We emphasize the importance of studying the primate brain in cognitive neuroscience and suggest a new mind-set in primate experimentation within the boundaries of animal welfare regulations.Specifically,we list the ad...We emphasize the importance of studying the primate brain in cognitive neuroscience and suggest a new mind-set in primate experimentation within the boundaries of animal welfare regulations.Specifically,we list the advantages of investigating both genes and neural mechanisms and processes in the emergence of behavioral and cognitive functions,and propose the establishment of an open field of primate research.The latter may be conducted by implementing and harmonizing experimental practices with ethical guidelines that regulate(1)management of natural parks with free-moving populations of target nonhuman primates,(2)establishment of indoor-outdoor labs for both system genetics and neuroscience investigations,and(3)hotel space and technologies which remotely collect and dislocate information regarding primates geographically located elsewhere.展开更多
Objective: The aim of this project was to train highly professional and specialized nursing students from medical colleges to adapt to bedside clinical care by exploring and discussing various methods of injection an...Objective: The aim of this project was to train highly professional and specialized nursing students from medical colleges to adapt to bedside clinical care by exploring and discussing various methods of injection and IV infusion in animal experimentation to hone the core professional nursing competencies. Methods: Two classes from the 2012 senior graduating nursing class were randomly selected by a computer to conduct the diversified practical teaching methods based on animal experimentation. A hospital environment was simulated by requiring students to perform different types of injections and practical IV infusion techniques. A comprehensive evaluation of the core professional competencies, as well as other integrated competencies, was conducted to determine the effectiveness of the teaching methods. Results: Two-sampled, pairwise u-tests were performed between the scores of the experimental (nursing class 2) and control (nursing class 1) groups. These findings showed that the overall test scores were significantly higher in the experimental group compared to the control group and that the average P-values for the competencies in various categories were 〈0.01, which indicated statistically significant results. Conclusions: Based on the data from this project, diversified teaching methods for basic nursing training founded on animal experimentation can help nursing students perfect their core professional competencies and improve their overall professional standing. The introduction of animal experimentation requires further verification, and an increased acknowledgement of its benefits through the widespread dissemination of this information.展开更多
A new approach is demonstrated in which soft experimentation can be performed for MMP measurements, thus replacing the common practice of slim tube displacement laboratory experiments. Recovery potential from oil rese...A new approach is demonstrated in which soft experimentation can be performed for MMP measurements, thus replacing the common practice of slim tube displacement laboratory experiments. Recovery potential from oil reservoirs by miscible flue gas injection was studied by slim tube and field-scale numerical simulation using two flue gases and seven crude oils sampled at different depths in three candidate reservoirs. The soft experimentations were conducted using Eclipse300<sup>TM</sup>, a three-phase compositional simulator. This study investigates minimum miscibility pressure (MMP), a significant miscible gas injection project screening tool. Successful design of the project is contingent to the accurate determination of the MMP. This study evaluates effects of important factors such as injection pressure, oil component composition, and injection gas composition on the MMP and recovery efficiency for slim tube and field-scale displacements. Two applicable MMP correlations were used for comparison and validation purposes.展开更多
The aim of this study is to report the use of RE (remote experimentation) in an educational press. The authors developed this remote experiment with the objective to study the Hooke's law through the analysis of th...The aim of this study is to report the use of RE (remote experimentation) in an educational press. The authors developed this remote experiment with the objective to study the Hooke's law through the analysis of the coil spring. The remote experiment is available in a website, where the students can manipulate and observe the educational press and confirm Hooke's statements with the output information. In addition, the students will have the opportunity to read in the website about the educational press, the physical law, and the use of the press in industrial processes. This remote experimentation exerts a force in the mechanical spring creating a deformation. In the defined point, the microcomputer will collect the data from the sensors, and it will save this data in the database. After the process execution, a graph with the data will be plotted in the website. The tests confirm that the educational press has informational potential because it returned values consistent with Hooke's law and the experiment presented repetition in all tests realized.展开更多
Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human ...Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human usage through a variety of experimental or testing forms. Animal studies were conducted for which, in the first day of the study all the animals consistently gained dramatic weight, even as a toxic substance was introduced as described in the introduction of the paper to harm animal subjects which induced weight loss through toxicity. Tests can be made by incorporating blood report results. Human patients were also observed to show improvement to their health as administration of the substance was introduced to the biological mechanism and plants were initially exposed to the substance to observe results. This is consistent with the Tiêu equation which provides that wave function is created as the introduction of the substance to the biological mechanism which supports Quantum Mechanics. The Tiêu equation demonstrates that Quantum Mechanics moves a particle by temperature producing energy thru the blood-brain barrier for example. Methods: The methods for the Tiêu equation incorporate animal studies to include the substance administered through laboratory standards using Good Laboratory Practices under Title 40 C.F.R. § 158. Human patients were treated with the substance by medical professionals who are experts in their field and have knowledge to the response of patients. Plant applications were acquired for observation and guidance of ongoing experiments of animals’ representative for the biologics mechanism. Results: The animal studies along with patient blood testing results have been an impressive line that has followed the Tiêu equation to consistently show improvement in the introduction of the innovation to biologic mechanisms. The mechanism responds to the substance by producing energy to the mechanism with efficient effect. For plant observations, plant organisms responded, and were seen as showing improvement thru visual observation.展开更多
This study was carried out at the Mamou Higher Institute of Technology during the period from March 10 to April 15, 2022, with the aim of designing and testing a solar dryer with forced convection by drying potatoes. ...This study was carried out at the Mamou Higher Institute of Technology during the period from March 10 to April 15, 2022, with the aim of designing and testing a solar dryer with forced convection by drying potatoes. The dryer was designed using local materials. Its main geometric parameters are: 1) height of the drying chamber (90 cm), 2) length of the drying chamber (50 cm), 3) width of the drying chamber (43 cm), 4) surface of the racks (0.1806 m<sup>2</sup>), 5) surface of the heat accumulator (0.2537 m<sup>2</sup>). The experiment focused on the vacuum test of the dryer for two days and that of the drying of the sweet potato for three days from 8:30 a.m. to 5:30 p.m. The average vacuum test temperature values of the three environments are respectively accumulator (43°C), dryer chamber (41°C) and ambient environment (34°C). Four kilograms (4 kg) of boiled sweet potato were dried. The average temperatures in the accumulator and in the drying chamber during the three days of drying are respectively 33°C and 39°C. The final mass of the dried product is 1.2 kg, with a quantity of water extracted of 2 liters or 63% of the initial mass of the product. The average drying rate is 0.074 kg/h. The drying kinetics showed a decreasing rate in the absence of the heating period and the constant rate period.展开更多
The clay in the aquatic environment begins to precipitate depending on the saturation level of the solution.The purpose of this work is to monitor this subsidence of the clay and to see its course with photographs.The...The clay in the aquatic environment begins to precipitate depending on the saturation level of the solution.The purpose of this work is to monitor this subsidence of the clay and to see its course with photographs.The photos are then analyzed with the Adobe Photoshop program,so that the students of the 3rd grade of the High School are able to follow the evolution of the precipitation phenomenon through the analysis of the photos and the probability density distribution function of the three pigments(RBG(Red-Blue-Green)in the technology course).The rate of clay settling as shown in the photos requires a prerequisite for the use of soil conditioners in specific clay soils.The students who participated in the workshop had the opportunity to get in touch with the phenomenon of subsidence,the processing of the brightness of the images with the program Adobe Photoshop and the study of soil improvement alternatives.展开更多
This paper presents the work implemented in designing, fabricating and operating a model of a cheap hydraulic DDM (deep drawing machine), which is currently utilized in the manufacturing processes lab in the IED (I...This paper presents the work implemented in designing, fabricating and operating a model of a cheap hydraulic DDM (deep drawing machine), which is currently utilized in the manufacturing processes lab in the IED (Industrial Engineering Department) at An-Najah National University. The machine is used to conduct different experiments related to the deep drawing process. This work was implemented in three stages: the first was the design stage, in which all design calculations of the DDM elements were completed based on the specifications of the product (cup) to be drawn; the second was the construction stage, in which the DDM elements were fabricated and assembled at the engineering workshops of the university; the last was the operating and experimentation stage, in which the DDM was tested by conducting different experiments. The experience gained from designing and constructing such a mechanical lab equipment was found to be successful in terms of obtaining practical results that agree with those available in literature, cost-effective relative to the cost of a similar purchased equipment, as well as enhancing students' abilities in understanding the deep drawing process in particular and machine elements design concepts in general.展开更多
Herein,we report a novel and highly efficient method for the synthesis ofα-phosphoryloxy carbonyl compounds via Rucatalyzed P(O)O–H insertion reactions of sulfoxonium ylides and phosphinic acids,with the assistance ...Herein,we report a novel and highly efficient method for the synthesis ofα-phosphoryloxy carbonyl compounds via Rucatalyzed P(O)O–H insertion reactions of sulfoxonium ylides and phosphinic acids,with the assistance of high-throughput experimentation(HTE)and machine learning(ML).A variety of P(O)O−H derivatives,including diarylphosphates,alkyl phosphates,and alkoxyphosphates,are competent candidates to react with sulfoxonium ylides in this transformation,and variousα-phosphoryloxy carbonyls and propylene phosphates are directly constructed.This approach utilizes readily available sulfoxonium ylide as a carbene precursor,and features mild conditions,operational simplicity,and broad functional groups tolerance,and could be used for late-stage functionalization of structurally complex bioactive molecules.Moreover,a conducive exploration of the reaction space is also conducted(756 reactions)and a machine learning model for reaction yield prediction has been developed and applied,showcasing the practical application of this newly workflow(HTE-ML)in the field of synthetic chemistry.展开更多
This paper classifies software researches as theoretical researches, experimental researches, and engineering researches, and is mainly concerned with the experimental researches with focus on software reliability exp...This paper classifies software researches as theoretical researches, experimental researches, and engineering researches, and is mainly concerned with the experimental researches with focus on software reliability experimentation and control. The state-of-the-art of experimental or empirical studies is reviewed. A new experimentation methodology is proposed, which is largely theory discovering oriented. Several unexpected results of experimental studies are presented to justify the importance of software reliability experimentation and control. Finally, a few topics that deserve future investigation are identified.展开更多
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s...With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.展开更多
Materials genome engineering(MGE)has been successfully applied in various fields,resulting in a series of novel materials with excellent performance.Significant progress has been made in high-throughput simulation,exp...Materials genome engineering(MGE)has been successfully applied in various fields,resulting in a series of novel materials with excellent performance.Significant progress has been made in high-throughput simulation,experimentation,and data-driven techniques,enabling the effective prediction,rapid synthesis,and characterization of many classes of materials.In this brief review,we introduce the achievements made in the field of metallic glasses(MGs)using MGE,in particular high-throughput experimentation and data-driven approaches.High-throughput experiments help to efficiently synthesize and characterize many materials in a short period of time,enabling the construction of high-quality material databases for data-driven methods.Paired with machine learning,potential alloys of desired properties may be revealed and predicted.Along with the progress in computational power and algorithms of machine learning,the complex composition-structure-properties relationship is hopefully established,which in turn help efficient and precise prediction of new MGs.展开更多
Fixed-wing unmanned aerial vehicles(UAVs)are a primary focus of current UAV research.Challenges arise in theirflight due to high speed and complex maneuverability.This paper explores the coordinated turn guidance law ...Fixed-wing unmanned aerial vehicles(UAVs)are a primary focus of current UAV research.Challenges arise in theirflight due to high speed and complex maneuverability.This paper explores the coordinated turn guidance law for fixed-wing UAVs and validates an experimental leader-follower formation platform inflight.Results demonstrate the effectiveness of the proposed algorithm and platform in enabling actual leader-follower formationflights for fixed-wing UAVs.展开更多
OBJECTIVE:To elucidate the potential molecular mechanisms of Baishao(Radix Paeoniae Alba)(APR)and Gancao(Radix Glycyrrhizae)(GR)in the treatment of major depressive disorder(MDD).METHODS:Based on the network pharmacol...OBJECTIVE:To elucidate the potential molecular mechanisms of Baishao(Radix Paeoniae Alba)(APR)and Gancao(Radix Glycyrrhizae)(GR)in the treatment of major depressive disorder(MDD).METHODS:Based on the network pharmacology strategy,the therapeutic targets of APR-GR for MDD are predicted,differentially expressed genes from the Integrated Gene Expression database for MDD patients.Topological networks are constructed,Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways are enriched,their pharmacological potential molecular mechanisms are discussed,and molecular docking analysis is performed to further motivate compositional and target interactions.Finally,the CUMS mouse model is used for validation.RESULTS:Based on the pharmacological network analysis,17 candidate genes were identified,including muscarinic acetylcholine receptor M1(CHRM1),muscarinic acetylcholine receptor M2(CHRM2),β2-adrenergic receptor(ADRB2),adrenergicα1A receptor(ADRA1A)and 5-hydroxytryptamine transfer protein(SLC6A4),etc.which are primarily involved in reactive oxygen species metabolism,neural response,oxidative stress response and other biological processes.Further analysis revealed that these targets are closely related to Ca^(2+),cyclic adenosine monophosphate,etc.,and exhibit optimal binding sites after molecular docking.Finally,in vivo experiments were performed and it was found that APR-GR significantly improved depression-like behavior and hippocampal impairment in mouse models,increasing brain levels of 5-hydroxytryptamine,dopamine and norepinephrine and decreasing serum levels of corticotropin releasing hormone,corticosterone and adreno cortico tropic hormone,while upregulating the expression of CHRM1,CHRM2 and ADRA1A in the hippocampus and downregulating the expression of SLC6A4 and ADRB2.CNCLUSION:This research sheds light on the potential molecular mechanism of APR-GR to improve MDD.展开更多
The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further impr...The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further improve the joint quality,the ultrasonic vibration(UV)is exerted in FSLW,and the UV enhanced FSLW(UVeFSLW)was developed for making Mg-to-Al dissimilar joints.The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW.An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone,and the effect of grain size distribution on the threshold thermal stress was included,so that the prediction accuracy of flow stress was further improved.With such modified constitutive equation,the numerical simulation was conducted to compare the heat generation,temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes.It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW,which suppressed the IMCs thickness at Mg-Al interface from 1.7μm in FSLW to 1.1μm in UVeFSLW.The exerted UV increased the horizontal materials flow ability,and decreased the upward flow ability,which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW.Therefore,the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18%.展开更多
Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in ...Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in a rice cropping system.A15N2-labeling chamber system was placed in a rice field to evaluate BNF with straw incorporation under CFI or IFI for 90 d.The nif H(gene encoding the nitrogenase reductase subunit)DNA and c DNA in soil were amplified using real-time quantitative polymerase chain reaction,and high-throughput sequencing was applied to the nif H gene.The total fixed N in the straw incorporation treatment was 14.3 kg ha^(-1)under CFI,being 116%higher than that under IFI(6.62 kg ha^(-1)).Straw incorporation and CFI showed significant interactive effects on the total fixed N and abundances of nif H DNA and c DNA.The increase in BNF was mainly due to the increase in the abundances of heterotrophic diazotrophs such as Desulfovibrio,Azonexus,and Azotobacter.These results indicated that straw incorporation stimulated BNF under CFI relative to IFI,which might ultimately lead to a rapid enhancement of soil fertility.展开更多
Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fi-brosis,which appears to be a leading cause of cardiovascular diseases.Cardiac fi-brosis is characterized by the accumulation of extra...Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fi-brosis,which appears to be a leading cause of cardiovascular diseases.Cardiac fi-brosis is characterized by the accumulation of extracellular matrix proteins,mainly collagen in the cardiac interstitium.Many experimental studies have demonstrated that fibrotic injury in the heart is reversible;therefore,it is vital to understand differ-ent molecular mechanisms that are involved in the initiation,progression,and resolu-tion of cardiac fibrosis to enable the development of antifibrotic agents.Of the many experimental models,one of the recent models that has gained renewed interest is isoproterenol(ISP)-induced cardiac fibrosis.ISP is a synthetic catecholamine,sympa-thomimetic,and nonselectiveβ-adrenergic receptor agonist.The overstimulated and sustained activation ofβ-adrenergic receptors has been reported to induce biochemi-cal and physiological alterations and ultimately result in cardiac remodeling.ISP has been used for decades to induce acute myocardial infarction.However,the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis;this practice has increased in recent years.Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy.The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is consid-ered the initiating mechanism of myocardial fibrosis.ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals.In recent years,numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis.The present review exclusively provides a comprehensive summary of the pathological biochemical,histological,and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy.It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as syn-thetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.展开更多
Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”C...Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”Cave 168 is a key component of the Beishan Rock Carvings.At present,several through-going cracks have developed in the roof of Cave 168,severely compromising the structural stability of the grotto.The early internal steel plate supports have suffered severe corrosion and can no longer provide effective reinforcement.In addition,the presence of steel columns obstructs visitor access and negatively affects the viewing experience.A new reinforcement method is urgently needed.Therefore,studying the deformation patterns of the structure is of critical importance.This study analyzes the stratigraphic parameters and fracture distribution of Cave 168,considering key influencing factors such as rainfall,self-weight,and the overlying Quaternary soil.On-site monitoring and physical model experiments were conducted to evaluate the changes in roof crack width and displacement before and after reinforcement with negative Poisson's ratio(NPR)anchor cables.The results reveal that the roof of Cave 168 contains several through-going cracks and numerous microcracks,which serve as infiltration channels for surface water.These accelerate the softening of the mudstone and pose a significant threat to the cave's structural safety.During the experiment,the main change in the crack exhibited a“semi-archshaped”propagation pattern.In the first ten minutes,as the rock transitioned from dry to moist conditions,a slight crack closure was observed.As rainfall continued,crack propagation accelerated.After rainfall ceased,crack width remained stable over a short period.Under NPR anchor support,the influence of rainfall on roof settlement was effectively mitigated,ensuring the safety and stability of the roof.The NPR anchors successfully limited the roof settlement to within 0.3 mm and provided effective control over both total and differential settlement.These findings offer valuable insights into the application of NPR anchor cables in the conservation of grotto heritage structures.展开更多
In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-b...In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.展开更多
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum...Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.展开更多
文摘We emphasize the importance of studying the primate brain in cognitive neuroscience and suggest a new mind-set in primate experimentation within the boundaries of animal welfare regulations.Specifically,we list the advantages of investigating both genes and neural mechanisms and processes in the emergence of behavioral and cognitive functions,and propose the establishment of an open field of primate research.The latter may be conducted by implementing and harmonizing experimental practices with ethical guidelines that regulate(1)management of natural parks with free-moving populations of target nonhuman primates,(2)establishment of indoor-outdoor labs for both system genetics and neuroscience investigations,and(3)hotel space and technologies which remotely collect and dislocate information regarding primates geographically located elsewhere.
基金supported by 2012 Jiangxi Province Higher Education Reform Research Provincial Research Project(No.JXJG-12-29-3)
文摘Objective: The aim of this project was to train highly professional and specialized nursing students from medical colleges to adapt to bedside clinical care by exploring and discussing various methods of injection and IV infusion in animal experimentation to hone the core professional nursing competencies. Methods: Two classes from the 2012 senior graduating nursing class were randomly selected by a computer to conduct the diversified practical teaching methods based on animal experimentation. A hospital environment was simulated by requiring students to perform different types of injections and practical IV infusion techniques. A comprehensive evaluation of the core professional competencies, as well as other integrated competencies, was conducted to determine the effectiveness of the teaching methods. Results: Two-sampled, pairwise u-tests were performed between the scores of the experimental (nursing class 2) and control (nursing class 1) groups. These findings showed that the overall test scores were significantly higher in the experimental group compared to the control group and that the average P-values for the competencies in various categories were 〈0.01, which indicated statistically significant results. Conclusions: Based on the data from this project, diversified teaching methods for basic nursing training founded on animal experimentation can help nursing students perfect their core professional competencies and improve their overall professional standing. The introduction of animal experimentation requires further verification, and an increased acknowledgement of its benefits through the widespread dissemination of this information.
文摘A new approach is demonstrated in which soft experimentation can be performed for MMP measurements, thus replacing the common practice of slim tube displacement laboratory experiments. Recovery potential from oil reservoirs by miscible flue gas injection was studied by slim tube and field-scale numerical simulation using two flue gases and seven crude oils sampled at different depths in three candidate reservoirs. The soft experimentations were conducted using Eclipse300<sup>TM</sup>, a three-phase compositional simulator. This study investigates minimum miscibility pressure (MMP), a significant miscible gas injection project screening tool. Successful design of the project is contingent to the accurate determination of the MMP. This study evaluates effects of important factors such as injection pressure, oil component composition, and injection gas composition on the MMP and recovery efficiency for slim tube and field-scale displacements. Two applicable MMP correlations were used for comparison and validation purposes.
文摘The aim of this study is to report the use of RE (remote experimentation) in an educational press. The authors developed this remote experiment with the objective to study the Hooke's law through the analysis of the coil spring. The remote experiment is available in a website, where the students can manipulate and observe the educational press and confirm Hooke's statements with the output information. In addition, the students will have the opportunity to read in the website about the educational press, the physical law, and the use of the press in industrial processes. This remote experimentation exerts a force in the mechanical spring creating a deformation. In the defined point, the microcomputer will collect the data from the sensors, and it will save this data in the database. After the process execution, a graph with the data will be plotted in the website. The tests confirm that the educational press has informational potential because it returned values consistent with Hooke's law and the experiment presented repetition in all tests realized.
文摘Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human usage through a variety of experimental or testing forms. Animal studies were conducted for which, in the first day of the study all the animals consistently gained dramatic weight, even as a toxic substance was introduced as described in the introduction of the paper to harm animal subjects which induced weight loss through toxicity. Tests can be made by incorporating blood report results. Human patients were also observed to show improvement to their health as administration of the substance was introduced to the biological mechanism and plants were initially exposed to the substance to observe results. This is consistent with the Tiêu equation which provides that wave function is created as the introduction of the substance to the biological mechanism which supports Quantum Mechanics. The Tiêu equation demonstrates that Quantum Mechanics moves a particle by temperature producing energy thru the blood-brain barrier for example. Methods: The methods for the Tiêu equation incorporate animal studies to include the substance administered through laboratory standards using Good Laboratory Practices under Title 40 C.F.R. § 158. Human patients were treated with the substance by medical professionals who are experts in their field and have knowledge to the response of patients. Plant applications were acquired for observation and guidance of ongoing experiments of animals’ representative for the biologics mechanism. Results: The animal studies along with patient blood testing results have been an impressive line that has followed the Tiêu equation to consistently show improvement in the introduction of the innovation to biologic mechanisms. The mechanism responds to the substance by producing energy to the mechanism with efficient effect. For plant observations, plant organisms responded, and were seen as showing improvement thru visual observation.
文摘This study was carried out at the Mamou Higher Institute of Technology during the period from March 10 to April 15, 2022, with the aim of designing and testing a solar dryer with forced convection by drying potatoes. The dryer was designed using local materials. Its main geometric parameters are: 1) height of the drying chamber (90 cm), 2) length of the drying chamber (50 cm), 3) width of the drying chamber (43 cm), 4) surface of the racks (0.1806 m<sup>2</sup>), 5) surface of the heat accumulator (0.2537 m<sup>2</sup>). The experiment focused on the vacuum test of the dryer for two days and that of the drying of the sweet potato for three days from 8:30 a.m. to 5:30 p.m. The average vacuum test temperature values of the three environments are respectively accumulator (43°C), dryer chamber (41°C) and ambient environment (34°C). Four kilograms (4 kg) of boiled sweet potato were dried. The average temperatures in the accumulator and in the drying chamber during the three days of drying are respectively 33°C and 39°C. The final mass of the dried product is 1.2 kg, with a quantity of water extracted of 2 liters or 63% of the initial mass of the product. The average drying rate is 0.074 kg/h. The drying kinetics showed a decreasing rate in the absence of the heating period and the constant rate period.
文摘The clay in the aquatic environment begins to precipitate depending on the saturation level of the solution.The purpose of this work is to monitor this subsidence of the clay and to see its course with photographs.The photos are then analyzed with the Adobe Photoshop program,so that the students of the 3rd grade of the High School are able to follow the evolution of the precipitation phenomenon through the analysis of the photos and the probability density distribution function of the three pigments(RBG(Red-Blue-Green)in the technology course).The rate of clay settling as shown in the photos requires a prerequisite for the use of soil conditioners in specific clay soils.The students who participated in the workshop had the opportunity to get in touch with the phenomenon of subsidence,the processing of the brightness of the images with the program Adobe Photoshop and the study of soil improvement alternatives.
文摘This paper presents the work implemented in designing, fabricating and operating a model of a cheap hydraulic DDM (deep drawing machine), which is currently utilized in the manufacturing processes lab in the IED (Industrial Engineering Department) at An-Najah National University. The machine is used to conduct different experiments related to the deep drawing process. This work was implemented in three stages: the first was the design stage, in which all design calculations of the DDM elements were completed based on the specifications of the product (cup) to be drawn; the second was the construction stage, in which the DDM elements were fabricated and assembled at the engineering workshops of the university; the last was the operating and experimentation stage, in which the DDM was tested by conducting different experiments. The experience gained from designing and constructing such a mechanical lab equipment was found to be successful in terms of obtaining practical results that agree with those available in literature, cost-effective relative to the cost of a similar purchased equipment, as well as enhancing students' abilities in understanding the deep drawing process in particular and machine elements design concepts in general.
基金supported by the National Natural Science Foundation of China(22372044,22393892,22002169,22071249)the Guangdong Basic and Applied Basic Research Foundation(2024A1515012583,2019A1515111111)the Major Program of Guangzhou National Laboratory(GZNL2023A02012)。
文摘Herein,we report a novel and highly efficient method for the synthesis ofα-phosphoryloxy carbonyl compounds via Rucatalyzed P(O)O–H insertion reactions of sulfoxonium ylides and phosphinic acids,with the assistance of high-throughput experimentation(HTE)and machine learning(ML).A variety of P(O)O−H derivatives,including diarylphosphates,alkyl phosphates,and alkoxyphosphates,are competent candidates to react with sulfoxonium ylides in this transformation,and variousα-phosphoryloxy carbonyls and propylene phosphates are directly constructed.This approach utilizes readily available sulfoxonium ylide as a carbene precursor,and features mild conditions,operational simplicity,and broad functional groups tolerance,and could be used for late-stage functionalization of structurally complex bioactive molecules.Moreover,a conducive exploration of the reaction space is also conducted(756 reactions)and a machine learning model for reaction yield prediction has been developed and applied,showcasing the practical application of this newly workflow(HTE-ML)in the field of synthetic chemistry.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos.60233020, 60474006 and 60473067). Acknowledgment The experimental results presented in this paper were obtained with the help of many students of the author, including Bo Gu, Hal Hu, ChangHai Jiang, Xiao-Feng Lei, Yan Shi, and Bei-Bei Yin.
文摘This paper classifies software researches as theoretical researches, experimental researches, and engineering researches, and is mainly concerned with the experimental researches with focus on software reliability experimentation and control. The state-of-the-art of experimental or empirical studies is reviewed. A new experimentation methodology is proposed, which is largely theory discovering oriented. Several unexpected results of experimental studies are presented to justify the importance of software reliability experimentation and control. Finally, a few topics that deserve future investigation are identified.
基金funded by scientific research projects under Grant JY2024B011.
文摘With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.
基金support by the National Key Research and Development Program of China(grant no.2018YFA0703600)the National Natural Science Foundation of China(grant no.51825104).
文摘Materials genome engineering(MGE)has been successfully applied in various fields,resulting in a series of novel materials with excellent performance.Significant progress has been made in high-throughput simulation,experimentation,and data-driven techniques,enabling the effective prediction,rapid synthesis,and characterization of many classes of materials.In this brief review,we introduce the achievements made in the field of metallic glasses(MGs)using MGE,in particular high-throughput experimentation and data-driven approaches.High-throughput experiments help to efficiently synthesize and characterize many materials in a short period of time,enabling the construction of high-quality material databases for data-driven methods.Paired with machine learning,potential alloys of desired properties may be revealed and predicted.Along with the progress in computational power and algorithms of machine learning,the complex composition-structure-properties relationship is hopefully established,which in turn help efficient and precise prediction of new MGs.
基金supported by the National Natural Science Foundation of China under Grant Nos.62350048,T2121003 and U20B2071.
文摘Fixed-wing unmanned aerial vehicles(UAVs)are a primary focus of current UAV research.Challenges arise in theirflight due to high speed and complex maneuverability.This paper explores the coordinated turn guidance law for fixed-wing UAVs and validates an experimental leader-follower formation platform inflight.Results demonstrate the effectiveness of the proposed algorithm and platform in enabling actual leader-follower formationflights for fixed-wing UAVs.
基金Supported by Jilin Provincial Department of Science and Technology project:Exploring the Material Basis and Action Pathways of Baihu Tang's Antipyretic Effect based on Omics Technology(20240602036RC)。
文摘OBJECTIVE:To elucidate the potential molecular mechanisms of Baishao(Radix Paeoniae Alba)(APR)and Gancao(Radix Glycyrrhizae)(GR)in the treatment of major depressive disorder(MDD).METHODS:Based on the network pharmacology strategy,the therapeutic targets of APR-GR for MDD are predicted,differentially expressed genes from the Integrated Gene Expression database for MDD patients.Topological networks are constructed,Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways are enriched,their pharmacological potential molecular mechanisms are discussed,and molecular docking analysis is performed to further motivate compositional and target interactions.Finally,the CUMS mouse model is used for validation.RESULTS:Based on the pharmacological network analysis,17 candidate genes were identified,including muscarinic acetylcholine receptor M1(CHRM1),muscarinic acetylcholine receptor M2(CHRM2),β2-adrenergic receptor(ADRB2),adrenergicα1A receptor(ADRA1A)and 5-hydroxytryptamine transfer protein(SLC6A4),etc.which are primarily involved in reactive oxygen species metabolism,neural response,oxidative stress response and other biological processes.Further analysis revealed that these targets are closely related to Ca^(2+),cyclic adenosine monophosphate,etc.,and exhibit optimal binding sites after molecular docking.Finally,in vivo experiments were performed and it was found that APR-GR significantly improved depression-like behavior and hippocampal impairment in mouse models,increasing brain levels of 5-hydroxytryptamine,dopamine and norepinephrine and decreasing serum levels of corticotropin releasing hormone,corticosterone and adreno cortico tropic hormone,while upregulating the expression of CHRM1,CHRM2 and ADRA1A in the hippocampus and downregulating the expression of SLC6A4 and ADRB2.CNCLUSION:This research sheds light on the potential molecular mechanism of APR-GR to improve MDD.
基金supported by the National Natural Science Foundation of China(Grant No.52035005)the Key R&D Program of Shandong Province in China(Grant No.2021ZLGX01).
文摘The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further improve the joint quality,the ultrasonic vibration(UV)is exerted in FSLW,and the UV enhanced FSLW(UVeFSLW)was developed for making Mg-to-Al dissimilar joints.The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW.An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone,and the effect of grain size distribution on the threshold thermal stress was included,so that the prediction accuracy of flow stress was further improved.With such modified constitutive equation,the numerical simulation was conducted to compare the heat generation,temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes.It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW,which suppressed the IMCs thickness at Mg-Al interface from 1.7μm in FSLW to 1.1μm in UVeFSLW.The exerted UV increased the horizontal materials flow ability,and decreased the upward flow ability,which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW.Therefore,the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18%.
基金supported by the National Natural Science Foundation of China(Nos.42177333 and 31870500)the National Special Program for Key Basic Research of the Ministry of Science and Technology of China(No.2015FY110700)the Jiangsu Agriculture Science and Technology Innovation Fund,China(No.JASTIFCX(20)2003)。
文摘Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in a rice cropping system.A15N2-labeling chamber system was placed in a rice field to evaluate BNF with straw incorporation under CFI or IFI for 90 d.The nif H(gene encoding the nitrogenase reductase subunit)DNA and c DNA in soil were amplified using real-time quantitative polymerase chain reaction,and high-throughput sequencing was applied to the nif H gene.The total fixed N in the straw incorporation treatment was 14.3 kg ha^(-1)under CFI,being 116%higher than that under IFI(6.62 kg ha^(-1)).Straw incorporation and CFI showed significant interactive effects on the total fixed N and abundances of nif H DNA and c DNA.The increase in BNF was mainly due to the increase in the abundances of heterotrophic diazotrophs such as Desulfovibrio,Azonexus,and Azotobacter.These results indicated that straw incorporation stimulated BNF under CFI relative to IFI,which might ultimately lead to a rapid enhancement of soil fertility.
基金United Arab Emirates University,Grant/Award Number:12R104 and 12R121。
文摘Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fi-brosis,which appears to be a leading cause of cardiovascular diseases.Cardiac fi-brosis is characterized by the accumulation of extracellular matrix proteins,mainly collagen in the cardiac interstitium.Many experimental studies have demonstrated that fibrotic injury in the heart is reversible;therefore,it is vital to understand differ-ent molecular mechanisms that are involved in the initiation,progression,and resolu-tion of cardiac fibrosis to enable the development of antifibrotic agents.Of the many experimental models,one of the recent models that has gained renewed interest is isoproterenol(ISP)-induced cardiac fibrosis.ISP is a synthetic catecholamine,sympa-thomimetic,and nonselectiveβ-adrenergic receptor agonist.The overstimulated and sustained activation ofβ-adrenergic receptors has been reported to induce biochemi-cal and physiological alterations and ultimately result in cardiac remodeling.ISP has been used for decades to induce acute myocardial infarction.However,the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis;this practice has increased in recent years.Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy.The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is consid-ered the initiating mechanism of myocardial fibrosis.ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals.In recent years,numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis.The present review exclusively provides a comprehensive summary of the pathological biochemical,histological,and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy.It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as syn-thetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.
文摘Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”Cave 168 is a key component of the Beishan Rock Carvings.At present,several through-going cracks have developed in the roof of Cave 168,severely compromising the structural stability of the grotto.The early internal steel plate supports have suffered severe corrosion and can no longer provide effective reinforcement.In addition,the presence of steel columns obstructs visitor access and negatively affects the viewing experience.A new reinforcement method is urgently needed.Therefore,studying the deformation patterns of the structure is of critical importance.This study analyzes the stratigraphic parameters and fracture distribution of Cave 168,considering key influencing factors such as rainfall,self-weight,and the overlying Quaternary soil.On-site monitoring and physical model experiments were conducted to evaluate the changes in roof crack width and displacement before and after reinforcement with negative Poisson's ratio(NPR)anchor cables.The results reveal that the roof of Cave 168 contains several through-going cracks and numerous microcracks,which serve as infiltration channels for surface water.These accelerate the softening of the mudstone and pose a significant threat to the cave's structural safety.During the experiment,the main change in the crack exhibited a“semi-archshaped”propagation pattern.In the first ten minutes,as the rock transitioned from dry to moist conditions,a slight crack closure was observed.As rainfall continued,crack propagation accelerated.After rainfall ceased,crack width remained stable over a short period.Under NPR anchor support,the influence of rainfall on roof settlement was effectively mitigated,ensuring the safety and stability of the roof.The NPR anchors successfully limited the roof settlement to within 0.3 mm and provided effective control over both total and differential settlement.These findings offer valuable insights into the application of NPR anchor cables in the conservation of grotto heritage structures.
基金supported by Basic and Applied Basic research foundation of Guangdong province(Nos.2021A1515010343 and 2022A1515011582)the Science and Technology Program of Guangdong Province(Nos.2021A0505030026 and 2022A0505050029).
文摘In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No. ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No. 2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No. KJ2020A0301)。
文摘Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.