Background:Receptor-interacting protein kinases(RIPKs)regulate cell death,inflammation,and immune responses,yet their roles in cancer are not fully understood.This study investigates the expression,genomic alterations...Background:Receptor-interacting protein kinases(RIPKs)regulate cell death,inflammation,and immune responses,yet their roles in cancer are not fully understood.This study investigates the expression,genomic alterations,and functional implications of RIPK family members across various cancers.Methods:We collected multi-omics data from The Cancer Genome Atlas and other public databases,including gene expression,copy number variation(CNV),mutation,methylation,tumor mutation burden(TMB),and microsatellite instability(MSI).Differential expression and survival analyses were performed using DESeq2 and Cox proportional hazards models.CNV and mutation data were analyzed with GISTIC2 and Mutect2,and methylation data with the ChAMP package.Correlations with TMB and MSI were assessed using Pearson coefficients,and gene set enrichment analysis was conducted with the MSigDB Hallmark gene sets.Results:RIPK family members show significant differential expression in various cancers,with RIPK1 and RIPK4 frequently altered.Survival analysis reveals heterogeneous impacts on overall survival.CNV and mutation analyses identify high alteration frequencies for RIPK2 and RIPK7,affecting gene expression.RIPK1 and RIPK7 are hypermethylated in several cancers,inversely correlating with RIPK3 expression.RIPK1,RIPK2,RIPK5,RIPK6,and RIPK7 correlate positively with TMB,while RIPK3 shows negative correlations in some cancers.MSI analysis indicates associations with DNA mismatch repair.G ene set enrichment analysis highlights immune-related pathway enrichment for RIPK1,RIPK2,RIPK3,and RIPK6,and cell proliferation and DNA repair pathways for RIPK4 and RIPK5.RIPK family members showed heterogeneous alterations across cancers:for example,RIPK7 was mutated in up to~15%of u terine c orpus e ndometrial c arcinoma and l ung s quamous c ell c arcinoma cases,and RIPK1 and RIPK7 exhibited frequent promoter hypermethylation in multiple tumor types.Several genes displayed context-dependent associations with overall survival and with TMB/MSI.Conclusion:This pan-cancer analysis of the RIPK family reveals their diverse roles and potential as biomarkers and therapeutic targets.The findings emphasize the importance of RIPK genes in tumorigenesis and suggest context-dependent functions across cancer types.Further studies are needed to explore their mechanisms in cancer development and clinical applications.展开更多
Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development...Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development.In this study,71 members of the BpGST family were identified from the entire Betula platyphylla Suk.genome.Most of the members encode proteins with amino acid lengths ranging from 101 to 875 and were localized to the cytoplasm by a prediction.BpGSTs can be divided into seven subfamilies,with a majority of birch U and F subfamily members according to gene structure,conserved motifs and evolutionary analysis.GST family genes showed collinearity with 22 genes in Oryza sativa L.,and three genes in Arabidopsis thaliana;promoter cis-acting elements predicted that the GST gene family is functional in growth,hormone regulation,and abiotic stress response.Most members of the F subfamily of GST(BpGSTFs)were expressed in roots,stems,leaves,and petioles,with the most expression observed in leaves.On the basis of the expression profiles of F subfamily genes(BpGSTF1 to BpGSTF13)during salt,mannitol and ABA stress,BpGSTF proteins seem to have multiple functions depending on the type of abiotic stress;for instance,BpGSTs may function at different times during abiotic stress.This study enhances understanding of the GST gene family and provides a basis for further exploration of their function in birch.展开更多
DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expres...DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.展开更多
Kinesins are a superfamily of proteins widely present in eukaryotes,playing crucial roles in plant cell wall assembly,cell elongation regulation,gravity sensing,and fertility control.In this study,bioinformatics analy...Kinesins are a superfamily of proteins widely present in eukaryotes,playing crucial roles in plant cell wall assembly,cell elongation regulation,gravity sensing,and fertility control.In this study,bioinformatics analysis of the OsKMP2 gene(LOC_Os02g28850)was performed using online tools such as ExPASy-ProtParam,ProtScale,CD-search,and DNAMAN software.Additionally,qRT-PCR was employed to analyze the tissue expression pattern of OsKMP2.The results showed that the molecular weight of the OsKMP2 is 118.39728 kDa,and it is a hydrophilic and unstable acidic protein.Secondary structure prediction revealed that it primarily consists ofα-helices(69.45%),random coils(25.19%),and extended strands(5.36%).The gene was expressed in various rice tissues,with the highest expression level observed in leaves.These results indicate that the OsKMP2 gene exhibits high evolutionary conservation and functional diversity in rice.展开更多
Urea is a major end product of nitrogen catabolism,serving as an osmolyte to regulate osmotic stress in fish exposed to varying water environments.It has been well known that urea transporters(UTs)facilitate the rapid...Urea is a major end product of nitrogen catabolism,serving as an osmolyte to regulate osmotic stress in fish exposed to varying water environments.It has been well known that urea transporters(UTs)facilitate the rapid movement of urea across cell membranes.However,researches on ut genes were predominantly focused on elasmobranchs and early developmental stages of fish.In this investigation,a total of three ut genes were identified in spotted sea bass.Phylogenetic,homology,and syntenic analyses were conducted to validate the annotation and assess the evolutionary relationships among ut genes.Both ut-a and ut-b genes have retained their evolutionary stability,demonstrating a significant level of homology between them.To gain deeper insights into the evolution of ut genes in spotted sea bass,we performed selective pressure analysis using site,branch,and branch-site models.The results suggested that positive selection likely played a significant role in shaping the evolution of the ut gene family.Furthermore,tissue-specific expression analyses revealed high expression levels of ut genes in osmoregulatory tissues such as the gill and kidney.Additionally,all three ut genes exhibited salinity-related expression patterns in gill and kidney tissues during both seawater-to-freshwater(SF)and freshwater-to-seawater(FS)adaptation.In situ hybridization results demonstrated the localization of both ut-a and ut-c mRNAs on the gill lamellae and adjacent gill filament epithelium.In summary,our study establishes a solid foundation for future research elucidating the evolutionary relationships and functional significance of ut genes during salinity acclimation in spotted sea bass and other teleost species.展开更多
Commercial cultivars of garlic,a popular condiment,are sterile,making genetic variation and germplasm innovation of this plant challenging.Understanding mechanism of gamete sterility in garlic and their key regulatory...Commercial cultivars of garlic,a popular condiment,are sterile,making genetic variation and germplasm innovation of this plant challenging.Understanding mechanism of gamete sterility in garlic and their key regulatory networks is therefore important for fertility restoration.In this work,we conducted a detailed phenotypic analysis of fertile and sterile garlic genotypes and found that enlargement of topset in the inflorescence of sterile genotypes led to abnormal flowers.Additional cytological observations showed that aberrant meiotic cytokinesis in sterile garlic ultimately resulted in pollen degeneration.Transcriptomics analysis of sterile and fertile genotypes identified possible molecular mechanisms underlying gamete abortion.A total of 100710 differentially expressed genes(DEGs)between the fertile and sterile garlic flowers at three stages of gamete development were identified,many of which were involved in homologous chromosome synapsis during meiosis,MYB transcription factor regulation,ribosome biogenesis and plant hormone signal transduction.Taken together,these results provide insight into the molecular mechanisms and regulatory networks underlying gamete development in garlic and point to a set of candidate genes for further functional characterization.展开更多
Hydrangea macrophylla is a popular ornamental shrub with a lot of economic and aesthetic value.It is known for its different flower shapes(lacecap and mophead)and the way its flowers change color depending on the pH o...Hydrangea macrophylla is a popular ornamental shrub with a lot of economic and aesthetic value.It is known for its different flower shapes(lacecap and mophead)and the way its flowers change color depending on the pH of the soil.Even though it is important for gardening,we still don’t know much about the molecular processes that lead to flower growth.The purpose of this study was to find and study SNP-related genes and transcription factors that are connected to the growth of H.macrophylla flowers.Genome-wide SNP analysis identified 11 SNPs associated with MYB transcription factors and 10 SNPs linked to a MADS-box SEP1 gene,highlighting their potential role in inflorescence-type regulation.These SNPs provide genomic resources for functional validation and markerassisted breeding in Hydrangea macrophylla.We found the MYB and MADS-box gene families,which are important for pigmentation and flower organ identity,through an analysis of the transcriptome and gene expression.The MYB family has 731R-MYBs,105 R2R3-MYBs,and 43R-MYBs.TheMADS-box family had 42 Type I(M-type)members and 36 Type II(MIKC-type)members.Motif and phylogenetic analysis showed that certain domains were preserved.For example,R2R3-MYBs and MIKC-type MADS genes are grouped with Arabidopsis orthologs,which suggests that their functions are also preserved.There was a clear link between the greatest expression ofMADS-box genes and the distinct phases of floral bud differentiation.Some MYB genes,on the other hand,showed alternative expression patterns that may help petals or sepals develop.qRT-PCR validation of representative MYB and MADS-box genes corroborated the transcriptome-based expression profiles,supporting their role in flower development and inflorescence-type regulation.展开更多
Late embryogenesis abundant (LEA) proteins generally accumulate in seeds during the later stages of maturation.Here we studied the LEA genes in two wild peanut species (Arachis duranensis and Arachis ipaensis) in an e...Late embryogenesis abundant (LEA) proteins generally accumulate in seeds during the later stages of maturation.Here we studied the LEA genes in two wild peanut species (Arachis duranensis and Arachis ipaensis) in an effort to create a genetic resource for peanut crop improvement.we identified 65 AdLEA and 69 AiLEA genes representing all 8 LEA subfamilies,which were unevenly distributed across 10 peanut chromosomes.The majority of LEA proteins were found to be highly hydrophilic.MEME analysis indicated that LEA gene motifs were conserved within groups,but not between groups.The LEA genes contained a diverse array of stress-and phytohormoneresponsive cis-acting elements,with the AdLEA2-20 and AiLEA2-20 genes containing the greatest number of elements.Both AdLEA2-20 and AiLEA2-20 were upregulated in response to cold temperatures,drought,salinity,and abscisic acid exposure,although the dynamics were tissue-dependent.This study lays the foundation for future studies on the LEA gene family and abiotic stress in peanut,and our results will be invaluable for the genetic improvement of peanut by characterizing the genetic resources of wild peanut species.展开更多
N^(6)-Methyladenosine(m^(6)A)is the most common modification in the transcriptome of biological RNA and plays roles that include maintaining the stability and transportation of mRNA,mRNA precursor shearing,polyadenyla...N^(6)-Methyladenosine(m^(6)A)is the most common modification in the transcriptome of biological RNA and plays roles that include maintaining the stability and transportation of mRNA,mRNA precursor shearing,polyadenylation,and the initiation of translation.With the improving understanding of RNA methylation,m^(6)A modification is known to play vital roles in plant development and growth.The multi-petalization of flowering plants has high ornamental and research value in horticultural landscapes.However,the mechanism of RNA methylation in flower formation in Magnolia wufengensis,a classical multi-petalizational plant,remains unclear.This study compared and analyzed RNA m^(6)A methylation and the transcriptome in floral buds of two varieties with large differences in tepal number at the early stage of development.It was found that the degree of RNA m^(6)A methylation and relative expression levels of MawuAGL6-2,MawuPI-4,and MawuAGL9 in‘Jiaodan’with 36 tepals were significantly higher than those in‘Jiaohong’with 9 tepals during the development of floral organ primordia.Combined with quantitative real-time PCR,the expression levels of MawuAGL6-2,MawuPI-4,and MawuAGL9were positively correlated with the number of tepals.Transgenic experiments showed that MawuAGL6-1/2,and MawuPI-4 can increase the number of petals in Arabidopsis.Moreover,MawuAGL6-2 and MawuPI-4 can restore the missing petal phenotype of mutant Arabidopsis.Yeast two hybrid and yeast three hybrid indicated that MawuAGL6-2,MawuAP3-1/2,and MawuPI-4 could interact with each other under the mediation of the class E protein MawuAGL9.Based on these results,it is hypothesized that m^(6)A methylation influences the multi-petalization of Magnolia wufengensis by affecting the expression levels of MawuAGL6-2,MawuAP3-1/2,MawuPI-4,and MawuAGL9.These findings provide a better understanding of the molecular mechanisms of epigenetic modifications in flower developmental diversity.展开更多
Background:Small ubiquitin-like modifier(SUMO)-specific proteases(SENPs)cleave the isopeptidic bond between SUMO1/2/3 and protein substrates,thus regulating the structure,activity,and lifetime of a variety of proteins...Background:Small ubiquitin-like modifier(SUMO)-specific proteases(SENPs)cleave the isopeptidic bond between SUMO1/2/3 and protein substrates,thus regulating the structure,activity,and lifetime of a variety of proteins.Recently,accumulating evidence has suggested that SENPs play a role in the initiation and progression of human cancers.Nevertheless,the potential role of the SENP family of proteins in liver cancer has yet to be fully elucidated.Methods:This study conducted a comprehensive bioinformatics analysis of the SENP family in liver cancer,including differential expression profiling,survival analysis,mutation and copy number variations(CNVs)assessment,immune infiltration and drug sensitivity correlation,functional enrichment analyses using data from The Cancer Genome Atlas(TCGA),Clinical Proteomic Tumor Analysis Consortium(CPTAC),LinkedOmics,and other public databases.Furthermore,we performed in vitro experiments using Huh-7 and Hep-3B cell lines to investigate the functional roles of SENP1 and SENP3 in hepatocellular carcinoma cell proliferation,colony formation,and migration.Results:Our results indicated that SENP1,3,and 7 were significantly overexpressed in liver hepatocellular carcinoma(LIHC).Elevated expressions of SENP1,3,and 7 are positively correlated with poor overall survival(OS)in LIHC patients.In addition,SENP1,3,and 7 expressions are related to immune infiltration and drug sensitivity.SENP1,3,and 7 co-expressed genes were enriched in mitochondrial function,ribosomal translation,and cell cycle control.Conclusion:SENP1,3,and 7 are prognostic biomarkers and potential therapeutic targets for LIHC.Knockdown of SENP1 and SENP3 inhibited the proliferation,clonogenicity,and migration of hepatocellular carcinoma cells.展开更多
Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'...Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.展开更多
Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macro...Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.展开更多
The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.A...The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium.展开更多
AIM:To present an overview of the research on global glaucoma treatment in the last decade in terms of publication year,journals,countries/regions,organizations,references,and keywords,to investigate the current resea...AIM:To present an overview of the research on global glaucoma treatment in the last decade in terms of publication year,journals,countries/regions,organizations,references,and keywords,to investigate the current research international trends and hot topics in this area.METHODS:Bibliometric analysis was conducted on 9128 articles in the Web of Science Core Collection(WoSCC;Clarivate)database.Quantitative and qualitative analysis was employed using VOSviewer(v1.6.18),Pajek(v1.0.0.0),and CiteSpace(v6.1.R2)software.RESULTS:The 9128 papers relating to glaucoma treatment were published from April 2013 to April 2023,of which 7482 articles(82%)were original research articles and 1464(18%)were review articles.The United States(2867)and Johns Hopkins University(166)were the most productive country and institution,respectively,but the University College London had the highest h-index(54).The Journal of Glaucoma was the most productive and Ophthalmology had the highest h-index compared with other journals.The Keywords of interest included treatment surgery,cyclophotocoagulation,minimally invasive glaucoma surgery(MIGS),trabeculectomy,baerveldt,epidemiology,medication adherence,nanoparticle,optical coherence tomography(OCT),gene therapy,and artificial intelligence(AI).Glaucoma surgery appeared as a current research hotspot through the analysis of keywords.CONCLUSION:This study provides insights into the research trends and potential research hotspots in the treatment of glaucoma.This will help researchers to evaluate research policies and to promote international cooperation.展开更多
This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for ...This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.展开更多
To ensure the safe transportation of radioactive materials,numerous countries have established specific standards.For the transfer of fissile materials,it is imperative that the material within the packaging remains i...To ensure the safe transportation of radioactive materials,numerous countries have established specific standards.For the transfer of fissile materials,it is imperative that the material within the packaging remains in a subcritical state during routine,normal,and accidental transport conditions.In the event of an accident,the rods within the storage tank may become rearranged,introducing uncertainty that must be accounted for to ensure that criticality analysis results are conservative.Historically,this uncertainty was addressed overly conservatively due to limited research on non-uniform arrangement scenarios,which proved unsuitable for criticality safety analysis of spent fuel packages.This paper introduced three distinct methods to non-uniformly rearrange fuel rods—Uniform Arrangement by Blocks,Layer-by-Layer Determination,and Birdcage Deformation—and meticulously evaluates the influences of rod rearrangement on the effective multiplication factor of neutrons,k eff,utilizing the Monte Carlo method.Ultimately,this study presents a holistic method capable of encompassing the entire spectrum of potential effects stemming from the rearrangement of fuel rods during rods mispositioning accident.By augmenting the safety margin,this approach proves to be adeptly suited for the criticality safety analysis of nuclear fuel transport containers.展开更多
Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may po...Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may pose certain environmental risks.Snow-melting agents and snow samples were collected and analyzed from highways,arterial roads,footbridges,and other locations in Beijing after the snowstorm in December 2023.It was found that the main component of snow-melting agents was sodium chloride with high concentrations of Cu,Mn,and Zn,which are not regulated in the current policies,despite the recent promotion of environmentally friendly snow-melting agents.The Pb,Zn and Cr contents of some snow samples exceeded the limitation value of surface water quality standards,potentially affecting the soil and water environment near roadsides,although the snow-melting agents comply with relevant standards,which indicates the policy gap in the management of recycled industrial salts.We reviewed and analyzed the relevant standards for snow-melting agents and industrial waste salts proposed nationally and internationally over the past 30 years.Through comparative analysis,we proposed relevant policy recommendations to the existing quality standards of snow-melting agents and the management regulations of industrial waste salts,and the formulation of corresponding usage strategies,aimed at reducing the potential environmental release of heavy metals from the use of snow-melting agents,thereby promoting more sustainable green urban development and environmentally sound waste management.展开更多
Coconut(Cocos nucifera L.),a major oil and fruit crop of the Arecaceae family,is extensively cultivated across the Asia—Pacific region.Despite its agricultural importance,genome assembly in coconut remains challengin...Coconut(Cocos nucifera L.),a major oil and fruit crop of the Arecaceae family,is extensively cultivated across the Asia—Pacific region.Despite its agricultural importance,genome assembly in coconut remains challenging due to its large genome size and high proportion of repetitive sequences.Allele-specific expression(ASE)plays a key role in regulating plant development and evolution,yet research on ASE in coconut is limited(Shao et al.,2019;Li et al.,2021;Zhang et al.,2021;Hu et al.,2022).Among phenotypic traits,fruit color is especially important as an indicator of maturity,guiding harvest timing and post-harvest processes(Kapoor et al.,2022).While prior studies have explored various coconut traits such as salt tolerance,fiber content,and plant height(Wang et al.,2021;Yang et al.,2021),investigations into ASE and fruit color remain scarce.展开更多
Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to i...Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.展开更多
Peptidoglycan recognition proteins(PGRPs) are a family of pattern recognition receptors(PRRs) of the immune system,which bind and hydrolyze bacterial peptidoglycan.Here,a long type PGRP(PGRP-L) was first cloned ...Peptidoglycan recognition proteins(PGRPs) are a family of pattern recognition receptors(PRRs) of the immune system,which bind and hydrolyze bacterial peptidoglycan.Here,a long type PGRP(PGRP-L) was first cloned in the lower vertebrate species Xenopus tropicalis(Xt).The XtPGRP-L possessed a conserved genomic structure with five exons and four introns.The alignment and phylogenetic analysis indicated that XtPGRP-L might be a type of amidase-like PGRP.The 3-D model showed that XtPGRP-L possessed a conserved structure compared with the Drosophila PGRP-Lb.During embryonic development,XtPGRP-L was not expressed until the 72 h tadpole stage.In adult tissues,it was strongly expressed in the liver,lung,intestine,and stomach.Furthermore,after LPS stimulation,the expression of XtPGRP-L was up-regulated significantly in the liver,intestine and spleen,indicating that XtPGRP-L may play an important role in the innate immunity of Xenopus tropicalis.展开更多
基金supported by grants from the Tianjin Health Technology Project(Grant no.2022QN106).
文摘Background:Receptor-interacting protein kinases(RIPKs)regulate cell death,inflammation,and immune responses,yet their roles in cancer are not fully understood.This study investigates the expression,genomic alterations,and functional implications of RIPK family members across various cancers.Methods:We collected multi-omics data from The Cancer Genome Atlas and other public databases,including gene expression,copy number variation(CNV),mutation,methylation,tumor mutation burden(TMB),and microsatellite instability(MSI).Differential expression and survival analyses were performed using DESeq2 and Cox proportional hazards models.CNV and mutation data were analyzed with GISTIC2 and Mutect2,and methylation data with the ChAMP package.Correlations with TMB and MSI were assessed using Pearson coefficients,and gene set enrichment analysis was conducted with the MSigDB Hallmark gene sets.Results:RIPK family members show significant differential expression in various cancers,with RIPK1 and RIPK4 frequently altered.Survival analysis reveals heterogeneous impacts on overall survival.CNV and mutation analyses identify high alteration frequencies for RIPK2 and RIPK7,affecting gene expression.RIPK1 and RIPK7 are hypermethylated in several cancers,inversely correlating with RIPK3 expression.RIPK1,RIPK2,RIPK5,RIPK6,and RIPK7 correlate positively with TMB,while RIPK3 shows negative correlations in some cancers.MSI analysis indicates associations with DNA mismatch repair.G ene set enrichment analysis highlights immune-related pathway enrichment for RIPK1,RIPK2,RIPK3,and RIPK6,and cell proliferation and DNA repair pathways for RIPK4 and RIPK5.RIPK family members showed heterogeneous alterations across cancers:for example,RIPK7 was mutated in up to~15%of u terine c orpus e ndometrial c arcinoma and l ung s quamous c ell c arcinoma cases,and RIPK1 and RIPK7 exhibited frequent promoter hypermethylation in multiple tumor types.Several genes displayed context-dependent associations with overall survival and with TMB/MSI.Conclusion:This pan-cancer analysis of the RIPK family reveals their diverse roles and potential as biomarkers and therapeutic targets.The findings emphasize the importance of RIPK genes in tumorigenesis and suggest context-dependent functions across cancer types.Further studies are needed to explore their mechanisms in cancer development and clinical applications.
基金supported by the National Key Research and Development Program of China(No.2021YFD2200304)FundamentalResearch Funds for the Central Universities(2572022DQ08)the National Natural Science Foundation of China(No32171738).
文摘Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development.In this study,71 members of the BpGST family were identified from the entire Betula platyphylla Suk.genome.Most of the members encode proteins with amino acid lengths ranging from 101 to 875 and were localized to the cytoplasm by a prediction.BpGSTs can be divided into seven subfamilies,with a majority of birch U and F subfamily members according to gene structure,conserved motifs and evolutionary analysis.GST family genes showed collinearity with 22 genes in Oryza sativa L.,and three genes in Arabidopsis thaliana;promoter cis-acting elements predicted that the GST gene family is functional in growth,hormone regulation,and abiotic stress response.Most members of the F subfamily of GST(BpGSTFs)were expressed in roots,stems,leaves,and petioles,with the most expression observed in leaves.On the basis of the expression profiles of F subfamily genes(BpGSTF1 to BpGSTF13)during salt,mannitol and ABA stress,BpGSTF proteins seem to have multiple functions depending on the type of abiotic stress;for instance,BpGSTs may function at different times during abiotic stress.This study enhances understanding of the GST gene family and provides a basis for further exploration of their function in birch.
文摘DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.
基金Supported by College Student Innovation and Entrepreneurship Training Program(S202210553003)Hunan Provincial Education Department Outstanding Youth Research Project(23B0820).
文摘Kinesins are a superfamily of proteins widely present in eukaryotes,playing crucial roles in plant cell wall assembly,cell elongation regulation,gravity sensing,and fertility control.In this study,bioinformatics analysis of the OsKMP2 gene(LOC_Os02g28850)was performed using online tools such as ExPASy-ProtParam,ProtScale,CD-search,and DNAMAN software.Additionally,qRT-PCR was employed to analyze the tissue expression pattern of OsKMP2.The results showed that the molecular weight of the OsKMP2 is 118.39728 kDa,and it is a hydrophilic and unstable acidic protein.Secondary structure prediction revealed that it primarily consists ofα-helices(69.45%),random coils(25.19%),and extended strands(5.36%).The gene was expressed in various rice tissues,with the highest expression level observed in leaves.These results indicate that the OsKMP2 gene exhibits high evolutionary conservation and functional diversity in rice.
基金supported by the National Natural Science Foundation of China(No.32072947)the China Agriculture Research System(No.CARS-47)。
文摘Urea is a major end product of nitrogen catabolism,serving as an osmolyte to regulate osmotic stress in fish exposed to varying water environments.It has been well known that urea transporters(UTs)facilitate the rapid movement of urea across cell membranes.However,researches on ut genes were predominantly focused on elasmobranchs and early developmental stages of fish.In this investigation,a total of three ut genes were identified in spotted sea bass.Phylogenetic,homology,and syntenic analyses were conducted to validate the annotation and assess the evolutionary relationships among ut genes.Both ut-a and ut-b genes have retained their evolutionary stability,demonstrating a significant level of homology between them.To gain deeper insights into the evolution of ut genes in spotted sea bass,we performed selective pressure analysis using site,branch,and branch-site models.The results suggested that positive selection likely played a significant role in shaping the evolution of the ut gene family.Furthermore,tissue-specific expression analyses revealed high expression levels of ut genes in osmoregulatory tissues such as the gill and kidney.Additionally,all three ut genes exhibited salinity-related expression patterns in gill and kidney tissues during both seawater-to-freshwater(SF)and freshwater-to-seawater(FS)adaptation.In situ hybridization results demonstrated the localization of both ut-a and ut-c mRNAs on the gill lamellae and adjacent gill filament epithelium.In summary,our study establishes a solid foundation for future research elucidating the evolutionary relationships and functional significance of ut genes during salinity acclimation in spotted sea bass and other teleost species.
基金supported by the National Characteristic Vegetable Industry Technology System of China(Grant No.CARS24-A-07)the Jiangsu Modern Agricultural Industry Technology System Construction Special Fund(Grant No.JATS[2023]050)Xuzhou Academy of Agricultural Sciences Research Fund Project(Grant No.XM2021003)。
文摘Commercial cultivars of garlic,a popular condiment,are sterile,making genetic variation and germplasm innovation of this plant challenging.Understanding mechanism of gamete sterility in garlic and their key regulatory networks is therefore important for fertility restoration.In this work,we conducted a detailed phenotypic analysis of fertile and sterile garlic genotypes and found that enlargement of topset in the inflorescence of sterile genotypes led to abnormal flowers.Additional cytological observations showed that aberrant meiotic cytokinesis in sterile garlic ultimately resulted in pollen degeneration.Transcriptomics analysis of sterile and fertile genotypes identified possible molecular mechanisms underlying gamete abortion.A total of 100710 differentially expressed genes(DEGs)between the fertile and sterile garlic flowers at three stages of gamete development were identified,many of which were involved in homologous chromosome synapsis during meiosis,MYB transcription factor regulation,ribosome biogenesis and plant hormone signal transduction.Taken together,these results provide insight into the molecular mechanisms and regulatory networks underlying gamete development in garlic and point to a set of candidate genes for further functional characterization.
基金funded by Science and Technology Research Project of Shanghai Greening and City Appearance Administration in 2023(G232406).
文摘Hydrangea macrophylla is a popular ornamental shrub with a lot of economic and aesthetic value.It is known for its different flower shapes(lacecap and mophead)and the way its flowers change color depending on the pH of the soil.Even though it is important for gardening,we still don’t know much about the molecular processes that lead to flower growth.The purpose of this study was to find and study SNP-related genes and transcription factors that are connected to the growth of H.macrophylla flowers.Genome-wide SNP analysis identified 11 SNPs associated with MYB transcription factors and 10 SNPs linked to a MADS-box SEP1 gene,highlighting their potential role in inflorescence-type regulation.These SNPs provide genomic resources for functional validation and markerassisted breeding in Hydrangea macrophylla.We found the MYB and MADS-box gene families,which are important for pigmentation and flower organ identity,through an analysis of the transcriptome and gene expression.The MYB family has 731R-MYBs,105 R2R3-MYBs,and 43R-MYBs.TheMADS-box family had 42 Type I(M-type)members and 36 Type II(MIKC-type)members.Motif and phylogenetic analysis showed that certain domains were preserved.For example,R2R3-MYBs and MIKC-type MADS genes are grouped with Arabidopsis orthologs,which suggests that their functions are also preserved.There was a clear link between the greatest expression ofMADS-box genes and the distinct phases of floral bud differentiation.Some MYB genes,on the other hand,showed alternative expression patterns that may help petals or sepals develop.qRT-PCR validation of representative MYB and MADS-box genes corroborated the transcriptome-based expression profiles,supporting their role in flower development and inflorescence-type regulation.
基金supported by the Undergraduate Training Program for Innovation and Entrepreneurship (S202110580053,202410580011)the Zhaoqing University Project (190060,QN202329)Science and Technology Program of Zhaoqing (2023040308001)。
文摘Late embryogenesis abundant (LEA) proteins generally accumulate in seeds during the later stages of maturation.Here we studied the LEA genes in two wild peanut species (Arachis duranensis and Arachis ipaensis) in an effort to create a genetic resource for peanut crop improvement.we identified 65 AdLEA and 69 AiLEA genes representing all 8 LEA subfamilies,which were unevenly distributed across 10 peanut chromosomes.The majority of LEA proteins were found to be highly hydrophilic.MEME analysis indicated that LEA gene motifs were conserved within groups,but not between groups.The LEA genes contained a diverse array of stress-and phytohormoneresponsive cis-acting elements,with the AdLEA2-20 and AiLEA2-20 genes containing the greatest number of elements.Both AdLEA2-20 and AiLEA2-20 were upregulated in response to cold temperatures,drought,salinity,and abscisic acid exposure,although the dynamics were tissue-dependent.This study lays the foundation for future studies on the LEA gene family and abiotic stress in peanut,and our results will be invaluable for the genetic improvement of peanut by characterizing the genetic resources of wild peanut species.
基金supported by the National Natural Science Foundation of China(Grant No.31570651)。
文摘N^(6)-Methyladenosine(m^(6)A)is the most common modification in the transcriptome of biological RNA and plays roles that include maintaining the stability and transportation of mRNA,mRNA precursor shearing,polyadenylation,and the initiation of translation.With the improving understanding of RNA methylation,m^(6)A modification is known to play vital roles in plant development and growth.The multi-petalization of flowering plants has high ornamental and research value in horticultural landscapes.However,the mechanism of RNA methylation in flower formation in Magnolia wufengensis,a classical multi-petalizational plant,remains unclear.This study compared and analyzed RNA m^(6)A methylation and the transcriptome in floral buds of two varieties with large differences in tepal number at the early stage of development.It was found that the degree of RNA m^(6)A methylation and relative expression levels of MawuAGL6-2,MawuPI-4,and MawuAGL9 in‘Jiaodan’with 36 tepals were significantly higher than those in‘Jiaohong’with 9 tepals during the development of floral organ primordia.Combined with quantitative real-time PCR,the expression levels of MawuAGL6-2,MawuPI-4,and MawuAGL9were positively correlated with the number of tepals.Transgenic experiments showed that MawuAGL6-1/2,and MawuPI-4 can increase the number of petals in Arabidopsis.Moreover,MawuAGL6-2 and MawuPI-4 can restore the missing petal phenotype of mutant Arabidopsis.Yeast two hybrid and yeast three hybrid indicated that MawuAGL6-2,MawuAP3-1/2,and MawuPI-4 could interact with each other under the mediation of the class E protein MawuAGL9.Based on these results,it is hypothesized that m^(6)A methylation influences the multi-petalization of Magnolia wufengensis by affecting the expression levels of MawuAGL6-2,MawuAP3-1/2,MawuPI-4,and MawuAGL9.These findings provide a better understanding of the molecular mechanisms of epigenetic modifications in flower developmental diversity.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.32070616 and 82170794).
文摘Background:Small ubiquitin-like modifier(SUMO)-specific proteases(SENPs)cleave the isopeptidic bond between SUMO1/2/3 and protein substrates,thus regulating the structure,activity,and lifetime of a variety of proteins.Recently,accumulating evidence has suggested that SENPs play a role in the initiation and progression of human cancers.Nevertheless,the potential role of the SENP family of proteins in liver cancer has yet to be fully elucidated.Methods:This study conducted a comprehensive bioinformatics analysis of the SENP family in liver cancer,including differential expression profiling,survival analysis,mutation and copy number variations(CNVs)assessment,immune infiltration and drug sensitivity correlation,functional enrichment analyses using data from The Cancer Genome Atlas(TCGA),Clinical Proteomic Tumor Analysis Consortium(CPTAC),LinkedOmics,and other public databases.Furthermore,we performed in vitro experiments using Huh-7 and Hep-3B cell lines to investigate the functional roles of SENP1 and SENP3 in hepatocellular carcinoma cell proliferation,colony formation,and migration.Results:Our results indicated that SENP1,3,and 7 were significantly overexpressed in liver hepatocellular carcinoma(LIHC).Elevated expressions of SENP1,3,and 7 are positively correlated with poor overall survival(OS)in LIHC patients.In addition,SENP1,3,and 7 expressions are related to immune infiltration and drug sensitivity.SENP1,3,and 7 co-expressed genes were enriched in mitochondrial function,ribosomal translation,and cell cycle control.Conclusion:SENP1,3,and 7 are prognostic biomarkers and potential therapeutic targets for LIHC.Knockdown of SENP1 and SENP3 inhibited the proliferation,clonogenicity,and migration of hepatocellular carcinoma cells.
文摘Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.
基金supported by Qingdao Key Medical and Health Discipline ProjectThe Intramural Research Program of the Affiliated Hospital of Qingdao University,No. 4910Qingdao West Coast New Area Science and Technology Project,No. 2020-55 (all to SW)。
文摘Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.
基金financially supported by the National Natural Science Foundation of China(Nos.52034002 and U2202254)the Fundamental Research Funds for the Central Universities,China(No.FRF-TT-19-001)。
文摘The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium.
基金Suppotred by Tianjin Key Medical Discipline Construction Project(No.TJYXZDXK-3-004A-2).
文摘AIM:To present an overview of the research on global glaucoma treatment in the last decade in terms of publication year,journals,countries/regions,organizations,references,and keywords,to investigate the current research international trends and hot topics in this area.METHODS:Bibliometric analysis was conducted on 9128 articles in the Web of Science Core Collection(WoSCC;Clarivate)database.Quantitative and qualitative analysis was employed using VOSviewer(v1.6.18),Pajek(v1.0.0.0),and CiteSpace(v6.1.R2)software.RESULTS:The 9128 papers relating to glaucoma treatment were published from April 2013 to April 2023,of which 7482 articles(82%)were original research articles and 1464(18%)were review articles.The United States(2867)and Johns Hopkins University(166)were the most productive country and institution,respectively,but the University College London had the highest h-index(54).The Journal of Glaucoma was the most productive and Ophthalmology had the highest h-index compared with other journals.The Keywords of interest included treatment surgery,cyclophotocoagulation,minimally invasive glaucoma surgery(MIGS),trabeculectomy,baerveldt,epidemiology,medication adherence,nanoparticle,optical coherence tomography(OCT),gene therapy,and artificial intelligence(AI).Glaucoma surgery appeared as a current research hotspot through the analysis of keywords.CONCLUSION:This study provides insights into the research trends and potential research hotspots in the treatment of glaucoma.This will help researchers to evaluate research policies and to promote international cooperation.
基金supported by Istanbul Technical University(Project No.45698)supported through the“Young Researchers’Career Development Project-training of doctoral students”of the Croatian Science Foundation.
文摘This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.
文摘To ensure the safe transportation of radioactive materials,numerous countries have established specific standards.For the transfer of fissile materials,it is imperative that the material within the packaging remains in a subcritical state during routine,normal,and accidental transport conditions.In the event of an accident,the rods within the storage tank may become rearranged,introducing uncertainty that must be accounted for to ensure that criticality analysis results are conservative.Historically,this uncertainty was addressed overly conservatively due to limited research on non-uniform arrangement scenarios,which proved unsuitable for criticality safety analysis of spent fuel packages.This paper introduced three distinct methods to non-uniformly rearrange fuel rods—Uniform Arrangement by Blocks,Layer-by-Layer Determination,and Birdcage Deformation—and meticulously evaluates the influences of rod rearrangement on the effective multiplication factor of neutrons,k eff,utilizing the Monte Carlo method.Ultimately,this study presents a holistic method capable of encompassing the entire spectrum of potential effects stemming from the rearrangement of fuel rods during rods mispositioning accident.By augmenting the safety margin,this approach proves to be adeptly suited for the criticality safety analysis of nuclear fuel transport containers.
基金supported by the National Natural Science Foundation of China(No.22176200)the Industrial Innovation Entrepreneurial Team Project of Ordos 2021.
文摘Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may pose certain environmental risks.Snow-melting agents and snow samples were collected and analyzed from highways,arterial roads,footbridges,and other locations in Beijing after the snowstorm in December 2023.It was found that the main component of snow-melting agents was sodium chloride with high concentrations of Cu,Mn,and Zn,which are not regulated in the current policies,despite the recent promotion of environmentally friendly snow-melting agents.The Pb,Zn and Cr contents of some snow samples exceeded the limitation value of surface water quality standards,potentially affecting the soil and water environment near roadsides,although the snow-melting agents comply with relevant standards,which indicates the policy gap in the management of recycled industrial salts.We reviewed and analyzed the relevant standards for snow-melting agents and industrial waste salts proposed nationally and internationally over the past 30 years.Through comparative analysis,we proposed relevant policy recommendations to the existing quality standards of snow-melting agents and the management regulations of industrial waste salts,and the formulation of corresponding usage strategies,aimed at reducing the potential environmental release of heavy metals from the use of snow-melting agents,thereby promoting more sustainable green urban development and environmentally sound waste management.
基金supported by Central Public-interest Scientific Institution Basal Research Fund(CATAS-Nos.1630152023007,1630152023011,1630152023012,1630152023013)the National Natural Science Foundation of China(Grant No.32071805).
文摘Coconut(Cocos nucifera L.),a major oil and fruit crop of the Arecaceae family,is extensively cultivated across the Asia—Pacific region.Despite its agricultural importance,genome assembly in coconut remains challenging due to its large genome size and high proportion of repetitive sequences.Allele-specific expression(ASE)plays a key role in regulating plant development and evolution,yet research on ASE in coconut is limited(Shao et al.,2019;Li et al.,2021;Zhang et al.,2021;Hu et al.,2022).Among phenotypic traits,fruit color is especially important as an indicator of maturity,guiding harvest timing and post-harvest processes(Kapoor et al.,2022).While prior studies have explored various coconut traits such as salt tolerance,fiber content,and plant height(Wang et al.,2021;Yang et al.,2021),investigations into ASE and fruit color remain scarce.
文摘Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.
基金supported by the Project from the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (10KJB240001)the Foundation for Talent Recruitment of Yancheng Institute of Technology (XKR2011007)the National Natural Science Foundation of China (30830083)
文摘Peptidoglycan recognition proteins(PGRPs) are a family of pattern recognition receptors(PRRs) of the immune system,which bind and hydrolyze bacterial peptidoglycan.Here,a long type PGRP(PGRP-L) was first cloned in the lower vertebrate species Xenopus tropicalis(Xt).The XtPGRP-L possessed a conserved genomic structure with five exons and four introns.The alignment and phylogenetic analysis indicated that XtPGRP-L might be a type of amidase-like PGRP.The 3-D model showed that XtPGRP-L possessed a conserved structure compared with the Drosophila PGRP-Lb.During embryonic development,XtPGRP-L was not expressed until the 72 h tadpole stage.In adult tissues,it was strongly expressed in the liver,lung,intestine,and stomach.Furthermore,after LPS stimulation,the expression of XtPGRP-L was up-regulated significantly in the liver,intestine and spleen,indicating that XtPGRP-L may play an important role in the innate immunity of Xenopus tropicalis.