期刊文献+
共找到1,290篇文章
< 1 2 65 >
每页显示 20 50 100
Surface-covering water significantly amplifies the explosion impulse of shallow buried explosives 被引量:1
1
作者 Zhenyu Zhao Wenbo Gao +6 位作者 Jianwei Ren Zihan Lan Zhiyang Zhang Huiyao Gao Chao He Changye Ni Tianjian Lu 《Defence Technology(防务技术)》 2025年第6期156-172,共17页
While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and ... While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and numerical study has been carried out to characterize the effect of SCW on transferred impulse and loading magnitude of shallow buried explosives.Firstly,blast tests of shallow buried explosives were conducted,with and without the SCW,to quantitatively assess the blast loading impulse.Subsequently,finite element(FE)simulations were performed and validated against experimental measurement,with good agreement achieved.The validated FE model was then employed to predict the dynamic response of a fully-clamped metallic circular target,subjected to the explosive impact of shallow buried explosives with SCW,and explore the corresponding physical mechanisms.It was demonstrated that shallow buried explosives in saturated soil generate a greater impulse transferred towards the target relative to those in dry soil.The deformation displacement of the target plate is doubled.Increasing the height of SCW results in enhanced center peak deflection of the loaded target,accompanied by subsequent fall,due to the variation of deformation pattern of the loaded target from concentrated load to uniform load.Meanwhile,the presence of SCW increases the blast impulse transferred towards the target by three times.In addition,there exists a threshold value of the burial depth that maximizes the impact impulse.This threshold exhibits a strong sensitivity to SCW height,decreasing with increasing SCW height.An empirical formula for predicting threshold has been provided.Similar conclusions can be drawn for different explosive masses.The results provide technical guidance on blast loading intensity and its spatial distribution considering shallow buried explosives in coast-land battlefields,which can ultimately contribute to better protective designs. 展开更多
关键词 Shallow buried explosives Fluid-structure interaction Surface-covering water Impulse distribution
在线阅读 下载PDF
Experimental and numerical approach of afterburning effects in fuel-rich explosives within confined spaces
2
作者 Hu Zhou Ange Lu +3 位作者 Cheng Zheng Yiwen Wang Xiangshao Kong Weiguo Wu 《Defence Technology(防务技术)》 2025年第9期67-79,共13页
The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process ... The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process greatly influences the evolution of confined blast loading and the subsequent structural response,which is crucial in confined blast scenarios.Given the complex nature of the reaction process,accurate analysis of the afterburning effect remains challenging.Previous studies have either overlooked the mechanisms of detonation product combustion or failed to provide experimental validation.This study introduces a three-dimensional model to effectively characterize the combustion of detonation products.The model integrates chemical reaction source terms into the governing equations to consider the combustion processes.Numerical simulations and experimental tests were conducted to analyze the combustion and energy release from the detonation products of fuel-rich explosives in confined spaces.Approximately 50%of the energy was released during the combustion of detonation products in a confined TNT explosion.Although the combustion of these products was much slower than the detonation process,it aligned with the dynamic response of the structure,which enhanced the explosive yield.Excluding afterburning from the analysis reduced the center-point deformation of the structure by 30%.Following the inclusion of afterburning,the simulated quasistatic pressure increased by approximately 45%.Subsequent comparisons highlighted the merits of the proposed approach over conventional methods.This approach eliminates the reliance on empirical parameters,such as the amount and rate of energy release during afterburning,thereby laying the foundation for understanding load evolution in more complex environments,such as ships,buildings,and underground tunnels. 展开更多
关键词 Blast loading Numerical simulation Experimental study Fuel-rich explosives Confined space Afterburning model Reactive flow
在线阅读 下载PDF
Unveiling the Structures and Properties of the Interface between Various Fluoroelastomers and Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in Polymer-bonded Explosives via Neutron Reflectivity
3
作者 Xin-Xi Li Xiao-Ling Xiong +7 位作者 Kun Song Jia-Hui Liu Liang-Fei Bai Jun Chen Jie Chen Xiao-Qing Tu Yue Yin Dong Liu 《Chinese Journal of Polymer Science》 2025年第9期1651-1660,I0012,共11页
The current work addresses the challenge of elucidating the performance of fluoroelastomers within the HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)based polymer-bonded explosives(PBXs).To simulate the confine... The current work addresses the challenge of elucidating the performance of fluoroelastomers within the HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)based polymer-bonded explosives(PBXs).To simulate the confined interface in PBXs,bilayer films of F2314/HMX and F2311/HMX were designed.Neutron reflectivity(NR),nanoindentation,and X-ray reflectivity(XRR)were employed to examine the layer thickness,interface characteristics,diffusion behavior,and surface morphology of the bilayers.NR measurements revealed interface thicknesses of 45Å and 98Å for F2314/HMX and F2311/HMX,respectively,indicating deeper penetration of F2311 into the HMX matrix.NR also suggested a denser polymer network with a higher scattering length density(SLD)near the HMX interface for both fluoroelastomers,while the bound layer of F2311 was notably thicker.Nanoindentation cross-checks and confirms the presence of a bound layer,highlighting the differences in stiffness and diffusion ability between the two polymers.The consistency between the NR and nanoindentation results suggests that F2311 demonstrates better flexibility and elasticity,whereas F2314 is stiffer and more plastic.Accordingly,the structures and performances of different fluoroelastomers at the HMX interface are discussed,which can provide valuable insights into the selection of binders for PBX formulations tailored to specific applications. 展开更多
关键词 Polymer-bonded explosives Interface characterization Neutron reflectivity NANOINDENTATION Bilayer films
原文传递
Control model for burning-bubble clouds formed by confined meltcast explosives under thermal stimulation
4
作者 Zhi Li Zhuoping Duan +4 位作者 Zhiling Bai Jixuan Jiao Liji Xu Liansheng Zhang Fenglei Huang 《Defence Technology(防务技术)》 2025年第6期268-283,共16页
DNAN-based insensitive melt-cast explosives have been widely utilized in insensitive munition in recent years. When constrained DNAN-based melt-cast explosives are ignited under thermal stimulation, the base explosive... DNAN-based insensitive melt-cast explosives have been widely utilized in insensitive munition in recent years. When constrained DNAN-based melt-cast explosives are ignited under thermal stimulation, the base explosive exists in a molten liquid state, where high-temperature gases expand and react in the form of bubble clouds within the liquid explosive;this process is distinctly different from the dynamic crack propagation process observed in the case of solid explosives. In this study, a control model for the reaction evolution of burning-bubble clouds was established to describe the reaction process and quantify the reaction violence of DNAN-based melt-cast explosives, considering the size distribution and activation mechanism of the burning-bubble clouds. The feasibility of the model was verified through experimental results. The results revealed that under geometrically similar conditions, with identical confinement strength and aspect ratio, larger charge structures led to extended initial gas flow and surface burning processes, resulting in greater reaction equivalence and violence at the casing fracture.Under constant charge volume and size, a stronger casing confinement accelerated self-enhanced burning, increasing the internal pressure, reaction degree, and reaction violence. Under a constant casing thickness and radius, higher aspect ratios led to a greater reaction violence at the casing fracture.Moreover, under a constant charge volume and casing thickness, higher aspect ratios resulted in a higher internal pressure, increased reaction degree, and greater reaction violence at the casing fracture. Further,larger ullage volumes extended the reaction evolution time and increased the reaction violence under constant casing dimensions. Through a matching design of the opening threshold of the pressure relief holes and the relief structure area, a stable burning reaction could be maintained until completion,thereby achieving a control of the reaction violence. The proposed model could effectively reflect the effects of the intrinsic burning rate, casing confinement strength, charge size, ullage volume, and pressure relief structure on the reaction evolution process and reaction violence, providing a theoretical method for the thermal safety design and reaction violence evaluation of melt-cast explosives. 展开更多
关键词 Melt-cast explosives Non-shock-initiated reaction Self-sustaining enhanced combustion Burning-bubble cloud model Pressure relief area Reaction violence
在线阅读 下载PDF
Efficiently enhancing thermal conductivity of polymer bonded explosives via the construction of primary-secondary thermal conductivity networks
5
作者 Xunyi Wang Peng Wang +4 位作者 Jie Chen Zhipeng Liu Yuxin Luo Wenbin Yang Guansong He 《Defence Technology(防务技术)》 2025年第6期95-103,共9页
Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of pr... Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity. 展开更多
关键词 Thermally conductive performance Primary-secondary thermally conductive networks Network density Polymer-bonded explosives
在线阅读 下载PDF
Determining the parameters and chemical behaviour of the overdriven detonation reaction zone of CL-20-based aluminized explosives
6
作者 Moyan Liu Yan Liu +3 位作者 Fan Bai Hongfu Wang Shanyong Chu Fenglei Huang 《Defence Technology(防务技术)》 2025年第5期46-66,共21页
The new CL-20(hexanitrohexaazaisowurtzitane)type aluminized explosives in the overdrive detonation(ODD)conditions of the core problem is how to accurately represent the state of the overdrive detonation products.To th... The new CL-20(hexanitrohexaazaisowurtzitane)type aluminized explosives in the overdrive detonation(ODD)conditions of the core problem is how to accurately represent the state of the overdrive detonation products.To this end,this paper is based on the impedance matching method to test the ODD conditions of CL-20 type aluminium explosive particle velocity.Calculated the interfacial pressure of the shock wave in different media.Determined the characteristic parameters of the reaction zone of the detonation of CL-20 aluminized explosives.Calibrated the parameters of the JoneseWilkinseLee(JWL)+γ equation for the detonation products(DPs).Revealed the effect of different DPs equation of state(EOS)on the Hugoniot pressure of ODD.The results indicate that when the content of aluminum powder ranges from 0%to 30%,the duration of the ODD reaction zone and the width of the detonation reaction zone of the CL-20-based aluminized explosive are directly proportional to the content of aluminum powder.The width of the detonation reaction zone is increased by 1.97 times to 2.7 times compared to that of the reaction zone without the addition of aluminum powder.However,the energy release efficiency of the detonation reaction zone is inversely proportional to the content of aluminum powder.When the aluminum powder content was held constant,the incorporation of AP caused a 25%reduction in the energy release efficiency of the detonation reaction zone.Compared with existing ODD state equations,the JWL +γ equation is superior in calibrating overpressure Hugoniot data and the isentropic expansion in the C-J state.The deviation between calculated pressure results and experimental measurements is within 6%. 展开更多
关键词 Equation of state for ODD CL-20-based aluminized explosives Detonation reaction zone Impedance matching Interfacial particle velocity
在线阅读 下载PDF
Ordered Solidification Technique Under Low Pressures in the Loading of Molten Explosives 被引量:7
7
作者 徐更光 刘德润 +1 位作者 王廷增 何德昌 《Journal of Beijing Institute of Technology》 EI CAS 1993年第1期90-97,共8页
In order to improve the quality of loading and make the ammuni- tion safe in use,a new loading technique of ordered solidification has been studied.The study shows that the adoption of this new technique makes the cha... In order to improve the quality of loading and make the ammuni- tion safe in use,a new loading technique of ordered solidification has been studied.The study shows that the adoption of this new technique makes the charge more compact and brings about a satisfactory supplement of liquid ex- plosives,thus increasing the charge density,which is most advantageous to the crimination of pores,cavities,gaps at the bottom and in loose struc- tures.The physical mechanical properties of the charge are hence greatly im- proved,and the sensitivity of the charge to environmental stimulations is much lowered. 展开更多
关键词 explosives explosive charges/TNT
在线阅读 下载PDF
Thermobaric and enhanced blast explosives(TBX and EBX) 被引量:20
8
作者 Lemi TüRKER 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第6期423-445,共23页
In this review, excerpts from the literature of thermobaric(TBX) and enhanced blast explosives(EBX) that are concentrated on studies that include their compositions, properties, reactive metal components, modeling and... In this review, excerpts from the literature of thermobaric(TBX) and enhanced blast explosives(EBX) that are concentrated on studies that include their compositions, properties, reactive metal components, modeling and computations are presented. 展开更多
关键词 Thermobaric explosives ENHANCED BLAST explosives REACTIVE METALS HIGH explosives explosives
在线阅读 下载PDF
Evaluation of detonation performance of explosives ICM-101,ONC,and TNAZ based on improved VHL equation of state
9
作者 Yong Han Qin Liu +2 位作者 Yingliang Duan Yaqi Zhao Xinping Long 《Defence Technology(防务技术)》 2025年第2期83-97,共15页
Detonation performance is crucial for evaluating the power of high explosives(HEs),and the equation of state(EOS)that accurately describes the high-temperature,high-pressure,and high-temperature,medium-pressure states... Detonation performance is crucial for evaluating the power of high explosives(HEs),and the equation of state(EOS)that accurately describes the high-temperature,high-pressure,and high-temperature,medium-pressure states of detonation products is key to assessing the damage efficiency of these energetic materials.This article examines the limitations of the VLW EOS in representing the thermodynamic states of explosive detonation gas products under high-temperature and medium-to high-pressure conditions.A new gas EOS for detonation products,called VHL(Virial-Han-Long),is proposed.The accuracy of VHL in describing gas states under high-temperature and medium-to high-pressure conditions is verified,and its performance in evaluating explosive detonation and working capabilities is explored.The results demonstrate that VHL exhibits high precision in calculating detonation performance.Subsequently,the detonation performance of three new HEs(ICM-101,ONC,and TNAZ)was calculated and compared to traditional HEs(TATB,CL-20,and HMX).The results indicate that ONC has superior detonation performance compared to the other explosives,while ICM-101 shows a detonation velocity similar to CL-20 but with slightly lower detonation pressure.The detonation characteristics of TNAZ are comparable to those of the standard HE HMX.From the perspective of products,considering the comprehensive work performance(mechanical work and detonation heat),both ONC and ICM-101demonstrate relatively superior performance. 展开更多
关键词 Equation of state Detonation performance Working capability THERMODYNAMICS High explosive
在线阅读 下载PDF
An improved efficient adaptive method for large-scale multiexplosives explosion simulations
10
作者 Tao Li Cheng Wang Baojun Shi 《Defence Technology(防务技术)》 2025年第3期28-47,共20页
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re... Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size. 展开更多
关键词 Large-scale explosion Shock wave Adaptive method Fluid field simulations Efficient method
在线阅读 下载PDF
Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–vip interactions
11
作者 Xueru Zhao Aopu Wang +3 位作者 Shimin Wang Zhijie Song Li Ma Li Shao 《Chinese Chemical Letters》 2025年第4期211-215,共5页
Aromatic nitro compounds present substantial health and environmental concerns due to their toxic nature and potential explosive properties.Consequently,the development of host–vip molecular recognition systems for... Aromatic nitro compounds present substantial health and environmental concerns due to their toxic nature and potential explosive properties.Consequently,the development of host–vip molecular recognition systems for these compounds serves a dual-purpose:enabling the fabrication of high-performance sensors for detection and guiding the design of efficient adsorbents for environmental remediation.This study investigated the host–vip recognition behavior of perethylated pillar[n]arenes toward two aromatic nitro molecules,1-chloro-2,4-dinitrobenzene and picric acid.Various techniques including^(1)H NMR,2D NOESY NMR,and UV-vis spectroscopy were employed to explore the binding behavior between pillararenes and aromatic nitro vips in solution.Moreover,valuable single crystal structures were obtained to elucidate the distinct solid-state assembly behaviors of these vips with different pillararenes.The assembled solid-state supramolecular structures observed encompassed a 1:1 host–vip inclusion complex,an external binding complex,and an exo-wall tessellation complex.Furthermore,based on the findings from these systems,a pillararene-based test paper was developed for efficient picric acid detection,and the removal of picric acid from solution was also achieved using pillararenes powder.This research provides novel insights into the development of diverse host–vip systems toward hazardous compounds,offering potential applications in environmental protection and explosive detection domains. 展开更多
关键词 Pillar[n]arenes Host–vip interactions Aromatic nitro compounds Adsorptive separation Explosive detection
原文传递
Effects of Al/O on pressure properties of confined explosion from aluminized explosives 被引量:8
12
作者 Xiao-yu DUAN Xue-yong GUO +2 位作者 Qing-jie JIAO Jing-yuan ZHANG Qing-ming ZHANG 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第6期428-433,共6页
Pressure histories were tested in a 500-L chamber to identify the pressure load in confined explosion from aluminized explosives. Different aluminized explosives with Al/O, ranging from 0.25 to 1.23, were used. The re... Pressure histories were tested in a 500-L chamber to identify the pressure load in confined explosion from aluminized explosives. Different aluminized explosives with Al/O, ranging from 0.25 to 1.23, were used. The recorded pressure curves could express the reflection of initial shock wave and the after burning combustion of aluminum. As there is no objective way to gain quasi-static pressure(P_(QS)),method of multipoint averaging was used in smoothing the original pressure curves to gain the P_(QS). The P_(QS),rising time of pressure(t_(QS)) which stands for the duration of the initial reflected shock wave, and attenuation coefficient(ω) which stands for the supportive effects of the combustion of aluminum to the P_(QS) are used to characterize the pressure load in the confined explosion from aluminized explosives. The research results showed that the Al/O significantly affected the three characteristic quantities. With the increase of Al/O, the P_(QS) increased at first and decreased later, gaining maximum at Al/O=0.99; the t_(QS)sustained growth and the ω decreased at first and increased later, gaining minimum at AI/O=0.99. 展开更多
关键词 Aluminized explosives Al/O CONFINED explosion CHARACTERISTIC PARAMETERS
在线阅读 下载PDF
Thermal decomposition and kinetics of plastic bonded explosives based on mixture of HMX and TATB with polymer matrices 被引量:11
13
作者 Arjun Singh Tirupati C.Sharma +3 位作者 Mahesh Kumar Jaspreet Kaur Narang Prateek Kishore Alok Srivastava 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第1期22-32,共11页
This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as poly... This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as polymer binder. Thermal decomposition of PBXs was undertaken by applying simultaneous thermal analysis(STA) and differential scanning calorimetry(DSC) to investigate influence of the HMX amount on thermal behavior and its kinetics. Thermogravimetric analysis(TGA) indicated that the thermal decomposition of PBXs based on mixture of HMX and TATB was occurred in a three-steps. The first step was mainly due to decomposition of HMX. The second step was ascribed due to decomposition of TATB, while the third step was occurred due to decomposition of the polymer matrices. The thermal decomposition % was increased with increasing HMX amount. The kinetics related to thermal decomposition were investigated under non-isothermal for a single heating rate measurement. The variation in the activation energy of PBXs based on mixture of HMX and TATB was observed with varying the HMX amount. The kinetics from the results of TGA data at various heating rates under non-isothermal conditions were also calculated by Flynn—Wall—Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS)methods. The activation energies calculated by employing FWO method were very close to those obtained by KAS method. The mean activation energy calculated by FWO and KAS methods was also a good agreement with the activation energy obtained from single heating rate measurement in the first step decomposition. 展开更多
关键词 Plastic bonded explosives Thermogravimetric analysis Differential scanning calorimeter Thermal decomposition KINETICS
在线阅读 下载PDF
Investigation on energy output structure of explosives near-ground explosion 被引量:7
14
作者 Wen-long Xu Cheng Wang +2 位作者 Jian-ming Yuan Wei-liang Goh Tao Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第2期290-298,共9页
In order to give the energy output structure of typical explosives near-ground explosion in real ground conditions,the free-field shockwave,ground reflection shockwave and Mach wave overpressure time history of compos... In order to give the energy output structure of typical explosives near-ground explosion in real ground conditions,the free-field shockwave,ground reflection shockwave and Mach wave overpressure time history of composition B explosive,RDX explosive and aluminized explosive were measured by air pressure sensors and ground pressure sensors.The shape of the free-field shock wave,ground reflection shock wave,and Mach wave and explosion flame were captured by high-speed camera.The experimental results show that,at the same horizontal distance from the initiation point,the peak overpressure of explosive shock wave of composition B explosive,both in the air and on the ground,is less than that of RDX and aluminized explosives.At a distance of 3.0 m from the initiation point,the peak overpressure of aluminized explosives is slightly less than that of RDX explosives.Owing to the exothermic effect of aluminum powder,the pressure drop of aluminized explosives is slower than that of RDX explosives.At 5.0 m from the initiation point,the peak overpressure of aluminized explosives is larger than that of RDX explosives.At the same position from the initiation point,among the three kinds of explosives,the impulse of aluminized explosives is the maximum and the impulse of composition B explosives is the minimum.With the increase of the horizontal distance from the initiation point,the height of Mach triple-points(Mach steam)of the three explosives increases gradually.At the same horizontal distance from the initiation point,there is poorly difference in the height of Mach triple-points between aluminized explosive and RDX explosive,and the height of Mach triple-points of composition B explosive is much smaller than that of other two explosives.The maximum diameter and duration of the fireball formed by aluminized explosives are the largest,followed by composition B explosive,and the maximum diameter and duration of the fireball formed by RDX explosive are the smallest. 展开更多
关键词 Near-ground BLAST Reflected wave Marcher STEAM Aluminized explosives
在线阅读 下载PDF
Nitro-tetrazole based high performing explosives:Recent overview of synthesis and energetic properties 被引量:5
15
作者 Saira Manzoor Qamar-un-nisa Tariq +1 位作者 Xin Yin Jian-Guo Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第6期1995-2010,共16页
Heterocyclic skeleton(Azoles)and different energetic groups containing high performing explosives are highly emerged in recent years to meet the challenging requirements of energetic materials in both military and civ... Heterocyclic skeleton(Azoles)and different energetic groups containing high performing explosives are highly emerged in recent years to meet the challenging requirements of energetic materials in both military and civilian applications with improved performance.For this purpose tetrazole(Azole)is identified as an attractive heterocyclic backbone with energetic functional groups nitro(-NO_(2)),nitrato(-ONO_(2)),nitrimino(-NNO_(2)),and nitramino(eNHeNO_(2))to replace the traditionally used high performing explosives.The tetrazole based compounds having these energetic functional groups demonstrated advanced energetic performance(detonation velocity and pressure),densities,and heat of formation(HOF)and became a potential replacement of traditional energetic compounds such as RDX.This review presents a summary of the recently reported nitro-tetrazole energetic compounds containing poly-nitro,di/mono-nitro,nitrato/nitramino/nitrimino,bridged/bis/di tetrazole and nitro functional groups,describing their preparation methods,advance energetic properties,and further applications as highperforming explosives,especially those reported in the last decade.This review aims to provide a fresh concept for designing nitro-tetrazole based high performing explosives together with major challenges and perspectives. 展开更多
关键词 TETRAZOLE Energetic materials Functional groups HETEROCYCLIC High-performing explosives
在线阅读 下载PDF
Effect of hydrogen-storage pressure on the detonation characteristics of emulsion explosives sensitized by glass microballoons 被引量:5
16
作者 Ji-ping Chen Hong-hao Ma +2 位作者 Yi-xin Wang Liang-liang Huang Zhao-wu Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第5期747-754,共8页
In this study,hydrogen-storage glass microballoons were introduced into emulsion explosives to improve the detonation performance of the explosives.The effect of hydrogen-storage pressure on the detonation characteris... In this study,hydrogen-storage glass microballoons were introduced into emulsion explosives to improve the detonation performance of the explosives.The effect of hydrogen-storage pressure on the detonation characteristics of emulsion explosives was systematically investigated.Detonation velocity experiments shows that the change of sensitizing gas and the increase of hydrogen pressure have different effects on the detonation velocity.The experimental parameters of underwater explosion increase first and then decreases with the increase of hydrogen pressure.The decrease of these parameters indicates that the strength of glass microballoons is the limiting factor to improve the detonation performance of hydrogen-storage emulsion explosives.Compared with the traditional emulsion explosives,the maximum peak pressure of shock wave of hydrogen-storage emulsion explosives increases by 10.6%at 1.0 m and 10.2%at 1.2 m,the maximum values of shock impulse increase by 5.7%at 1.0 m and 19.4%at 1.2 m.The stored hydrogen has dual effects of sensitizers and energetic additives,which can improve the energy output of emulsion explosives. 展开更多
关键词 Emulsion explosives Hydrogen-storage pressure Glass microballoons Underwater explosion
在线阅读 下载PDF
Estimating the metal acceleration ability of high explosives 被引量:2
17
作者 Dany Frem 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第1期225-231,共7页
The Gurney method is widely used in the conceptual design stage of explosive fragmentation warheads employed in various weapons systems.This method states that the peak fragment velocity(V_0) is a function of the Gurn... The Gurney method is widely used in the conceptual design stage of explosive fragmentation warheads employed in various weapons systems.This method states that the peak fragment velocity(V_0) is a function of the Gurney velocity((2E_G)^(1/2)) and the charge-to-metal weight ratio(C/M).The current study is concerned with finding a practical approach for computing the Gurney velocity of pure and mixed high explosives which will eventually help warhead designers to select the best explosive to fulfill the needs of a particular mission.Using multiple regression analysis technique,a four-variable model was derived and used thereafter to estimate the Gurney velocity of aluminized and non-aluminized explosive formulations.The results show that the new model is particularly accurate in predicting the Gurney velocity of combined effects explosives,which are relatively a new class of high blast,high metal acceleration capability explosive compositions. 展开更多
关键词 Gurney VELOCITY High explosives Aluminized explosives COMBINED effects explosives FRAGMENTATION warheads
在线阅读 下载PDF
Ultrasonic Evaluation of the Impact Damage of Polymer Bonded Explosives 被引量:3
18
作者 陈鹏万 戴开达 +1 位作者 黄风雷 丁雁生 《Journal of Beijing Institute of Technology》 EI CAS 2004年第3期242-246,共5页
The damage properties of polymer bonded explosives under dynamic loading were studied by using ultrasonic evaluation. Explosive samples were damaged by a low-velocity gas gun at different impact velocities. Ultrasonic... The damage properties of polymer bonded explosives under dynamic loading were studied by using ultrasonic evaluation. Explosive samples were damaged by a low-velocity gas gun at different impact velocities. Ultrasonic examination was carried out with a pulse through-transmission method. Spectra analyses were carried out by using fast Fourier transform. Characteristic ultrasonic parameters, including ultrasonic velocities, attenuation coefficients, spectra area and master frequency, were obtained. The correlation between the impact damage and ultrasonic parameters was analyzed. A damage coefficient D was defined by considering a combination of ultrasonic velocity and amplitude. The results show that ultrasonic parameters can be used to quantitatively assess the damage extent in impacted plastic bonded explosives.. 展开更多
关键词 polymer bonded explosives impact damage ultrasonic evaluation
在线阅读 下载PDF
Rheology of typical emulsifiers and effects on stability of emulsion explosives 被引量:2
19
作者 王丽琼 王娜峰 方杰 《Journal of Beijing Institute of Technology》 EI CAS 2011年第3期295-300,共6页
Structure of emulsifiers or functionality and molecular weight determines its rheology, emulsification and stability of emulsion explosives. Rheology of typical emulsifiers was studied by automatic rheometer. Relation... Structure of emulsifiers or functionality and molecular weight determines its rheology, emulsification and stability of emulsion explosives. Rheology of typical emulsifiers was studied by automatic rheometer. Relations between rheology and structural properties of typical emulsifiers were analyzed. Experimental results show that viscosity of emulsifiers didn' t change with shear rate at room temperature and appeared properties of Newtonian fluid. Viscosity of different component emulsifiers declines with temperature in different modes. The change of strain doesn' t affect modu- lus of emulsifiers. Loss modulus increases linearly with the increase of frequency in oscillation and storage modulus does non-linearly. The higher the temperature is, the lower change amplitude of loss modulus with frequency will be. The emulsifiers with imide and amide functionality for emulsion explosives have better shear properties at high temperature and better shapingness and stability at room temperature than other emulsifiers with ester and Sorbin Monoleate (SMO) functionality. 展开更多
关键词 emulsion explosives EMULSIFIERS hydrophile-lipophile balance HLB RHEOLOGY viscosity modulus stability
在线阅读 下载PDF
Deformation and Failure of Polymer Bonded Explosives 被引量:2
20
作者 陈鹏万 黄风雷 丁雁生 《Journal of Beijing Institute of Technology》 EI CAS 2004年第1期43-47,共5页
The deformation and failure of pressed polymer bonded explosives under different types of loads including tension, compression and low velocity impact are presented. Brazilian test is used to study the tensile propert... The deformation and failure of pressed polymer bonded explosives under different types of loads including tension, compression and low velocity impact are presented. Brazilian test is used to study the tensile properties. The microstructure of polymer bonded explosives and its evolution are studied by use of scanning electronic microscopy and polarized light microscopy. Polishing techniques have been developed to prepare samples for microscopic examination. The failure mechanisms of polymer bonded explosives under different loads are analyzed. The results show that interfacial debonding is the predominant failure mode in quasi-static tension, while extensive crystal fractures are induced in compression. With the increase of strain rate, more crystal fractures occur. Low velocity impact also induces extensive crystal fractures. 展开更多
关键词 polymer bonded explosives DEFORMATION FAILURE MICROSTRUCTURE Brazilian test
在线阅读 下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部