期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Simulation Analysis of Indoor Gas Explosion Damage 被引量:4
1
作者 钱新明 陈林顺 冯长根 《Journal of Beijing Institute of Technology》 EI CAS 2003年第3期286-289,共4页
The influence factors and process of indoor gas explosion are studied with AutoReaGas explosion simulator. The result shows that venting pressure has great influence on the indoor gas explosion damage. The higher the ... The influence factors and process of indoor gas explosion are studied with AutoReaGas explosion simulator. The result shows that venting pressure has great influence on the indoor gas explosion damage. The higher the venting pressure is, the more serious the hazard consequence will be. The ignition location has also evident effect on the gas explosion damage. The explosion static overpressure would not cause major injury to person and serious damage to structure in the case of low venting pressure (lower than 2 kPa). The high temperature combustion after the explosion is the major factor to person injury in indoor gas explosion accidents. 展开更多
关键词 indoor gas explosion explosion simulation explosion overpressure high temperature combustion
在线阅读 下载PDF
Research on the hazards of gas leakage and explosion in a full-scale residential building
2
作者 Chengjun Yue Li Chen +2 位作者 Zhan Li Bin Feng Ruizhi Xu 《Defence Technology(防务技术)》 2025年第1期168-181,共14页
The gas explosion in residential building has always been a highly concerned problem.Explosions in homogeneous mixtures have been extensively studied.However,mixtures are often inhomogeneous in the practical scenarios... The gas explosion in residential building has always been a highly concerned problem.Explosions in homogeneous mixtures have been extensively studied.However,mixtures are often inhomogeneous in the practical scenarios due to the differences in the densities of methane and air.In order to investigate the effects of gas explosions in inhomogeneous mixtures,experimental studies involving gas leakage and explosion are conducted in a full-scale residential building to reproduce the process of gas explosion.By fitting the dimensionless buoyancy as a function of dimensionless height and dimensionless time,a distribution model of gas in large-scale spaces is established,and the mechanism of inhomogeneous distribution of methane is also be revealed.Furthermore,the stratified reconstruction method(SRM)is introduced for efficiently setting up inhomogeneous concentration fields in FLACS.The simulation results highlight that for the internal overpressure,the distribution of methane has no effect on the first overpressure peak(ΔP1),while it significantly influences the subsequent overpressure peak(ΔP2),and the maximum difference between the overpressure of homogeneous and inhomogeneous distribution is174.3%.Moreover,the initial concentration distribution also has a certain impact on the external overpressure. 展开更多
关键词 Methane distribution Inhomogeneous mixture Gradient layer Gas explosion Explosive simulation
在线阅读 下载PDF
Quantitative Method of the Structural Damage Identification of Gas Explosion Based on Case Study:The Shanxi “11. 23” Explosion Investigation
3
作者 Huanjuan Zhao Yiran Yan Xinming Qian 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期1-14,共14页
In order to present a retrospective analysis of exposition accidents using input data from investigation processes,data from a specific accident was examined,in which we analyzed possible involved gas species( liquef... In order to present a retrospective analysis of exposition accidents using input data from investigation processes,data from a specific accident was examined,in which we analyzed possible involved gas species( liquefied petroleum gas; nature gas) and computed their concentrations and distributions based on the interactions between the structures and the effects of the explosion. In this study,5 scenarios were created to analyze the impact effect. Moreover,a coupling algorithm was put into practice,with a practical outflow boundary and joint strength are applied. Finally,the damage effects of each scenario were simulated. Our experimental results showed significant differences in the 5 scenarios concerning the damage effects on the building structures. The results from scenario 3 agree with the accident characteristics,demonstrating the effectiveness of our proposed modeling method. Our proposed method reflects gas properties,species and the concentration and distribution,and the simulated results validates the root cause,process,and consequences of accidental explosions. Furthermore,this method describes the evolution process of explosions in different building structures. Significantly,our model demonstrates the quantatative explosion effect of factors like gas species,gas volumes,and distributions of gases on explosion results. In this study,a feasible,effective,and quantitative method for structure safety is defined,which is helpful to accelerate the development of safer site regulations. 展开更多
关键词 mechanics of explosion simulation dynamic response liquefied petroleum gas nature gas quantitative analysis
在线阅读 下载PDF
Numerical simulation of shock wave interaction with a deformable particle based on the pseudo arc-length method 被引量:9
4
作者 NING JianGuo WANG Xing +1 位作者 MA TianBao WANG Cheng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第5期848-857,共10页
In this paper, we combine the pseudo arc-length numerical method with the mathematical model of multiphase compressible flow for simulating the shock wave interaction with a deformable particle. Firstly, an arc-length... In this paper, we combine the pseudo arc-length numerical method with the mathematical model of multiphase compressible flow for simulating the shock wave interaction with a deformable particle. Firstly, an arc-length parameter is introduced to weaken the discontinuous singularity of governing equations, and an efficient pseudo arc-length numerical method of multiphase compressible flow is proposed. Then the accuracy and adaptive moving mesh property of this algorithm are tested. Finally, the multiphase pseudo arc-length numerical method is applied to the problem of interaction between shock wave and the deformable particle. Through the flow flied change and data analysis of key points, it can be found the complex wave structures are presented after the interactions between the planar incident shock wave and the metal particle, and all these wave interactions lead to the movement and deformation of metal particle, and then the deformed particle will affect the transmitted shock wave back. According to the discussion, the deformation of particle and shock wave propagation in the particle are determined by the shock wave impedance of each medium and shock speed, so the interaction between shock wave and the deformable particle can be studied on the basis of physical properties of explosive mediums. 展开更多
关键词 multiphase compressible length singularity deformed governing simulating impedance explosive discussion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部