The folate content in the low-folate japonica variety was slightly increased by the expression of the indica alleles driven by the endosperm-specific promoter.We further obtained co-expression lines by stacking OsADCS and OsGTPCHI genes;the folate accumulation in brown rice and polished rice reached 5.65μg/g and 2.95μg/g,respectively,representing 37.9-fold and 26.5-fold increases compared with the wild type.Transcriptomic analysis of rice grains from six transgenic lines showed that folate changes affected biological pathways involved in the synthesis and metabolism of rice seed storage substances,while the expression of other folate synthesis genes was weakly regulated.In addition,we identified Aus rice as a high-folate germplasm carrying superior haplotypes of OsADCS and OsGTPCHI through natural variation.This study provides an alternative and effective complementary strategy for rice biofortification,promoting the rational combination of metabolic engineering and conventional breeding to breed high-folate varieties.
基金supported by the National Natural Science Foundation of China(No.U21B2062).
文摘The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents.
基金National Social Science Foundation Program,No.22VRC163National Natural Science Foundation of China,No.42061043+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,No.KYCX24_1008Innovation Project of Guangxi Graduate Education,No.YCSW2024473。
文摘Clarifying the mechanisms that control the evolution of territorial space patterns is essential for regulating and optimizing the geographical structure and processes related to sustainable development.Using the Guangdong and Guangxi sections of the Pearl River Basin as examples,the transfer-matrix method and standard deviation ellipse model were applied to characterize the evolution of territorial space patterns from 1990 to 2020.A trend surface analysis and the Theil index were used to analyze regional differences in the evolution process,and geodetectors were used to identify the underlying mechanisms of the changes.There were three key results.(1)In these critical areas of the Pearl River Basin,agricultural and ecological spaces have rapidly declined due to urban expansion,with transfers between these spaces dominating the evolution of territorial space patterns.Spatial pattern changes in the Guangdong section were more intense than in the Guangxi section.(2)Regional differences in urban space have decreased,whereas differences in agricultural and ecological spaces have intensified.Driven by socio-economic growth,the cross-regional transfers of territorial space have created a“high in the east,while low in the west”inter-regional difference,and a“high in the south,while low in the north”intra-regional difference shaped by natural conditions.The regional differences in space patterns were greater in Guangdong than in Guangxi.(3)The evolution of watershed territorial space patterns resulted from scale changes,locational shifts,structural reorganizations,and directional changes driven by multiple factors.Natural environment,social life,economic development,and policy factors played foundational,leading,key driving,and guiding roles,respectively.Additionally,the regional differences in the evolution of watershed territorial space patterns originated from the differential transmission of the influence of various factors affecting spatial evolution.Enhancing urban space efficiency,restructuring agricultural space,and optimizing ecological space are key strategies for building a complementary and synergistic territorial space pattern in the basin.
基金supported by the National Natural Science Foundation of China(32072159)Natural Science Foundation of Hainan Province(322QN338)+4 种基金Young Talent of Lifting Engineering for Science and Technology in Shandong,China(SDAST2021qt18)Qingdao Science and Technology Plan Key Research and Development Project(22-3-3-hygg-28-hy)Fundamental Research Funds for the Central Universities(202262003)Taishan Scholar Project of Shandong Province(tsqn202312099)Support Program for Youth Innovation Technology in Colleges and Universities of Shandong Province(2023KJ041)。
文摘Laminarin oligosaccharides(LOSs)with a specific degree of polymerization prepared through the laminarin degradation via laminarinase present more significant nutritional functions and application values.Human intestinal bacteria are promising potential producers of novel carbohydrate-active enzymes with unique properties.Here,a novel glycoside hydrolase family 128(GH128)laminarinase OUC-BsLam26 from the intestinal bacterium Bacteroides sp.CBA7301 was heterologously expressed and characterized.The recombinant OUC-BsLam26 with a molecular mass of 49.86 kDa exhibits highest activity(6.60 U/mg)at 45℃ and pH 6.0,which shows noticeable temperature and pH stability.The purified OUC-BsLam26 could degrade laminarin via an endo-type mode with the generation of laminaripentaose,laminaritetraose,laminaritriose,and laminaribiose,among them,laminaritetraose is the principal product,which accounts for 45.25% of the total products,which is significantly different from the reported GH128 laminarinases.The minimum recognition substrate of OUC-BsLam26 is laminarihexaose.Furthermore,OUC-BsLam26 also could catalyze the transglycosylation process with the production of some novel glycosides.Altogether,the intestinal bacterium Bacteroides sp.CBA7301 contains laminarinase with unique product composition and OUC-BsLam26 is a hopeful bio-catalyst with the potential to produce laminaritetraose and some novel glycosides.
文摘BACKGROUND Addressing oculoplastic conditions in the preoperative period ensures both the safety and functional success of any ophthalmic procedure.Some oculoplastic conditions,like nasolacrimal duct obstruction,have been extensively studied,whereas others,like eyelid malposition and thyroid eye disease,have received minimal or no research.AIM To investigate the current practice patterns among ophthalmologists while treating concomitant oculoplastic conditions before any subspecialty ophthalmic intervention.METHODS A cross-sectional survey was disseminated among ophthalmologists all over India.The survey included questions related to pre-operative evaluation,anaesthetic and surgical techniques preferred,post-operative care,the use of adjunctive therapies,and patient follow-up patterns.RESULTS A total of 180 ophthalmologists responded to the survey.Most practitioners(89%)felt that the ROPLAS test was sufficient during pre-operative evaluation before any subspecialty surgery was advised.The most common surgical techniques employed were lacrimal drainage procedures(Dacryocystorhinostomy)(63.3%),eyelid malposition repair(36.9%),and ptosis repair(58.7%).Post-operatively,47.7%of respondents emphasized that at least a 4-week gap should be maintained after lacrimal drainage procedures and eyelid surgeries.Sixty-seven percent of ophthalmologists felt that topical anaesthetic procedures should be preferred while performing ocular surgeries in thyroid eye disease patients.CONCLUSION Approximately 50%of ophthalmologists handle prevalent oculoplastic issues themselves,seeking the expertise of an oculoplastic surgeon under particular conditions.Many ophthalmologists still favor using ROPLAS as a preliminary screening method before proceeding with cataract surgery.Eyelid conditions and thyroid eye disease are not as commonly addressed before subspecialty procedures compared to issues like nasolacrimal duct obstruction and periocular infections.
文摘Objective INF2 is a member of the formins family.Abnormal expression and regulation of INF2 have been associated with the progression of various tumors,but the expression and role of INF2 in hepatocellular carcinoma(HCC)remain unclear.HCC is a highly lethal malignant tumor.Given the limitations of traditional treatments,this study explored the expression level,clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets.Methods In this study,we used public databases to analyze the expression of INF2 in pan-cancer and HCC,as well as the impact of INF2 expression levels on HCC prognosis.Quantitative real time polymerase chain reaction(RT-qPCR),Western blot,and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues.The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples.Subsequently,the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments.Finally,the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments.Results INF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival,liver cirrhosis and pathological differentiation of HCC patients.The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC.In vivo and in vitro HCC models,upregulated expression of INF2 triggers the proliferation and migration of the HCC cell,while knockdown of INF2 could counteract this effect.INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression,thus promoting tumor progression.Conclusion INF2 is highly expressed in HCC and is associated with poor prognosis.High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression,and targeting INF2 may be beneficial for HCC patients with high expression of INF2.