Advanced Persistent Threat(APT)is now the most common network assault.However,the existing threat analysis models cannot simultaneously predict the macro-development trend and micro-propagation path of APT attacks.The...Advanced Persistent Threat(APT)is now the most common network assault.However,the existing threat analysis models cannot simultaneously predict the macro-development trend and micro-propagation path of APT attacks.They cannot provide rapid and accurate early warning and decision responses to the present system state because they are inadequate at deducing the risk evolution rules of network threats.To address the above problems,firstly,this paper constructs the multi-source threat element analysis ontology(MTEAO)by integrating multi-source network security knowledge bases.Subsequently,based on MTEAO,we propose a two-layer threat prediction model(TL-TPM)that combines the knowledge graph and the event graph.The macro-layer of TL-TPM is based on the knowledge graph to derive the propagation path of threats among devices and to correlate threat elements for threat warning and decision-making;The micro-layer ingeniously maps the attack graph onto the event graph and derives the evolution path of attack techniques based on the event graph to improve the explainability of the evolution of threat events.The experiment’s results demonstrate that TL-TPM can completely depict the threat development trend,and the early warning results are more precise and scientific,offering knowledge and guidance for active defense.展开更多
Based on the idea that modules are independent of machines, different combinations of modules and machines result in different configurations and the system performances differ under different configurations, a kind o...Based on the idea that modules are independent of machines, different combinations of modules and machines result in different configurations and the system performances differ under different configurations, a kind of cyclic reconfigurable flow shops are proposed for the new manufacturing paradigm-reconfigurable manufacturing system. The cyclic reconfigurable flow shop is modeled as a timed event graph. The optimal configuration is defined as the one under which the cyclic reconfigurable flow shop functions with the minimum cycle time and the minimum number of pallets. The optimal configuration, the minimum cycle time and the minimum number of pallets can be obtained in two steps.展开更多
Abstract This paper describes the dynamic behavior of extended timed event graphs related to place delay in the dioid framework. By Cofer and Garg's supervisory control theory^|3|, we address control problems of e...Abstract This paper describes the dynamic behavior of extended timed event graphs related to place delay in the dioid framework. By Cofer and Garg's supervisory control theory^|3|, we address control problems of extended timed events graphs. Supervisory control of extended timed event graphs (a class of discrete event dynamic systems) is studied in the dioid framework, a necessary and sufficient condition for the ideals of the set of firing time sequences of transitions to be controllable is presented. We prove all the strongly controllable subsets can form a complete lattice.展开更多
In this paper, we study some results of extended timed event graph (ETEG)by using graph theory's methods in the dioid framework. A necessary and sufficient con-dition for the observability of ETEG is obtained and ...In this paper, we study some results of extended timed event graph (ETEG)by using graph theory's methods in the dioid framework. A necessary and sufficient con-dition for the observability of ETEG is obtained and ETEG's standard structure is alsoestablished.展开更多
A more automated graphic user interface (GUI) test model, which is based on the event-flow graph, is proposed. In the model, a user interface automation API tool is first used to carry out reverse engineering for a GU...A more automated graphic user interface (GUI) test model, which is based on the event-flow graph, is proposed. In the model, a user interface automation API tool is first used to carry out reverse engineering for a GUI test sample so as to obtain the event-flow graph. Then two approaches are adopted to create GUI test sample cases. That is to say, an improved ant colony optimization (ACO) algorithm is employed to establish a sequence of testing cases in the course of the daily smoke test. The sequence goes through all object event points in the event-flow graph. On the other hand, the spanning tree obtained by deep breadth-first search (BFS) approach is utilized to obtain the testing cases from goal point to outset point in the course of the deep regression test. Finally, these cases are applied to test the new GUI. Moreover, according to the above-mentioned model, a corresponding prototype system based on Microsoft UI automation framework is developed, thus giving a more effective way to improve the GUI automation test in Windows OS.展开更多
Text event mining,as an indispensable method of text mining processing,has attracted the extensive attention of researchers.A modeling method for knowledge graph of events based on mutual information among neighbor do...Text event mining,as an indispensable method of text mining processing,has attracted the extensive attention of researchers.A modeling method for knowledge graph of events based on mutual information among neighbor domains and sparse representation is proposed in this paper,i.e.UKGE-MS.Specifically,UKGE-MS can improve the existing text mining technology's ability of understanding and discovering high-dimensional unmarked information,and solves the problems of traditional unsupervised feature selection methods,which only focus on selecting features from a global perspective and ignoring the impact of local connection of samples.Firstly,considering the influence of local information of samples in feature correlation evaluation,a feature clustering algorithm based on average neighborhood mutual information is proposed,and the feature clusters with certain event correlation are obtained;Secondly,an unsupervised feature selection method based on the high-order correlation of multi-dimensional statistical data is designed by combining the dimension reduction advantage of local linear embedding algorithm and the feature selection ability of sparse representation,so as to enhance the generalization ability of the selected feature items.Finally,the events knowledge graph is constructed by means of sparse representation and l1 norm.Extensive experiments are carried out on five real datasets and synthetic datasets,and the UKGE-MS are compared with five corresponding algorithms.The experimental results show that UKGE-MS is better than the traditional method in event clustering and feature selection,and has some advantages over other methods in text event recognition and discovery.展开更多
文摘Advanced Persistent Threat(APT)is now the most common network assault.However,the existing threat analysis models cannot simultaneously predict the macro-development trend and micro-propagation path of APT attacks.They cannot provide rapid and accurate early warning and decision responses to the present system state because they are inadequate at deducing the risk evolution rules of network threats.To address the above problems,firstly,this paper constructs the multi-source threat element analysis ontology(MTEAO)by integrating multi-source network security knowledge bases.Subsequently,based on MTEAO,we propose a two-layer threat prediction model(TL-TPM)that combines the knowledge graph and the event graph.The macro-layer of TL-TPM is based on the knowledge graph to derive the propagation path of threats among devices and to correlate threat elements for threat warning and decision-making;The micro-layer ingeniously maps the attack graph onto the event graph and derives the evolution path of attack techniques based on the event graph to improve the explainability of the evolution of threat events.The experiment’s results demonstrate that TL-TPM can completely depict the threat development trend,and the early warning results are more precise and scientific,offering knowledge and guidance for active defense.
基金Supported by National Key Fundamental Research and Development Project of P. R. China (2002CB312200)
文摘Based on the idea that modules are independent of machines, different combinations of modules and machines result in different configurations and the system performances differ under different configurations, a kind of cyclic reconfigurable flow shops are proposed for the new manufacturing paradigm-reconfigurable manufacturing system. The cyclic reconfigurable flow shop is modeled as a timed event graph. The optimal configuration is defined as the one under which the cyclic reconfigurable flow shop functions with the minimum cycle time and the minimum number of pallets. The optimal configuration, the minimum cycle time and the minimum number of pallets can be obtained in two steps.
基金Supported by National Key Project of China and the National Sciences Foundation of China (Graot No.69874040).
文摘Abstract This paper describes the dynamic behavior of extended timed event graphs related to place delay in the dioid framework. By Cofer and Garg's supervisory control theory^|3|, we address control problems of extended timed events graphs. Supervisory control of extended timed event graphs (a class of discrete event dynamic systems) is studied in the dioid framework, a necessary and sufficient condition for the ideals of the set of firing time sequences of transitions to be controllable is presented. We prove all the strongly controllable subsets can form a complete lattice.
文摘In this paper, we study some results of extended timed event graph (ETEG)by using graph theory's methods in the dioid framework. A necessary and sufficient con-dition for the observability of ETEG is obtained and ETEG's standard structure is alsoestablished.
文摘A more automated graphic user interface (GUI) test model, which is based on the event-flow graph, is proposed. In the model, a user interface automation API tool is first used to carry out reverse engineering for a GUI test sample so as to obtain the event-flow graph. Then two approaches are adopted to create GUI test sample cases. That is to say, an improved ant colony optimization (ACO) algorithm is employed to establish a sequence of testing cases in the course of the daily smoke test. The sequence goes through all object event points in the event-flow graph. On the other hand, the spanning tree obtained by deep breadth-first search (BFS) approach is utilized to obtain the testing cases from goal point to outset point in the course of the deep regression test. Finally, these cases are applied to test the new GUI. Moreover, according to the above-mentioned model, a corresponding prototype system based on Microsoft UI automation framework is developed, thus giving a more effective way to improve the GUI automation test in Windows OS.
基金This study was funded by the International Science and Technology Cooperation Program of the Science and Technology Department of Shaanxi Province,China(No.2021KW-16)the Science and Technology Project in Xi’an(No.2019218114GXRC017CG018-GXYD17.11),Thesis work was supported by the special fund construction project of Key Disciplines in Ordinary Colleges and Universities in Shaanxi Province,the authors would like to thank the anonymous reviewers for their helpful comments and suggestions.
文摘Text event mining,as an indispensable method of text mining processing,has attracted the extensive attention of researchers.A modeling method for knowledge graph of events based on mutual information among neighbor domains and sparse representation is proposed in this paper,i.e.UKGE-MS.Specifically,UKGE-MS can improve the existing text mining technology's ability of understanding and discovering high-dimensional unmarked information,and solves the problems of traditional unsupervised feature selection methods,which only focus on selecting features from a global perspective and ignoring the impact of local connection of samples.Firstly,considering the influence of local information of samples in feature correlation evaluation,a feature clustering algorithm based on average neighborhood mutual information is proposed,and the feature clusters with certain event correlation are obtained;Secondly,an unsupervised feature selection method based on the high-order correlation of multi-dimensional statistical data is designed by combining the dimension reduction advantage of local linear embedding algorithm and the feature selection ability of sparse representation,so as to enhance the generalization ability of the selected feature items.Finally,the events knowledge graph is constructed by means of sparse representation and l1 norm.Extensive experiments are carried out on five real datasets and synthetic datasets,and the UKGE-MS are compared with five corresponding algorithms.The experimental results show that UKGE-MS is better than the traditional method in event clustering and feature selection,and has some advantages over other methods in text event recognition and discovery.