This paper presents a unified diagnostic method for exponential nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991. The authors show that the case deletion model is equivale...This paper presents a unified diagnostic method for exponential nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991. The authors show that the case deletion model is equivalent to mean shift outlier model. From this point of view, several diagnostic measures, such as Cook distance, score statistics are derived. The local influence measure of Cook is also presented. Numerical example illustrates that our method is available.展开更多
In this paper, exponential type regression models are considered from geometric point of view. The stochastic expansions relating to the estimate are derived and are used to study several asymptotic inference problems...In this paper, exponential type regression models are considered from geometric point of view. The stochastic expansions relating to the estimate are derived and are used to study several asymptotic inference problems. The biases and the covariances relating to the estimate may be calculated based on the expansions. The information loss of the estimate and a limit theorem connected with the observed and expected Fisher informations are obtained in terms of the curvatures.展开更多
文摘This paper presents a unified diagnostic method for exponential nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991. The authors show that the case deletion model is equivalent to mean shift outlier model. From this point of view, several diagnostic measures, such as Cook distance, score statistics are derived. The local influence measure of Cook is also presented. Numerical example illustrates that our method is available.
基金The project was supported by National Natural Science Foundation of China
文摘In this paper, exponential type regression models are considered from geometric point of view. The stochastic expansions relating to the estimate are derived and are used to study several asymptotic inference problems. The biases and the covariances relating to the estimate may be calculated based on the expansions. The information loss of the estimate and a limit theorem connected with the observed and expected Fisher informations are obtained in terms of the curvatures.