The methane drainage can not only make coal seams deformation, but also effect its stress distribution. Based on lab experiment on methane drainage with a cubic coal sample of 500 mm×500 mm×500 mm, mutative ...The methane drainage can not only make coal seams deformation, but also effect its stress distribution. Based on lab experiment on methane drainage with a cubic coal sample of 500 mm×500 mm×500 mm, mutative law of coal of pore pressure (p) and effective stress (σef)i were investigated during methane drainage with the coal sample of China Lu'an coal field No.3 coal seam. The experiment results indicate: during methane drainage pore pressure (p) follows exponential attenuation law: p=aexp(-bt); effective stress (σef)i of coal masses follows logarithm incremental law: (σef),=aln t+b, (i=x, y, z); effective stress coefficient(a) follows logarithm attenuation law: a=a-bln t; effective stress coefficient, volume stress (Θef) and pore pressure (p) follow bilinear law.展开更多
Helium sorption cooler technology is a key means to realize highly reliable low-vibration very lowtemperature environments,which have important applications in fields such as quantum computing and space exploration.Th...Helium sorption cooler technology is a key means to realize highly reliable low-vibration very lowtemperature environments,which have important applications in fields such as quantum computing and space exploration.The laboratory designed a superfluid suppression small hole and a multi-ribbed condenser,developed a reliable-performance helium sorption cooler(HSC),and conducted experimental studies.Experimental results show that the prototype can achieve the lowest cooling temperature of 873 mK without load by filling 6MPa helium at room temperature.The low-temperature hold time is 26 h,and the temperature fluctuation is within 0.8 mK.The cooling power of the helium sorption cooler is 1 mW@0.98 K@3.5 h.Experimental results indicate that when the charging pressure is reduced to 4MPa,theminimum temperature decreases to 836mK,and the hold time shortens to 16 h.When the pre-cooling temperature increases from 3.9 to 4.9 K,the hold time is reduced to 3 h.展开更多
Ultrahigh-performance concrete(UHPC)is a groundbreaking kind of concrete that distinguishes itself from conventional concrete through its unique material properties.Understanding and managing the time-dependent charac...Ultrahigh-performance concrete(UHPC)is a groundbreaking kind of concrete that distinguishes itself from conventional concrete through its unique material properties.Understanding and managing the time-dependent characteristics of these materials is essential for their effective use in various construction applications.This study presents an experimental evaluation of the compressive and bending properties of the UHPC incorporating polypropylene,steel,and glass fibers.Based on ACI-211 guidelines,the UHPC mix was designed by using three types of aggregates:limestone,andesite,and quartzite,along with 5%fiber content(at varying percentages of 0,5%,10%,15%,and 20%)relative to the cementitious materials,and three different water-to-cement(w/c)ratios(0.24,0.3,and 0.4)were used.In this research,the compressive and flexural strength tests were conducted.The results show that increasing the values of the fibers significantly enhances the compressive strength of the studied samples.Furthermore,the utilization of fibers markedly improves the bending strength of the samples,demonstrating a strong correlation with the yield resistance of the material.Also,findings show that using steel fibers increases the compressive and bending strength of the tested samples more than polypropylene and glass fibers.For instance,in UHPC samples with 0.4 w/c,the average compressive strength values are 82.2 MPa,70.3 MPa,and 67.1 MPa for steel,polypropylene,and glass fibers,respectively.Also,in the flexural strength test,the modulus of rupture is obtained as an average of 6.24 MPa,5.24 MPa and 4.83 MPa for UHPC samples with steel,polypropylene and glass fibers,respectively.展开更多
BACKGROUND IgE plays a critical role in allergic inflammation and asthma pathogenesis.This study investigates the involvement of IgE cells in asthma exacerbation and evaluates the effectiveness of targeted interventio...BACKGROUND IgE plays a critical role in allergic inflammation and asthma pathogenesis.This study investigates the involvement of IgE cells in asthma exacerbation and evaluates the effectiveness of targeted interventions.AIM To evaluate the role of IgE in the exacerbation of allergic asthma and to determine the clinical efficacy of anti-IgE therapy in improving disease outcomes.Specifically,the study investigates changes in serum IgE levels,lung function,asthma control scores,and the frequency of acute exacerbations among patients receiving standard therapy with or without anti-IgE intervention.METHODS A total of 200 patients diagnosed with moderate to severe asthma were enrolled in this experimental study conducted from April 2024 to April 2025.Participants were randomized to receive either standard asthma therapy or therapy combined with anti-IgE agents.IgE levels and asthma control parameters were monitored.RESULTS Participants receiving anti-IgE treatment demonstrated a significant reduction in serum IgE levels(P<0.001),improved Forced expiratory volume in one second scores,and fewer exacerbation episodes compared to the control group.CONCLUSION IgE cells significantly contribute to asthma severity,and targeted therapy against IgE can improve disease outcomes.These findings underscore the importance of immunomodulatory strategies in asthma management.展开更多
This study aimed to evaluate the feasibility,safety,and efficacy of a noveltranscatheter suture closure system(HaloStitch^(®))for patent foramen ovale(PFO)closure in a swine model.Methods:Thirteen swine underwent...This study aimed to evaluate the feasibility,safety,and efficacy of a noveltranscatheter suture closure system(HaloStitch^(®))for patent foramen ovale(PFO)closure in a swine model.Methods:Thirteen swine underwentexperimental PF0 model creation.All animals received implantationof the transcatheter suture closure system to evaluate procedural success.Comprehensive follow-up over sixmonths included serial ultrasound imaging,histopathological analysis,and gross anatomical exaninationof cardiac specimens.Results:Successful HaloStitch^(®)device implantation was adhieved in 11 of 13 swine.Gross anatomical examination confirrned secure positioning of all sutures in the atrial septum,with noredundancy or thrombus formation.Postoperative ultrasound demonstrated stable suture and staplepositions throughout follow-up,with no evidence of suture breakage,displacement,or thrombus.Stapleswere clearly visualized under ultrasound imaging,Both the atrial septal defect orifice diameter and residualseptal shunt flow velocity decreased significantly during the observation period.Histopathological analysisrevealed partially organized thrombi at the implant head and fibrous connective tissue encapsulation withlocalized inflammatory cell infiltration surrounding the polymer material.Conclsions:The transcathetersuture closure system(HaloStitch^(®))demonstrated feasibility,safety,and biocompatib ility for PFO closure ina swine model,supporting its potential for clinical translation.展开更多
Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the ...Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.展开更多
In this study the effect of Sheng-ai Injection i.e. Red Ginseng-Ophiopogon Root Injection (one kind of traditional Chinese medicines) on the contractivity of diaphragm was observed. The results confirmed that Sheng-ai...In this study the effect of Sheng-ai Injection i.e. Red Ginseng-Ophiopogon Root Injection (one kind of traditional Chinese medicines) on the contractivity of diaphragm was observed. The results confirmed that Sheng-ai Injection increased Pdi of the fatigued diaphragm in rabbits and reduced the time needed for the recovery of Pdi of fatigued diaphragm to the normal value. These results suggest that Sheng-Mai Injection can increase the contractive force and promote the recovery of the fatigued diaphragm. The effect of Sheng-ai Injection on the contractivity of the isolated diaphragmatic bundle of rats was also observed and the results confirmed that Sheng-ai Injection increased the diaphragmatic contractive force directly. This effect of increasing the contractive force of diaphragm was attenuated by adding calcium channel blocker isoptin and disappeared when there was no calcium in the extracellular fluid. It is deduced, therefore, that the mechanism of the effect of Sheng-mai Injection is related to the increased influx of calcium from extracellular fluid into the cells.展开更多
Beam-column or beam-wall connections are an important problem in high-rise buildings. In this study, based on the analysis of an example structure, an analytical model for design of the semi-rigid connections between ...Beam-column or beam-wall connections are an important problem in high-rise buildings. In this study, based on the analysis of an example structure, an analytical model for design of the semi-rigid connections between steel beams and RC walls in high-rise hybrid buildings is proposed. Also, the mechanical characteristics of these connections subjected to low-reversed cyclic loading are investigated through comparison of experimental results from three semi-rigid connections and two rigid connections. Moreover, some latent problems for design of these connections as well as the corresponding solutions are discussed. The results from the experiments and analyses indicate that semi-rigid connections exhibit satisfactory capacity and seismic performance, and the proposed design can be used in practice.展开更多
Mixed gases (CO 2 and CH 4 etc .) in different ratio under the action of transient electric field may cause temperature to increase about 6℃, while under that of solar irradiation may lead temperature to rise a...Mixed gases (CO 2 and CH 4 etc .) in different ratio under the action of transient electric field may cause temperature to increase about 6℃, while under that of solar irradiation may lead temperature to rise around 3℃. The temperature increasing mechanism of satellitic thermo infrared of lower air is explained here based on an experimental study: thermo infrared temperature increasing of lower atmosphere may be caused by paroxysmal releasing of crustal gas and sudden changing of lower atmosphere electrostatic field. Therefore, appearance of the anomaly of thermo infrared temperature increasing prior to a moderate strong earthquake requires the concurrence of gas paroxysmal releasing and electrostatic field sudden changing at the same time.展开更多
Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one...Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one traditional welded flange-bolted web connection, one traditional fully welded connection, four beam flange strengthened connections, three beam flange weakened connections, and one through-diaphragm connection. The test results show that the connections with flange cover plates or with partly cut beam flanges satisfy the beam plastic rotation demand for ductile MRFs. From the measured stress profiles along the beam flange and beam web depth, the mechanics of brittle fracture at the end of the beam is discussed. Design recommendations for steel beam-to-column moment connections are proposed.展开更多
At present,methods for treating tertiary oil recovery wastewater via electro-coagulation are still in their early stage of development.In this study,a device for electro-coagulation wastewater treatment was built and ...At present,methods for treating tertiary oil recovery wastewater via electro-coagulation are still in their early stage of development.In this study,a device for electro-coagulation wastewater treatment was built and tested in an oil field.The effects that the initial pH value,electrode type,and connection mode have on the coagulation and separation effect were assessed by measuring the mass fraction and turbidity of oil.The results have shown that when the electro-coagulation method is used,the effectiveness of the treatment can be significantly increased in neutral pH conditions(pH=7),in acidic conditions,and in alkaline conditions.Compared to an Al electrode,the floc that is produced by an Fe electrode is smaller;thus,it does not easily coagulate and settle in a short time.Using the oil removal rate,turbidity removal rate and energy consumption as a basis to assess the performances,the results have demonstrated that the combined aluminum alloy iron composite electrode should be used as electrolytic electrode.展开更多
A liquid sloshing experimental rig driven by a wave-maker is designed and built to study liquid sloshing problems in a rectangular liquid tank with perforated baffle. A series of experiments are conducted in this expe...A liquid sloshing experimental rig driven by a wave-maker is designed and built to study liquid sloshing problems in a rectangular liquid tank with perforated baffle. A series of experiments are conducted in this experimental rig to estimate the free surface fluctuation and pressure distribution by changing external excitation frequency of the shaking table. An in-house CFD code is also used in this study to simulate the liquid sloshing in three-dimensional (3D) rectangular tank with perforated baffle. Good agreements of free surface elevation and pressure between the numerical results and the experimental data are obtained and presented. Spectral analysis of the time history of free surface elevation is conducted by using the fast Fourier transformation.展开更多
The long-shore current distribution on a mild slope beach is studied by combining the numerical model and the physical experiment. The experiments of long-shore currents under the action of regular and irregular waves...The long-shore current distribution on a mild slope beach is studied by combining the numerical model and the physical experiment. The experiments of long-shore currents under the action of regular and irregular waves are conducted on mild beaches with different slopes in a wave basin. A numerical model is established, which includes a wave propagation model, a wave breaking model and a long-shore current model. The validity of the numerical model is proved by the comparison of its results with the results of the experimental model. It is concluded that the wave-ioduced long-shore current is influenced significantly by the incident wave height, the wave angle and the beach slope. Its application to the Bohai Bay indicates that the wave-induced currents have the same order of magnitude as the tide currents in the near-shore zone of mill slope beach. In the design of wastewater ouffall locations on a mild-slope beach with shallow water of the Bohai Bay, the position of the outfall should be 10 km away from the shoreline, which is outside of the surf-zone.展开更多
This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect...This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect detection in seawater environment. Finite element simulation is performed to investigate rules and characteristics of the electromagnetic signal distribution in the defected area. In respect of the simulation results, underwater artificial crack detection experiments are designed and conducted for the ACFM system. The experiment results show that the ACFM system can detect cracks in underwater structures and the detection accuracy is higher than 85%. This can meet the engineering requirement of underwater structure defect detection. The results in this article can be applied to establish technical foundation for the optimization and development of ACFM based underwater structure defects detection system.展开更多
A new technique was introduced for sand stabilization and re-vegetation by use of lignin sand stabilizing material(LSSM). LSSM is a reconstructed organic compound with lignin as the most dominant component from the ex...A new technique was introduced for sand stabilization and re-vegetation by use of lignin sand stabilizing material(LSSM). LSSM is a reconstructed organic compound with lignin as the most dominant component from the extracts of black-liquor issued by straw pulp paper mills. Unlike the polyvinyl acetate or foamed asphalt commonly used for dune stabilization, the new material is plant-friendly and can be used with virescence actions simultaneously. The field experimental study was conducted since 2001 in China's Northwest Ningxia Hui Autonomous Region and has been proved that LSSM is effective in stabilizing the fugitive dunes, making the arenaceous plants survive and the bare dune vegetative. The advisable solution concentration is 2% and the optimal field spraying quantity is 2 5 L/m^2 The soil nutrients of the stabilized and greened dune, such as organic matter, available phosphorous and total nitrogen are all increased compared with the control treatment, which is certainly helpful to the growth of arenaceous plants. The technique is worthwhile to be popularized because it is provided not only a new method for desertification control but also an outlet for cleaning contaminants issued from the straw paper mills.展开更多
The static and dynamic magnetic controlling characteristics of NiMnGa magnetically controlled shape memory alloy (MSMA) were experimentally studied. The results show that the characteristics of induced strain with r...The static and dynamic magnetic controlling characteristics of NiMnGa magnetically controlled shape memory alloy (MSMA) were experimentally studied. The results show that the characteristics of induced strain with respect to the magnetic field are nonlinear with saturation nature, and dependent on the temperature as well as the load applied to the MSMA. The magnetic shape memory effect can be observed only in complete martensite phase at room temperature. The magnetic permeability of MSMA is not constant and reduces with the increment of magnetic field. The relative saturation magnetic permeability of MSMA is about 1.5.展开更多
Compared with a straight blade, a unique compressor blade integratedforward-swept and positive-curved stacking line is studied experimentally. Aerodynamic parameters ofthe two cascades are measured by a five-hole prob...Compared with a straight blade, a unique compressor blade integratedforward-swept and positive-curved stacking line is studied experimentally. Aerodynamic parameters ofthe two cascades are measured by a five-hole probe at different positions and ink trace flowvisualization is conducted on blade surfaces. The result shows that the swept-curved cascade haslower endwall loss and higher midspan loss as compared with the straight cascade. However, lowerloss is accompanied with lower diffusion factor. Opposite 'C' shape static pressure distribution isestablished on the suction surface of the swept-curved blade, which is helpful for avoiding theaccumulation of low energy fluid in the endwall corner region. Anyhow the studies support theconclusion that the swept-curved blade conduces to not only the reduction of overall loss but alsothe improvement of stable operation in the endwall corner region.展开更多
AIM:To discuss the safety,feasibility and regularity of destruction to porcine spleen in vivo with congestion and tumescence by microwave ablation(MWA).METHODS:Ligation of the splenic vein was used to induce congestio...AIM:To discuss the safety,feasibility and regularity of destruction to porcine spleen in vivo with congestion and tumescence by microwave ablation(MWA).METHODS:Ligation of the splenic vein was used to induce congestion and tumescence in vivo in five porcine spleens,and microwave ablation was performed 2-4 h later.A total of 56 ablation points were ablated and the ablation powers were 30-100 W.The ablation time(1,2,3,4,5,6,7,8,9 and 10 min)was performed at a power of 60 W.After ablation,the ablation size was measured in pigs A,C,D and E and spleen resection.In pig B,the ablation size was measuredand 2 ablation points were sent for pathology analysis and all tissues were sutured following ablation.Pig B was killed 1 wk later and the ablation points were sent for pathology analysis.Bleeding,tissue carbonization surrounding electrodes,and pathological changes were observed,and the effect on destruction volume relative to different ablation powers,times and positions was analyzed.RESULTS:The incidence of bleeding(only small amounts,<20 mL)in the course of ablation was 5.4%(3/56)and was attributed to tissue carbonization surrounding electrodes,which also exhibited an incidence of 5.4%(3/56).The destruction volume was influenced by different ablation powers,times and points.It showed that the ablation lesion size increased with increased ablation time,from 1 to 10 min,when the ablation power was 60 W.Also,the ablation lesion size increased with the increase of ablation power,ranging from 30 to 100 W when the ablation time was set to 3 min.A direct correlation was seen between the destruction volume and ablation time by the power of 60 W(r=0.97542,P<0.0001),and also between the destruction volume and ablation powers at an ablation time of 3 min(r=0.98258,P<0.0001).The destruction volume of zoneⅡ(the extra-2/3 part of the spleen,relative to the fi rst or second class vascular branches),which was near the hilum of the spleen,was noteably larger than the destruction volume of zoneⅠ(the intra-1/3 part of the spleen)which was distal from the hilum of the spleen(P=0.0015).Pathological changes of ablation occurring immediately and 1 wk after MWA showed large areas of coagulation.Immediately following ablation,intact spleen tissues were observed in the areas of coagulation necrosis,mainly around arterioles,and there were no obvious signs of hydropsia and inflammation,while 1 wk following the ablation,the coagulation necrosis was well distributed and complete,as many nuclear fragmentations were detected,and there were obvious signs of hydropsia and inflammation.CONCLUSION:In vivo treatment of congestion and tumescence in the spleen using microwave ablation of water-cooled antenna is a safe and feasible method that is minimally invasive.展开更多
The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be...The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be generated. In real application, the bubble may move under the combined action of walls in different directions when it forms at the corner of a pipe or at the bottom of a dam. The motion of the bubble shows complex and nonlinear characteristics under these conditions. In order to investigate the bubble pulse features near complex walls, a horizontal wall and a vertical wall are put into the experimental water tank synchronously, and an electric circuit with 200 voltages is designed to generate discharge bubbles, and then experimental study on the bubble pulse features under the combined action of horizontal and vertical walls is carried out. The influences of the combined action of two walls on the bubble shape, pulse period, moving trace and inside jet are obtained by changing the distances from bubble center to the two walls. It aims at providing references for the relevant theoretical and numerical research.展开更多
基金Supported by the National Natural Science Foundation of China(50404017) the Natural Science Foundation for Young Scientists of Shanxi Province, China (20051026)
文摘The methane drainage can not only make coal seams deformation, but also effect its stress distribution. Based on lab experiment on methane drainage with a cubic coal sample of 500 mm×500 mm×500 mm, mutative law of coal of pore pressure (p) and effective stress (σef)i were investigated during methane drainage with the coal sample of China Lu'an coal field No.3 coal seam. The experiment results indicate: during methane drainage pore pressure (p) follows exponential attenuation law: p=aexp(-bt); effective stress (σef)i of coal masses follows logarithm incremental law: (σef),=aln t+b, (i=x, y, z); effective stress coefficient(a) follows logarithm attenuation law: a=a-bln t; effective stress coefficient, volume stress (Θef) and pore pressure (p) follow bilinear law.
基金supported by the Hundred Talents Programof the Chinese Academy of Sciences,the Pre-Research Project JZX7Y20220414101801the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB35000000)the National Natural Science Foundation Projects(No.51806231).
文摘Helium sorption cooler technology is a key means to realize highly reliable low-vibration very lowtemperature environments,which have important applications in fields such as quantum computing and space exploration.The laboratory designed a superfluid suppression small hole and a multi-ribbed condenser,developed a reliable-performance helium sorption cooler(HSC),and conducted experimental studies.Experimental results show that the prototype can achieve the lowest cooling temperature of 873 mK without load by filling 6MPa helium at room temperature.The low-temperature hold time is 26 h,and the temperature fluctuation is within 0.8 mK.The cooling power of the helium sorption cooler is 1 mW@0.98 K@3.5 h.Experimental results indicate that when the charging pressure is reduced to 4MPa,theminimum temperature decreases to 836mK,and the hold time shortens to 16 h.When the pre-cooling temperature increases from 3.9 to 4.9 K,the hold time is reduced to 3 h.
文摘Ultrahigh-performance concrete(UHPC)is a groundbreaking kind of concrete that distinguishes itself from conventional concrete through its unique material properties.Understanding and managing the time-dependent characteristics of these materials is essential for their effective use in various construction applications.This study presents an experimental evaluation of the compressive and bending properties of the UHPC incorporating polypropylene,steel,and glass fibers.Based on ACI-211 guidelines,the UHPC mix was designed by using three types of aggregates:limestone,andesite,and quartzite,along with 5%fiber content(at varying percentages of 0,5%,10%,15%,and 20%)relative to the cementitious materials,and three different water-to-cement(w/c)ratios(0.24,0.3,and 0.4)were used.In this research,the compressive and flexural strength tests were conducted.The results show that increasing the values of the fibers significantly enhances the compressive strength of the studied samples.Furthermore,the utilization of fibers markedly improves the bending strength of the samples,demonstrating a strong correlation with the yield resistance of the material.Also,findings show that using steel fibers increases the compressive and bending strength of the tested samples more than polypropylene and glass fibers.For instance,in UHPC samples with 0.4 w/c,the average compressive strength values are 82.2 MPa,70.3 MPa,and 67.1 MPa for steel,polypropylene,and glass fibers,respectively.Also,in the flexural strength test,the modulus of rupture is obtained as an average of 6.24 MPa,5.24 MPa and 4.83 MPa for UHPC samples with steel,polypropylene and glass fibers,respectively.
文摘BACKGROUND IgE plays a critical role in allergic inflammation and asthma pathogenesis.This study investigates the involvement of IgE cells in asthma exacerbation and evaluates the effectiveness of targeted interventions.AIM To evaluate the role of IgE in the exacerbation of allergic asthma and to determine the clinical efficacy of anti-IgE therapy in improving disease outcomes.Specifically,the study investigates changes in serum IgE levels,lung function,asthma control scores,and the frequency of acute exacerbations among patients receiving standard therapy with or without anti-IgE intervention.METHODS A total of 200 patients diagnosed with moderate to severe asthma were enrolled in this experimental study conducted from April 2024 to April 2025.Participants were randomized to receive either standard asthma therapy or therapy combined with anti-IgE agents.IgE levels and asthma control parameters were monitored.RESULTS Participants receiving anti-IgE treatment demonstrated a significant reduction in serum IgE levels(P<0.001),improved Forced expiratory volume in one second scores,and fewer exacerbation episodes compared to the control group.CONCLUSION IgE cells significantly contribute to asthma severity,and targeted therapy against IgE can improve disease outcomes.These findings underscore the importance of immunomodulatory strategies in asthma management.
基金supported by grants from National High-Level Hospital Clinical Research Funding(2023-GSP-RC-04).
文摘This study aimed to evaluate the feasibility,safety,and efficacy of a noveltranscatheter suture closure system(HaloStitch^(®))for patent foramen ovale(PFO)closure in a swine model.Methods:Thirteen swine underwentexperimental PF0 model creation.All animals received implantationof the transcatheter suture closure system to evaluate procedural success.Comprehensive follow-up over sixmonths included serial ultrasound imaging,histopathological analysis,and gross anatomical exaninationof cardiac specimens.Results:Successful HaloStitch^(®)device implantation was adhieved in 11 of 13 swine.Gross anatomical examination confirrned secure positioning of all sutures in the atrial septum,with noredundancy or thrombus formation.Postoperative ultrasound demonstrated stable suture and staplepositions throughout follow-up,with no evidence of suture breakage,displacement,or thrombus.Stapleswere clearly visualized under ultrasound imaging,Both the atrial septal defect orifice diameter and residualseptal shunt flow velocity decreased significantly during the observation period.Histopathological analysisrevealed partially organized thrombi at the implant head and fibrous connective tissue encapsulation withlocalized inflammatory cell infiltration surrounding the polymer material.Conclsions:The transcathetersuture closure system(HaloStitch^(®))demonstrated feasibility,safety,and biocompatib ility for PFO closure ina swine model,supporting its potential for clinical translation.
文摘Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.
文摘In this study the effect of Sheng-ai Injection i.e. Red Ginseng-Ophiopogon Root Injection (one kind of traditional Chinese medicines) on the contractivity of diaphragm was observed. The results confirmed that Sheng-ai Injection increased Pdi of the fatigued diaphragm in rabbits and reduced the time needed for the recovery of Pdi of fatigued diaphragm to the normal value. These results suggest that Sheng-Mai Injection can increase the contractive force and promote the recovery of the fatigued diaphragm. The effect of Sheng-ai Injection on the contractivity of the isolated diaphragmatic bundle of rats was also observed and the results confirmed that Sheng-ai Injection increased the diaphragmatic contractive force directly. This effect of increasing the contractive force of diaphragm was attenuated by adding calcium channel blocker isoptin and disappeared when there was no calcium in the extracellular fluid. It is deduced, therefore, that the mechanism of the effect of Sheng-mai Injection is related to the increased influx of calcium from extracellular fluid into the cells.
基金National Natural Science Foundation of China Under Grant No. 50025821
文摘Beam-column or beam-wall connections are an important problem in high-rise buildings. In this study, based on the analysis of an example structure, an analytical model for design of the semi-rigid connections between steel beams and RC walls in high-rise hybrid buildings is proposed. Also, the mechanical characteristics of these connections subjected to low-reversed cyclic loading are investigated through comparison of experimental results from three semi-rigid connections and two rigid connections. Moreover, some latent problems for design of these connections as well as the corresponding solutions are discussed. The results from the experiments and analyses indicate that semi-rigid connections exhibit satisfactory capacity and seismic performance, and the proposed design can be used in practice.
文摘Mixed gases (CO 2 and CH 4 etc .) in different ratio under the action of transient electric field may cause temperature to increase about 6℃, while under that of solar irradiation may lead temperature to rise around 3℃. The temperature increasing mechanism of satellitic thermo infrared of lower air is explained here based on an experimental study: thermo infrared temperature increasing of lower atmosphere may be caused by paroxysmal releasing of crustal gas and sudden changing of lower atmosphere electrostatic field. Therefore, appearance of the anomaly of thermo infrared temperature increasing prior to a moderate strong earthquake requires the concurrence of gas paroxysmal releasing and electrostatic field sudden changing at the same time.
文摘Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one traditional welded flange-bolted web connection, one traditional fully welded connection, four beam flange strengthened connections, three beam flange weakened connections, and one through-diaphragm connection. The test results show that the connections with flange cover plates or with partly cut beam flanges satisfy the beam plastic rotation demand for ductile MRFs. From the measured stress profiles along the beam flange and beam web depth, the mechanics of brittle fracture at the end of the beam is discussed. Design recommendations for steel beam-to-column moment connections are proposed.
文摘At present,methods for treating tertiary oil recovery wastewater via electro-coagulation are still in their early stage of development.In this study,a device for electro-coagulation wastewater treatment was built and tested in an oil field.The effects that the initial pH value,electrode type,and connection mode have on the coagulation and separation effect were assessed by measuring the mass fraction and turbidity of oil.The results have shown that when the electro-coagulation method is used,the effectiveness of the treatment can be significantly increased in neutral pH conditions(pH=7),in acidic conditions,and in alkaline conditions.Compared to an Al electrode,the floc that is produced by an Fe electrode is smaller;thus,it does not easily coagulate and settle in a short time.Using the oil removal rate,turbidity removal rate and energy consumption as a basis to assess the performances,the results have demonstrated that the combined aluminum alloy iron composite electrode should be used as electrolytic electrode.
基金supported by the China Postdoctoral Science Foundation(Grant No.2012M511192)the National Natural Science Foundation of China(Grant Nos.51209080 and 51061130547+5 种基金Open Fund of State Key Laboratory of Coastaland Off shore Engineering(Grant No.LP1207the Open Fund of State Key Laboratory of Hydraulics and Mountain River Engineering(Grant No.1213)Qing Lan Project and 333 Project of Jiangsu Province(Grant No.BRA2012130)the Fundamental Research Funds for the Central Universities(Hohai University,Grant No.2012B06514the 111 Project(Grant No.B12032)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120181110084)
文摘A liquid sloshing experimental rig driven by a wave-maker is designed and built to study liquid sloshing problems in a rectangular liquid tank with perforated baffle. A series of experiments are conducted in this experimental rig to estimate the free surface fluctuation and pressure distribution by changing external excitation frequency of the shaking table. An in-house CFD code is also used in this study to simulate the liquid sloshing in three-dimensional (3D) rectangular tank with perforated baffle. Good agreements of free surface elevation and pressure between the numerical results and the experimental data are obtained and presented. Spectral analysis of the time history of free surface elevation is conducted by using the fast Fourier transformation.
文摘The long-shore current distribution on a mild slope beach is studied by combining the numerical model and the physical experiment. The experiments of long-shore currents under the action of regular and irregular waves are conducted on mild beaches with different slopes in a wave basin. A numerical model is established, which includes a wave propagation model, a wave breaking model and a long-shore current model. The validity of the numerical model is proved by the comparison of its results with the results of the experimental model. It is concluded that the wave-ioduced long-shore current is influenced significantly by the incident wave height, the wave angle and the beach slope. Its application to the Bohai Bay indicates that the wave-induced currents have the same order of magnitude as the tide currents in the near-shore zone of mill slope beach. In the design of wastewater ouffall locations on a mild-slope beach with shallow water of the Bohai Bay, the position of the outfall should be 10 km away from the shoreline, which is outside of the surf-zone.
基金supported by the National Natural Science Foundation of China(Grant No.50905187)the Shandong Provincial Natural Science Foundation(Grant No.ZR2009FQ001)
文摘This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect detection in seawater environment. Finite element simulation is performed to investigate rules and characteristics of the electromagnetic signal distribution in the defected area. In respect of the simulation results, underwater artificial crack detection experiments are designed and conducted for the ACFM system. The experiment results show that the ACFM system can detect cracks in underwater structures and the detection accuracy is higher than 85%. This can meet the engineering requirement of underwater structure defect detection. The results in this article can be applied to establish technical foundation for the optimization and development of ACFM based underwater structure defects detection system.
文摘A new technique was introduced for sand stabilization and re-vegetation by use of lignin sand stabilizing material(LSSM). LSSM is a reconstructed organic compound with lignin as the most dominant component from the extracts of black-liquor issued by straw pulp paper mills. Unlike the polyvinyl acetate or foamed asphalt commonly used for dune stabilization, the new material is plant-friendly and can be used with virescence actions simultaneously. The field experimental study was conducted since 2001 in China's Northwest Ningxia Hui Autonomous Region and has been proved that LSSM is effective in stabilizing the fugitive dunes, making the arenaceous plants survive and the bare dune vegetative. The advisable solution concentration is 2% and the optimal field spraying quantity is 2 5 L/m^2 The soil nutrients of the stabilized and greened dune, such as organic matter, available phosphorous and total nitrogen are all increased compared with the control treatment, which is certainly helpful to the growth of arenaceous plants. The technique is worthwhile to be popularized because it is provided not only a new method for desertification control but also an outlet for cleaning contaminants issued from the straw paper mills.
基金This work was supported by the National Natural Science Foundation of China under grant No.50177019by the Education Department of China under grant No.20040142004.
文摘The static and dynamic magnetic controlling characteristics of NiMnGa magnetically controlled shape memory alloy (MSMA) were experimentally studied. The results show that the characteristics of induced strain with respect to the magnetic field are nonlinear with saturation nature, and dependent on the temperature as well as the load applied to the MSMA. The magnetic shape memory effect can be observed only in complete martensite phase at room temperature. The magnetic permeability of MSMA is not constant and reduces with the increment of magnetic field. The relative saturation magnetic permeability of MSMA is about 1.5.
文摘Compared with a straight blade, a unique compressor blade integratedforward-swept and positive-curved stacking line is studied experimentally. Aerodynamic parameters ofthe two cascades are measured by a five-hole probe at different positions and ink trace flowvisualization is conducted on blade surfaces. The result shows that the swept-curved cascade haslower endwall loss and higher midspan loss as compared with the straight cascade. However, lowerloss is accompanied with lower diffusion factor. Opposite 'C' shape static pressure distribution isestablished on the suction surface of the swept-curved blade, which is helpful for avoiding theaccumulation of low energy fluid in the endwall corner region. Anyhow the studies support theconclusion that the swept-curved blade conduces to not only the reduction of overall loss but alsothe improvement of stable operation in the endwall corner region.
基金Supported by Guangdong Provincial Science and Technology FundGuangdong Provincial Scientifi c Project Grant
文摘AIM:To discuss the safety,feasibility and regularity of destruction to porcine spleen in vivo with congestion and tumescence by microwave ablation(MWA).METHODS:Ligation of the splenic vein was used to induce congestion and tumescence in vivo in five porcine spleens,and microwave ablation was performed 2-4 h later.A total of 56 ablation points were ablated and the ablation powers were 30-100 W.The ablation time(1,2,3,4,5,6,7,8,9 and 10 min)was performed at a power of 60 W.After ablation,the ablation size was measured in pigs A,C,D and E and spleen resection.In pig B,the ablation size was measuredand 2 ablation points were sent for pathology analysis and all tissues were sutured following ablation.Pig B was killed 1 wk later and the ablation points were sent for pathology analysis.Bleeding,tissue carbonization surrounding electrodes,and pathological changes were observed,and the effect on destruction volume relative to different ablation powers,times and positions was analyzed.RESULTS:The incidence of bleeding(only small amounts,<20 mL)in the course of ablation was 5.4%(3/56)and was attributed to tissue carbonization surrounding electrodes,which also exhibited an incidence of 5.4%(3/56).The destruction volume was influenced by different ablation powers,times and points.It showed that the ablation lesion size increased with increased ablation time,from 1 to 10 min,when the ablation power was 60 W.Also,the ablation lesion size increased with the increase of ablation power,ranging from 30 to 100 W when the ablation time was set to 3 min.A direct correlation was seen between the destruction volume and ablation time by the power of 60 W(r=0.97542,P<0.0001),and also between the destruction volume and ablation powers at an ablation time of 3 min(r=0.98258,P<0.0001).The destruction volume of zoneⅡ(the extra-2/3 part of the spleen,relative to the fi rst or second class vascular branches),which was near the hilum of the spleen,was noteably larger than the destruction volume of zoneⅠ(the intra-1/3 part of the spleen)which was distal from the hilum of the spleen(P=0.0015).Pathological changes of ablation occurring immediately and 1 wk after MWA showed large areas of coagulation.Immediately following ablation,intact spleen tissues were observed in the areas of coagulation necrosis,mainly around arterioles,and there were no obvious signs of hydropsia and inflammation,while 1 wk following the ablation,the coagulation necrosis was well distributed and complete,as many nuclear fragmentations were detected,and there were obvious signs of hydropsia and inflammation.CONCLUSION:In vivo treatment of congestion and tumescence in the spleen using microwave ablation of water-cooled antenna is a safe and feasible method that is minimally invasive.
基金financially supported by the China National Funds for Distinguished Young Scholars(Grant No.51222904)the National Natural Science Foundation of China(Grant No.51379039)
文摘The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be generated. In real application, the bubble may move under the combined action of walls in different directions when it forms at the corner of a pipe or at the bottom of a dam. The motion of the bubble shows complex and nonlinear characteristics under these conditions. In order to investigate the bubble pulse features near complex walls, a horizontal wall and a vertical wall are put into the experimental water tank synchronously, and an electric circuit with 200 voltages is designed to generate discharge bubbles, and then experimental study on the bubble pulse features under the combined action of horizontal and vertical walls is carried out. The influences of the combined action of two walls on the bubble shape, pulse period, moving trace and inside jet are obtained by changing the distances from bubble center to the two walls. It aims at providing references for the relevant theoretical and numerical research.