The formation water sample in oil and gas fields may be polluted in processes of testing, trial production, collection, storage, transportation and analysis, making the properties of formation water not be reflected t...The formation water sample in oil and gas fields may be polluted in processes of testing, trial production, collection, storage, transportation and analysis, making the properties of formation water not be reflected truly. This paper discusses identification methods and the data credibility evaluation method for formation water in oil and gas fields of petroliferous basins within China. The results of the study show that: (1) the identification methods of formation water include the basic methods of single factors such as physical characteristics, water composition characteristics, water type characteristics, and characteristic coefficients, as well as the comprehensive evaluation method of data credibility proposed on this basis, which mainly relies on the correlation analysis sodium chloride coefficient and desulfurization coefficient and combines geological background evaluation;(2) The basic identifying methods for formation water enable the preliminary identification of hydrochemical data and the preliminary screening of data on site, the proposed comprehensive method realizes the evaluation by classifying the CaCl2-type water into types A-I to A-VI and the NaHCO3-type water into types B-I to B-IV, so that researchers can make in-depth evaluation on the credibility of hydrochemical data and analysis of influencing factors;(3) When the basic methods are used to identify the formation water, the formation water containing anions such as CO_(3)^(2-), OH- and NO_(3)^(-), or the formation water with the sodium chloride coefficient and desulphurization coefficient not matching the geological setting, are all invaded with surface water or polluted by working fluid;(4) When the comprehensive method is used, the data credibility of A-I, A-II, B-I and B-II formation water can be evaluated effectively and accurately only if the geological setting analysis in respect of the factors such as formation environment, sampling conditions, condensate water, acid fluid, leaching of ancient weathering crust, and ancient atmospheric fresh water, is combined, although such formation water is believed with high credibility.展开更多
With the accelerating urbanization process,the load demand of urban power grids is constantly increasing,giving rise to a batch of ultra-large urban power grids featuring large electricity demand,dense load distributi...With the accelerating urbanization process,the load demand of urban power grids is constantly increasing,giving rise to a batch of ultra-large urban power grids featuring large electricity demand,dense load distribution,and tight construction land constraints.This paper establishes a network planning method for urban power grids based on series reactors and MMC-MTEDC,focusing on four aspects:short-circuit current suppression,accommodation of external power supply,flexible inter-regional power support,and voltage stability enhancement in load centers.It proposes key indicators including node short-circuit current margin,line thermal stability margin,maximum fault-induced regional power loss,and voltage recovery time,thereby constructing an evaluation system for MMT-MTEDC network planning in urban power grids.Based on the Shenzhen power grid planning data,simulations using DSP software reveal that series reactors reduce short-circuit current by up to 5.0%,while the MMC-MTEDC system enhances node short-circuit margins by 4.212.9%and shortens voltage recovery time by 19.8%.Additionally,the MMC-MTEDC system maintains 3.34-6.76 percentage points higher thermal stability margins than conventional AC systems and enables complete avoidance of external power curtailment during N-2 faults via power reallocation between terminals.Compared with traditional AC or point-to-point HVDC schemes,the proposed hybrid planning method better adapts to the spatial and reliability demands of ultra-large receiving-end grids.This methodology provides practical insights into coordinated AC/DC development under high load density and strong external power reliance.Future work will extend the approach to include electromagnetic transient constraints and lightweight MMC station designs for urban applications.展开更多
Algorithms are the primary component of Artificial Intelligence(AI).The algorithm is the process in AI that imitates the human mind to solve problems.Currently evaluating the performance of AI is achieved by evaluatin...Algorithms are the primary component of Artificial Intelligence(AI).The algorithm is the process in AI that imitates the human mind to solve problems.Currently evaluating the performance of AI is achieved by evaluating AI algorithms by metric scores on data sets.However the evaluation of algorithms in AI is challenging because the evaluation of the same type of algorithm has many data sets and evaluation metrics.Different algorithms may have individual strengths and weaknesses in evaluation metric scores on separate data sets,lacking the credibility and validity of the evaluation.Moreover,evaluation of algorithms requires repeated experiments on different data sets,reducing the attention of researchers to the research of the algorithms itself.Crucially,this approach to evaluating comparative metric scores does not take into account the algorithm’s ability to solve problems.And the classical algorithm evaluation of time and space complexity is not suitable for evaluating AI algorithms.Because classical algorithms input is infinite numbers,whereas AI algorithms input is a data set,which is limited and multifarious.According to the AI algorithm evaluation without response to the problem solving capability,this paper summarizes the features of AI algorithm evaluation and proposes an AI evaluation method that incorporates the problem-solving capabilities of algorithms.展开更多
In the past,the lightning strike risk assessment of wind farms mainly referred to the Lightning Protection Part 2:Risk Management(IEC 62305-2-2010)and the Lightning Protection of Wind Energy System(IEC 61400-24-2019)b...In the past,the lightning strike risk assessment of wind farms mainly referred to the Lightning Protection Part 2:Risk Management(IEC 62305-2-2010)and the Lightning Protection of Wind Energy System(IEC 61400-24-2019)based on protection angle method.In fact,the basic idea of the two is the same,that is,the source of the lightning fan is replaced by S1-S4 of the former lightning building with the latter ND-NDJ.According to the above method of wind farm evaluation,it has been proved that the practice can not achieve good results.Taking offshore wind farm as an example,this paper introduces a new method of establishing six evaluation indicators to determine the risk level according to the new technology and compliance principle of regional lightning protection(semi-circular method),which can be used for reference by wind farm technicians.展开更多
The harmful algal bloom primarily caused by Microcystis aeruginosa(M.aeruginosa)has become one of the serious biological pollution issues in actual water,which has received intense attention worldwide.Over the past ye...The harmful algal bloom primarily caused by Microcystis aeruginosa(M.aeruginosa)has become one of the serious biological pollution issues in actual water,which has received intense attention worldwide.Over the past years,increasing number of publications have reported that metal-organic frameworks(MOFs)based functional materials exhibited significant inhibition against M.aeruginosa via multiple mechanisms,but no review papers systematically presented progresses regarding MOFs-based materials for M.aeruginosa control up to now.With this review paper,we summarized the state-of-the-art studies of MOFsbased materials for M.aeruginosa removal,comparing and discussing the design strategies of MOFs-based materials and their antimicrobial mechanisms.Meanwhile,we discussed methods for evaluating the water purification performances of MOFs-based materials against M.aeruginosa.Finally,the perspectives for design of novel MOFs-based functional materials and application scenarios were proposed to provide an outlook on areas where greater efforts should be made in the future.展开更多
[Objectives]The paper was to screen new varieties of long cowpea that are suitable for autumn cultivation in Hunan,as well as to develop a comprehensive evaluation method to assess their adaptability and performance.[...[Objectives]The paper was to screen new varieties of long cowpea that are suitable for autumn cultivation in Hunan,as well as to develop a comprehensive evaluation method to assess their adaptability and performance.[Methods]A total of 48 long cowpea varieties were introduced,and a range of comprehensive evaluation methods was employed to assess these varieties through the collection and analysis of field data.[Results]The square Euclidean distance of 14 allowed for the classification of all varieties into eight distinct groups.Groups II,III,and V belong to the autumn dominant group within this region,while groups I and VIII belong to the intermediate group.Additionally,groups IV,VI,and VII belong to the autumn inferior group in this area.Through a comparative analysis of various comprehensive evaluation methods,it was determined that the common factor comprehensive evaluation,grey correlation method,and fuzzy evaluation method were appropriate for application in the selection of long cowpea varieties.Furthermore,the evaluation outcomes were largely consistent with the cluster pedigree diagram.[Conclusions]Through comprehensive index method,ten varieties demonstrating superior performance in autumn cultivation have been identified,including C20,C42,C29,C40,C3,C14,C18,C25,C15,and C47.The selected varieties exhibit several advantageous traits,such as a reduced growth duration,a lower position of initial flower nodes,a decreased number of branches,predominantly green young pods,elongated pod strips,thicker pod structures,an increased number of pods per plant,and higher overall yields.These characteristics render them particularly valuable for extensive cultivation.展开更多
As China continues to develop its ecological civilization,it is crucial to quantitatively assess the ecological value to understand its potential impact on regional sustainable development.While previous studies have ...As China continues to develop its ecological civilization,it is crucial to quantitatively assess the ecological value to understand its potential impact on regional sustainable development.While previous studies have highlighted the importance of ecological value,they have not fully reflected the value of ecological restoration work or considered social costs and benefits,lacking a people-centered approach.Hence,this study analyzes the essence of ecological value from the perspective of sustainable development.By studying emblematic ecological restoration areas such as the Saihanba Mechanized Forest Farm in Chengde City,it aims to identify the significance of ecological restoration efforts in enhancing regional sustainable development capacity.The results underscore the necessity of comprehensively considering the value chain from ecological construction to ecological output,highlighting the value of ecological restoration in the ecological construction process as well as the well-being of people in the ecological output process.This approach assigns more economic and humanistic attributes to ecological value,thereby better serving the development of ecological restoration areas.展开更多
Prediabetes is a heterogeneous condition,encompassing various pathological phenotypes such as hyperinsulinemia,tissue-specific insulin resistance(IR),systemic IR,andβ-cell dysfunction.A significant proportion of indi...Prediabetes is a heterogeneous condition,encompassing various pathological phenotypes such as hyperinsulinemia,tissue-specific insulin resistance(IR),systemic IR,andβ-cell dysfunction.A significant proportion of individuals with prediabetes remain undiagnosed.Furthermore,although lifestyle interventions have demonstrated efficacy in improving prediabetic conditions,some individuals with prediabetes progress to type 2 diabetes mellitus.This study aims to summarize effective evaluation methods for identifying distinct pathological phenotypes of prediabetes and targeted lifestyle intervention strategies to mitigate the progression from prediabetes to diabetes.展开更多
Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Call...Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.展开更多
[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Meth...[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Method] The fuzzy compre- hensive evaluation method based on entropy weight was used to evaluate the water quality in the ponds with Ukraine scale carp (Cyprinus carpio) as the main cultivated fish. The average size of the fish was 71.4 g/ind, and totally three groups of pond were set with the population density of 6 000, 9 000, 12 000 ind/hm2. [Result] According to the GB3838-2002 Environmental Quality Standards for Surface Water of China, the water quality of 6 000 ind/hm2 group was Grade I, and the water quality of 9 000 and 12 000 ind/hm2 were Grade V. [Conclusion] With the increasing of feeding density, the pond water quality would worsen, however, there is no difference on water quality between 9 000 and 12 000 ind/hm2 groups.展开更多
In the process of designing self-elevating drilling unit, it is important, yet complicated, to use comparison and filtering to select the optimum scheme from the feasible ones. In this research, an index system and me...In the process of designing self-elevating drilling unit, it is important, yet complicated, to use comparison and filtering to select the optimum scheme from the feasible ones. In this research, an index system and methodology for the evaluation of self-elevating drilling unit was proposed. Based on this, a multi-objective combinatorial optimization model was developed, using the improved grey relation Analysis (GRA), in which the analytic hierarchy process (AHP) was used to determine the weights of the evaluating indices. It considered the connections within the indices, reflecting the objective nature of things, and also considered the subjective interests of ship owners and the needs of designers. The evaluation index system and evaluation method can be used in the selection of an optimal scheme and advanced assessment. A case study shows the index system and evaluation method are scientific, reasonable, and easy to put into practice. At the same time, such an evaluation index system and evaluation method will be helpful for making decisions for other mobile platforms.展开更多
The article explains the legal definition of the term‘repair’as used in cosmetic efficacy claims:it refers to the ability to help maintain the normal condition of the applied area.By analysing methods for modelling ...The article explains the legal definition of the term‘repair’as used in cosmetic efficacy claims:it refers to the ability to help maintain the normal condition of the applied area.By analysing methods for modelling skin damage,the paper comprehensively summarises the evaluation system for the‘repair’efficacy of cosmetics,introducing existing assessment methods for repair efficacy across different application areas,including facial care products,body care products,foot care products,scalp care products,hair care products,and lip care products.This aims to promote the standardisation and innovative development of repair-type cosmetics.展开更多
Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising t...Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control.展开更多
The large amount of harmful particles in coal dust not only pollutes the production environment,affects the production efficiency and resource utilization of enterprises,but also poses a risk to human health.Effective...The large amount of harmful particles in coal dust not only pollutes the production environment,affects the production efficiency and resource utilization of enterprises,but also poses a risk to human health.Effectively controlling coal dust is of great significance to clean production.Water-based dust suppressants are extensively employed to mitigate coal dust.This paper provides a comprehensive review of the water-based dust suppression materials for coal dust control.Accord-ing to the difference of mechanism,the dust suppressants are divided into wetting type,hygroscopic coalescence type,cohesive agglomeration type,and composite type.The evaluation methods for dust suppressants key properties such as wettability,permeability,moisture absorption and water retention,and consolidation are summarized.The review results show that coal dust suppressants are no longer limited to a single dust suppression function.For example,it is necessary to develop multi-functional coal suppressants to meet the needs for synergistic suppression both coal dust and coal spon-taneous combustion.Driven by the concept of green,low-carbon and sustainable development,attention should be paid to the development of bio-based environmentally friendly coal dust suppressants.In addition,the evaluation method system for the key performance of water-based dust suppressants should also be improved,and further research is necessary.展开更多
The use of hot recycled asphalt mixture(HRAM)allows for a reduction in the depletion of non-renewable resources and presents environmental benefits.However,concerns arise regarding the performance of HRAM due to the l...The use of hot recycled asphalt mixture(HRAM)allows for a reduction in the depletion of non-renewable resources and presents environmental benefits.However,concerns arise regarding the performance of HRAM due to the lower degree of blending(DOB)of virgin and aged asphalt(V&A asphalt).This paper aims to provide an up-to-date review on the DOB of V&A asphalt in HRAM.Initially,the paper introduces the DOB of V&A asphalt,followed by an analysis of the blending theory,evaluation methods,and influencing factors of DOB.Subsequently,the effect of DOB on the performance of HRAM is investigated,and molecular dynamic simulation is utilized to analyze the blend of V&A asphalt.Finally,methods for improving DOB are summarized.It was found that the use of high-resolution microscopy with tracer methods such as SEM/EDS was an effective way to characterize DOB.Furthermore,the chemical composition and colloid structure between virgin and aged asphalt are crucial to DOB.Additionally,improving DOB by utilizing the coupling effect of time and temperature during transportation,paving,and compaction stages is promising.Future research should focus on standardizing test methods,refining field simulation models,and developing intelligent construction technologies to achieve more efficient and durable blending.This review provides theoretical guidance and practical references for improving the DOB of V&A asphalt and promoting sustainable pavement construction.展开更多
There are many factors affecting the quality of fruit and vegetable agricultural products,such as environmental factors and agricultural management measures.The influencing factors and quality evaluation methods of fr...There are many factors affecting the quality of fruit and vegetable agricultural products,such as environmental factors and agricultural management measures.The influencing factors and quality evaluation methods of fruit and vegetable agricultural products were summarized,and its development trends were prospected.展开更多
A personalized trustworthy service selection method is proposed to fully express the features of trust, emphasize the importance of user preference and improve the trustworthiness of service selection. The trustworthi...A personalized trustworthy service selection method is proposed to fully express the features of trust, emphasize the importance of user preference and improve the trustworthiness of service selection. The trustworthiness of web service is defined as customized multi-dimensional trust metrics and the user preference is embodied in the weight of each trust metric. A service selection method combining AHP (analytic hierarchy process) and PROMETHEE (preference ranking organization method for enrichment evaluations) is proposed. AHP is used to determine the weights of trust metrics according to users' preferences. Hierarchy and pairwise comparison matrices are constructed. The weights of trust metrics are derived from the highest eigenvalue and eigenvector of the matrix. to obtain the final rank of candidate services. The preference functions are defined according to the inherent characteristics of the trust metrics and net outranking flows are calculated. Experimental results show that the proposed method can effectively express users' personalized preferences for trust metrics, and the trustworthiness of service ranking and selection is efficiently improved.展开更多
For natural water, method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented. Two important parts are improved, the weights determining and fuzzy membership functions. Th...For natural water, method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented. Two important parts are improved, the weights determining and fuzzy membership functions. The coefficient of variation of each indicator is used to determine the weight instead of traditional calculating superscales method. On the other hand, fuzzy matter-elements are constructed, and normal membership degrees are used instead of traditional trapezoidal ones. The composite fuzzy matter-elements with associated coefficient are constructed through associated transformation. The levels of natural water quality are determined according to the principle of maximum correlation. The improved fuzzy matter-element evaluation method is applied to evaluate water quality of the Luokou mainstream estuary at the first ten weeks in 2011 with the coefficient of variatiola method determining the weights. Water quality of Luokou mainstream estuary is dropping from level I to level II. The results of the improved evaluation method are basically the same as the official water quality. The variation coefficient method can reduce the workload, and overcome the adverse effects from abnormal values, compared with the traditional calculating superscales method. The results of improved fuzzy matter- element evaluation method are more credible than the ones of the traditional evaluation method. The improved evaluation method can use information of monitoring data more scientifically and comprehensively, and broaden a new evaluation method for water quality assessment.展开更多
The deformation characteristic of bland in deep drawing is discussed. It is pointed out that the friction and lubrication conditions in for drawing are different from that in mechanical motion or machine work or other...The deformation characteristic of bland in deep drawing is discussed. It is pointed out that the friction and lubrication conditions in for drawing are different from that in mechanical motion or machine work or other plastic process. The common test methods in laboratories are analyzed. It shows that though all those test methods can test the friction coefficient, the probe test method is most suitable for the research of friction and lubrication and the process in deep drawing, for this method is identical with the actual work condition either from the test principle or deformation status of the blank. Last the successful application in the deep drawing simulator newly developed the the probe method are intro- duced in detail.展开更多
The evaluation of sustainable land use is the key issue in the field of studying the sustainable land utilization. In general analysis, the sustainable land use is evaluated respectively from its ecological sustainabi...The evaluation of sustainable land use is the key issue in the field of studying the sustainable land utilization. In general analysis, the sustainable land use is evaluated respectively from its ecological sustainability, economic sustainability and social sustainability in China and other countries in recent years. Although this evaluation is an important work, it seems insufficient and hard to comprehensively reflect the whole degree of land use sustainability. Thus, to make up this deficiency, this paper brings forward the evaluation indexes, which make it possible to quantitatively reflect the whole degree of land use sustainability, namely, the concept of "degrees of overall land use sustainability" (Dos), and research and measurement development of the method of and calculation in Dos. Taking the evaluation of the degree of land use sustainability in county regions of Yunnan Province as the actual example for analysis, results are basically as follows: 1) The degree of land use sustainability (Dos) is the ration index to organically and systematically integrate the degree of ecological friendliness (DeF), the degree of economic viability (Dev) and the degree of social acceptability (Dsa), able to comprehensively reflect the whole sustainability degree of regional land use 2) Based on the value of Dos, the grading system and standard for the sustainability of land use may be established and totally divided into five grades, namely, the high-degree sustainability, middle-degree sustainability, low-degree sustainability, conditional sustainability and non-sustainability. Meanwhile, the standard for distinguishing sustainability grades has also been confirmed so as to determine the nature of sustainability degrees in different grades. This makes the possibility for the combination of nature determination with ration in research result and provides with the scientific guideline and decision-making gist for better implementation of sustainable land use strategy. 3) The practice in evaluation of sustainability degree in county regional land use in Yunnan shows that the value of the degree of land use sustainability (Dos) of whole Yunnan Province is only 58.39, belonging to the grade of low-degree sustainability. Two thirds of counties in the whole province represent the grade of "conditional sustainability" and "non-sustainability" in the sustainability of land use. Among these counties, 11.11 % shows "non- sustainability'. The lowest degree of land use sustainability appears especially in the middle plateau mountain region of Northeast Yunnan, where the value of Dos in most counties (districts) is below 40 %, belonging to the grade of "non-sustainability". The sustainability degree in the karst mountainous region in lower-middle plateau mountain region in Southeast Yunnan is generally low and the value of sustainability degree (Dos) in most of the counties (cities and districts) is below 55. The value of sustainability degree (Dos) in most of the counties (cities and districts) in the north, west, northwest and southwest parts of Yunnan is below 55. This article also analyzes the reasons of low degree of sustainability in land use in Yunnan and puts forward the countermeasures to increase the degree of sustainability in land use in the whole province.展开更多
基金Supported by the PetroChina Science and Technology Project(2023ZZ0202)。
文摘The formation water sample in oil and gas fields may be polluted in processes of testing, trial production, collection, storage, transportation and analysis, making the properties of formation water not be reflected truly. This paper discusses identification methods and the data credibility evaluation method for formation water in oil and gas fields of petroliferous basins within China. The results of the study show that: (1) the identification methods of formation water include the basic methods of single factors such as physical characteristics, water composition characteristics, water type characteristics, and characteristic coefficients, as well as the comprehensive evaluation method of data credibility proposed on this basis, which mainly relies on the correlation analysis sodium chloride coefficient and desulfurization coefficient and combines geological background evaluation;(2) The basic identifying methods for formation water enable the preliminary identification of hydrochemical data and the preliminary screening of data on site, the proposed comprehensive method realizes the evaluation by classifying the CaCl2-type water into types A-I to A-VI and the NaHCO3-type water into types B-I to B-IV, so that researchers can make in-depth evaluation on the credibility of hydrochemical data and analysis of influencing factors;(3) When the basic methods are used to identify the formation water, the formation water containing anions such as CO_(3)^(2-), OH- and NO_(3)^(-), or the formation water with the sodium chloride coefficient and desulphurization coefficient not matching the geological setting, are all invaded with surface water or polluted by working fluid;(4) When the comprehensive method is used, the data credibility of A-I, A-II, B-I and B-II formation water can be evaluated effectively and accurately only if the geological setting analysis in respect of the factors such as formation environment, sampling conditions, condensate water, acid fluid, leaching of ancient weathering crust, and ancient atmospheric fresh water, is combined, although such formation water is believed with high credibility.
基金Shenzhen Power SupplyCo.,Ltd.Grant number 090000KC24040028.
文摘With the accelerating urbanization process,the load demand of urban power grids is constantly increasing,giving rise to a batch of ultra-large urban power grids featuring large electricity demand,dense load distribution,and tight construction land constraints.This paper establishes a network planning method for urban power grids based on series reactors and MMC-MTEDC,focusing on four aspects:short-circuit current suppression,accommodation of external power supply,flexible inter-regional power support,and voltage stability enhancement in load centers.It proposes key indicators including node short-circuit current margin,line thermal stability margin,maximum fault-induced regional power loss,and voltage recovery time,thereby constructing an evaluation system for MMT-MTEDC network planning in urban power grids.Based on the Shenzhen power grid planning data,simulations using DSP software reveal that series reactors reduce short-circuit current by up to 5.0%,while the MMC-MTEDC system enhances node short-circuit margins by 4.212.9%and shortens voltage recovery time by 19.8%.Additionally,the MMC-MTEDC system maintains 3.34-6.76 percentage points higher thermal stability margins than conventional AC systems and enables complete avoidance of external power curtailment during N-2 faults via power reallocation between terminals.Compared with traditional AC or point-to-point HVDC schemes,the proposed hybrid planning method better adapts to the spatial and reliability demands of ultra-large receiving-end grids.This methodology provides practical insights into coordinated AC/DC development under high load density and strong external power reliance.Future work will extend the approach to include electromagnetic transient constraints and lightweight MMC station designs for urban applications.
基金funded by the General Program of the National Natural Science Foundation of China grant number[62277022].
文摘Algorithms are the primary component of Artificial Intelligence(AI).The algorithm is the process in AI that imitates the human mind to solve problems.Currently evaluating the performance of AI is achieved by evaluating AI algorithms by metric scores on data sets.However the evaluation of algorithms in AI is challenging because the evaluation of the same type of algorithm has many data sets and evaluation metrics.Different algorithms may have individual strengths and weaknesses in evaluation metric scores on separate data sets,lacking the credibility and validity of the evaluation.Moreover,evaluation of algorithms requires repeated experiments on different data sets,reducing the attention of researchers to the research of the algorithms itself.Crucially,this approach to evaluating comparative metric scores does not take into account the algorithm’s ability to solve problems.And the classical algorithm evaluation of time and space complexity is not suitable for evaluating AI algorithms.Because classical algorithms input is infinite numbers,whereas AI algorithms input is a data set,which is limited and multifarious.According to the AI algorithm evaluation without response to the problem solving capability,this paper summarizes the features of AI algorithm evaluation and proposes an AI evaluation method that incorporates the problem-solving capabilities of algorithms.
基金Supported by Research on Key Technologies of Lightning Intelligent Protection System for Guangdong Energy Hehe Sea Wind Farm(SFC/QZW-ZX-XF-24-020).
文摘In the past,the lightning strike risk assessment of wind farms mainly referred to the Lightning Protection Part 2:Risk Management(IEC 62305-2-2010)and the Lightning Protection of Wind Energy System(IEC 61400-24-2019)based on protection angle method.In fact,the basic idea of the two is the same,that is,the source of the lightning fan is replaced by S1-S4 of the former lightning building with the latter ND-NDJ.According to the above method of wind farm evaluation,it has been proved that the practice can not achieve good results.Taking offshore wind farm as an example,this paper introduces a new method of establishing six evaluation indicators to determine the risk level according to the new technology and compliance principle of regional lightning protection(semi-circular method),which can be used for reference by wind farm technicians.
基金supported by National Natural Science Foundation of China(Nos.22176012,52370025)the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture(No.JDLJ20220802)+1 种基金the Doctor Graduate Scientific Research Ability Improvement Project of Beijing University of Civil Engineering and Architecture(No.DG2023014)Guangxi Key Laboratory of Urban Water Environment。
文摘The harmful algal bloom primarily caused by Microcystis aeruginosa(M.aeruginosa)has become one of the serious biological pollution issues in actual water,which has received intense attention worldwide.Over the past years,increasing number of publications have reported that metal-organic frameworks(MOFs)based functional materials exhibited significant inhibition against M.aeruginosa via multiple mechanisms,but no review papers systematically presented progresses regarding MOFs-based materials for M.aeruginosa control up to now.With this review paper,we summarized the state-of-the-art studies of MOFsbased materials for M.aeruginosa removal,comparing and discussing the design strategies of MOFs-based materials and their antimicrobial mechanisms.Meanwhile,we discussed methods for evaluating the water purification performances of MOFs-based materials against M.aeruginosa.Finally,the perspectives for design of novel MOFs-based functional materials and application scenarios were proposed to provide an outlook on areas where greater efforts should be made in the future.
基金Supported by China Agricultural Industry Research System(CARS-23-G31)Technology Innovation Guidance Project of Changde City(CDKJJ20220265,CDKJJ2023YF33).
文摘[Objectives]The paper was to screen new varieties of long cowpea that are suitable for autumn cultivation in Hunan,as well as to develop a comprehensive evaluation method to assess their adaptability and performance.[Methods]A total of 48 long cowpea varieties were introduced,and a range of comprehensive evaluation methods was employed to assess these varieties through the collection and analysis of field data.[Results]The square Euclidean distance of 14 allowed for the classification of all varieties into eight distinct groups.Groups II,III,and V belong to the autumn dominant group within this region,while groups I and VIII belong to the intermediate group.Additionally,groups IV,VI,and VII belong to the autumn inferior group in this area.Through a comparative analysis of various comprehensive evaluation methods,it was determined that the common factor comprehensive evaluation,grey correlation method,and fuzzy evaluation method were appropriate for application in the selection of long cowpea varieties.Furthermore,the evaluation outcomes were largely consistent with the cluster pedigree diagram.[Conclusions]Through comprehensive index method,ten varieties demonstrating superior performance in autumn cultivation have been identified,including C20,C42,C29,C40,C3,C14,C18,C25,C15,and C47.The selected varieties exhibit several advantageous traits,such as a reduced growth duration,a lower position of initial flower nodes,a decreased number of branches,predominantly green young pods,elongated pod strips,thicker pod structures,an increased number of pods per plant,and higher overall yields.These characteristics render them particularly valuable for extensive cultivation.
基金supported by the National Key Research and Development Program of China under the theme“Research on the evaluation methods and standards of urban sustainable development” [Grant No.2022YFC3802901]Central Public-Interest Scientific Institution Basal Research Fund,CNIS“Research on the implementation of ISO 37101 for Sustainable cities and communities in China” [Grant No.512024Y-11450].
文摘As China continues to develop its ecological civilization,it is crucial to quantitatively assess the ecological value to understand its potential impact on regional sustainable development.While previous studies have highlighted the importance of ecological value,they have not fully reflected the value of ecological restoration work or considered social costs and benefits,lacking a people-centered approach.Hence,this study analyzes the essence of ecological value from the perspective of sustainable development.By studying emblematic ecological restoration areas such as the Saihanba Mechanized Forest Farm in Chengde City,it aims to identify the significance of ecological restoration efforts in enhancing regional sustainable development capacity.The results underscore the necessity of comprehensively considering the value chain from ecological construction to ecological output,highlighting the value of ecological restoration in the ecological construction process as well as the well-being of people in the ecological output process.This approach assigns more economic and humanistic attributes to ecological value,thereby better serving the development of ecological restoration areas.
文摘Prediabetes is a heterogeneous condition,encompassing various pathological phenotypes such as hyperinsulinemia,tissue-specific insulin resistance(IR),systemic IR,andβ-cell dysfunction.A significant proportion of individuals with prediabetes remain undiagnosed.Furthermore,although lifestyle interventions have demonstrated efficacy in improving prediabetic conditions,some individuals with prediabetes progress to type 2 diabetes mellitus.This study aims to summarize effective evaluation methods for identifying distinct pathological phenotypes of prediabetes and targeted lifestyle intervention strategies to mitigate the progression from prediabetes to diabetes.
文摘Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.
基金Supported by the Major Project of Application Foundation and Advanced Technology of Tianjin (the Natural Science Foundation of Tianjin) (09JCZDJC19200),China~~
文摘[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Method] The fuzzy compre- hensive evaluation method based on entropy weight was used to evaluate the water quality in the ponds with Ukraine scale carp (Cyprinus carpio) as the main cultivated fish. The average size of the fish was 71.4 g/ind, and totally three groups of pond were set with the population density of 6 000, 9 000, 12 000 ind/hm2. [Result] According to the GB3838-2002 Environmental Quality Standards for Surface Water of China, the water quality of 6 000 ind/hm2 group was Grade I, and the water quality of 9 000 and 12 000 ind/hm2 were Grade V. [Conclusion] With the increasing of feeding density, the pond water quality would worsen, however, there is no difference on water quality between 9 000 and 12 000 ind/hm2 groups.
基金Supported by the National 863 Plan Foundation under Grant No.2003AA414060
文摘In the process of designing self-elevating drilling unit, it is important, yet complicated, to use comparison and filtering to select the optimum scheme from the feasible ones. In this research, an index system and methodology for the evaluation of self-elevating drilling unit was proposed. Based on this, a multi-objective combinatorial optimization model was developed, using the improved grey relation Analysis (GRA), in which the analytic hierarchy process (AHP) was used to determine the weights of the evaluating indices. It considered the connections within the indices, reflecting the objective nature of things, and also considered the subjective interests of ship owners and the needs of designers. The evaluation index system and evaluation method can be used in the selection of an optimal scheme and advanced assessment. A case study shows the index system and evaluation method are scientific, reasonable, and easy to put into practice. At the same time, such an evaluation index system and evaluation method will be helpful for making decisions for other mobile platforms.
文摘The article explains the legal definition of the term‘repair’as used in cosmetic efficacy claims:it refers to the ability to help maintain the normal condition of the applied area.By analysing methods for modelling skin damage,the paper comprehensively summarises the evaluation system for the‘repair’efficacy of cosmetics,introducing existing assessment methods for repair efficacy across different application areas,including facial care products,body care products,foot care products,scalp care products,hair care products,and lip care products.This aims to promote the standardisation and innovative development of repair-type cosmetics.
基金Supported by Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2022JM-396)the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No.XDA23040101+4 种基金Shaanxi Province Key Research and Development Projects(Program No.2023-YBSF-437)Xi'an Shiyou University Graduate Student Innovation Fund Program(Program No.YCX2412041)State Key Laboratory of Air Traffic Management System and Technology(SKLATM202001)Tianjin Education Commission Research Program Project(2020KJ028)Fundamental Research Funds for the Central Universities(3122019132)。
文摘Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control.
基金supported by the National Natural Science Foundation of China(52474226,52322404)Basic scientific research projects in higher education institutions of Liaoning Province(JYTZD2023079)。
文摘The large amount of harmful particles in coal dust not only pollutes the production environment,affects the production efficiency and resource utilization of enterprises,but also poses a risk to human health.Effectively controlling coal dust is of great significance to clean production.Water-based dust suppressants are extensively employed to mitigate coal dust.This paper provides a comprehensive review of the water-based dust suppression materials for coal dust control.Accord-ing to the difference of mechanism,the dust suppressants are divided into wetting type,hygroscopic coalescence type,cohesive agglomeration type,and composite type.The evaluation methods for dust suppressants key properties such as wettability,permeability,moisture absorption and water retention,and consolidation are summarized.The review results show that coal dust suppressants are no longer limited to a single dust suppression function.For example,it is necessary to develop multi-functional coal suppressants to meet the needs for synergistic suppression both coal dust and coal spon-taneous combustion.Driven by the concept of green,low-carbon and sustainable development,attention should be paid to the development of bio-based environmentally friendly coal dust suppressants.In addition,the evaluation method system for the key performance of water-based dust suppressants should also be improved,and further research is necessary.
基金supported in part by the key project supported by the Joint Funds of the National Natural Science Foundation of China(grant No.U2433210)Shaanxi Province Postdoctoral Science Foundation(2024BSHSDZZ225)+1 种基金Natural Science Basic Research Program of Shaanxi Province(2025JC-YBQN-595)the Fundamental Research Funds for the Central Universities,CHD(300102215102).
文摘The use of hot recycled asphalt mixture(HRAM)allows for a reduction in the depletion of non-renewable resources and presents environmental benefits.However,concerns arise regarding the performance of HRAM due to the lower degree of blending(DOB)of virgin and aged asphalt(V&A asphalt).This paper aims to provide an up-to-date review on the DOB of V&A asphalt in HRAM.Initially,the paper introduces the DOB of V&A asphalt,followed by an analysis of the blending theory,evaluation methods,and influencing factors of DOB.Subsequently,the effect of DOB on the performance of HRAM is investigated,and molecular dynamic simulation is utilized to analyze the blend of V&A asphalt.Finally,methods for improving DOB are summarized.It was found that the use of high-resolution microscopy with tracer methods such as SEM/EDS was an effective way to characterize DOB.Furthermore,the chemical composition and colloid structure between virgin and aged asphalt are crucial to DOB.Additionally,improving DOB by utilizing the coupling effect of time and temperature during transportation,paving,and compaction stages is promising.Future research should focus on standardizing test methods,refining field simulation models,and developing intelligent construction technologies to achieve more efficient and durable blending.This review provides theoretical guidance and practical references for improving the DOB of V&A asphalt and promoting sustainable pavement construction.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei ProvinceQuality Evaluation System Project of High-Quality Fruits and Vegetables in Hebei Province.
文摘There are many factors affecting the quality of fruit and vegetable agricultural products,such as environmental factors and agricultural management measures.The influencing factors and quality evaluation methods of fruit and vegetable agricultural products were summarized,and its development trends were prospected.
基金The National Natural Science Foundation of China(No.60973149)the Open Funds of State Key Laboratory of Computer Science of the Chinese Academy of Sciences(No.SYSKF1110)+1 种基金the Doctoral Fund of Ministry of Education of China(No.20100092110022)the College Industrialization Project of Jiangsu Province(No.JHB2011-3)
文摘A personalized trustworthy service selection method is proposed to fully express the features of trust, emphasize the importance of user preference and improve the trustworthiness of service selection. The trustworthiness of web service is defined as customized multi-dimensional trust metrics and the user preference is embodied in the weight of each trust metric. A service selection method combining AHP (analytic hierarchy process) and PROMETHEE (preference ranking organization method for enrichment evaluations) is proposed. AHP is used to determine the weights of trust metrics according to users' preferences. Hierarchy and pairwise comparison matrices are constructed. The weights of trust metrics are derived from the highest eigenvalue and eigenvector of the matrix. to obtain the final rank of candidate services. The preference functions are defined according to the inherent characteristics of the trust metrics and net outranking flows are calculated. Experimental results show that the proposed method can effectively express users' personalized preferences for trust metrics, and the trustworthiness of service ranking and selection is efficiently improved.
基金supported by the National Natural Science Foundation of China (No. 41071322, 71031001)
文摘For natural water, method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented. Two important parts are improved, the weights determining and fuzzy membership functions. The coefficient of variation of each indicator is used to determine the weight instead of traditional calculating superscales method. On the other hand, fuzzy matter-elements are constructed, and normal membership degrees are used instead of traditional trapezoidal ones. The composite fuzzy matter-elements with associated coefficient are constructed through associated transformation. The levels of natural water quality are determined according to the principle of maximum correlation. The improved fuzzy matter-element evaluation method is applied to evaluate water quality of the Luokou mainstream estuary at the first ten weeks in 2011 with the coefficient of variatiola method determining the weights. Water quality of Luokou mainstream estuary is dropping from level I to level II. The results of the improved evaluation method are basically the same as the official water quality. The variation coefficient method can reduce the workload, and overcome the adverse effects from abnormal values, compared with the traditional calculating superscales method. The results of improved fuzzy matter- element evaluation method are more credible than the ones of the traditional evaluation method. The improved evaluation method can use information of monitoring data more scientifically and comprehensively, and broaden a new evaluation method for water quality assessment.
文摘The deformation characteristic of bland in deep drawing is discussed. It is pointed out that the friction and lubrication conditions in for drawing are different from that in mechanical motion or machine work or other plastic process. The common test methods in laboratories are analyzed. It shows that though all those test methods can test the friction coefficient, the probe test method is most suitable for the research of friction and lubrication and the process in deep drawing, for this method is identical with the actual work condition either from the test principle or deformation status of the blank. Last the successful application in the deep drawing simulator newly developed the the probe method are intro- duced in detail.
文摘The evaluation of sustainable land use is the key issue in the field of studying the sustainable land utilization. In general analysis, the sustainable land use is evaluated respectively from its ecological sustainability, economic sustainability and social sustainability in China and other countries in recent years. Although this evaluation is an important work, it seems insufficient and hard to comprehensively reflect the whole degree of land use sustainability. Thus, to make up this deficiency, this paper brings forward the evaluation indexes, which make it possible to quantitatively reflect the whole degree of land use sustainability, namely, the concept of "degrees of overall land use sustainability" (Dos), and research and measurement development of the method of and calculation in Dos. Taking the evaluation of the degree of land use sustainability in county regions of Yunnan Province as the actual example for analysis, results are basically as follows: 1) The degree of land use sustainability (Dos) is the ration index to organically and systematically integrate the degree of ecological friendliness (DeF), the degree of economic viability (Dev) and the degree of social acceptability (Dsa), able to comprehensively reflect the whole sustainability degree of regional land use 2) Based on the value of Dos, the grading system and standard for the sustainability of land use may be established and totally divided into five grades, namely, the high-degree sustainability, middle-degree sustainability, low-degree sustainability, conditional sustainability and non-sustainability. Meanwhile, the standard for distinguishing sustainability grades has also been confirmed so as to determine the nature of sustainability degrees in different grades. This makes the possibility for the combination of nature determination with ration in research result and provides with the scientific guideline and decision-making gist for better implementation of sustainable land use strategy. 3) The practice in evaluation of sustainability degree in county regional land use in Yunnan shows that the value of the degree of land use sustainability (Dos) of whole Yunnan Province is only 58.39, belonging to the grade of low-degree sustainability. Two thirds of counties in the whole province represent the grade of "conditional sustainability" and "non-sustainability" in the sustainability of land use. Among these counties, 11.11 % shows "non- sustainability'. The lowest degree of land use sustainability appears especially in the middle plateau mountain region of Northeast Yunnan, where the value of Dos in most counties (districts) is below 40 %, belonging to the grade of "non-sustainability". The sustainability degree in the karst mountainous region in lower-middle plateau mountain region in Southeast Yunnan is generally low and the value of sustainability degree (Dos) in most of the counties (cities and districts) is below 55. The value of sustainability degree (Dos) in most of the counties (cities and districts) in the north, west, northwest and southwest parts of Yunnan is below 55. This article also analyzes the reasons of low degree of sustainability in land use in Yunnan and puts forward the countermeasures to increase the degree of sustainability in land use in the whole province.