Polybromodiphenyl ethers(PBDEs),the widely used flame retardants,are common contaminants in surface soils at e-waste recycling sites.The association of PBDEs with soil colloids has been observed,indicating the potenti...Polybromodiphenyl ethers(PBDEs),the widely used flame retardants,are common contaminants in surface soils at e-waste recycling sites.The association of PBDEs with soil colloids has been observed,indicating the potential risk to groundwater due to colloid-facilitated transport.However,the extent to which soil colloidsmay enhance the spreading of PBDEs in groundwater is largely unknown.Herein,we report the co-transport of decabromodiphenyl ester(BDE-209)and soil colloids in saturated porous media.The colloids released froma soil sample collected at an e-waste recycling site in Tianjin,China,contain high concentration of PBDEs,with BDE-209 being the most abundant conger(320±30 mg/kg).The colloids exhibit relatively high mobility in saturated sand columns,under conditions commonly observed in groundwater environments.Notably,under all the tested conditions(i.e.,varying flow velocity,pH,ionic species and ionic strength),the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids,even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved.Additionally,the mass of BDE-209 retained in the columns also correlates strongly with themass of retained colloids.Apparently,the PBDEs remain bound to soil colloids during transport in porous media.Findings in this study indicate that soil colloidsmay significantly promote the transport of PBDEs in groundwater by serving as an effective carrier.This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.展开更多
A new gold self-relay catalytic annulation/nucleophilic substitution cascade of 1,3-enyne acetates with cyclic ether acetals is reported,enabling highly diastereoselective access to cyclic etherified cyclopentenones w...A new gold self-relay catalytic annulation/nucleophilic substitution cascade of 1,3-enyne acetates with cyclic ether acetals is reported,enabling highly diastereoselective access to cyclic etherified cyclopentenones with cyclic quaternary centers in moderate to good yields and>19∶1 dr.This catalysis enables the direct construction of two types of carboncyclic skeletons by adjusting the olefin types of 1,3-enyne acetates.When 1,3-enyne acetates bearing a cyclic alkene unit were used,5~6 fused bicarbocyclic products were diastereoselectively synthesized,whereas the reaction of acyclic 1,3-enyne acetates resulted in five-memebered carbocyclic framework.Notably,cyclic ether acetals are commonly used as protecting groups in traditional multistep organic syntheses,and in this reaction,such reagents serve as electrophilic cyclic ether precursors,achieving new uses for old reagents.The current method demonstrates good functional group compatibility,a broad substrate scope and high diastereoselectivity,providing a new synthetic strategy toward functionalized cyclopentenones.展开更多
The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques inc...The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques including XRD,XPS,N2O titration,and 27Al MAS-NMR.The results showed that when the crystal configurations of Al_(2)O_(3) were the same,increasing the specific surface area could effectively refine the size of copper nanoparticles(Cu NPs),and ultimately improve the conversion of DEO.Meanwhile,the smaller size ofγ-Al_(2)O_(3)(HSAl and SBAl)loaded Cu NPs promotes the reaction towards the deep hydrogenation to produce ethanol(EtOH)and ethylene glycol(EG).Besides,the larger size of Cu NPs on the surface of amorphous Al_(2)O_(3)(HTAl and SolAl)resulted in a lower conversion rate,where ethyl glycolate(Egly)is the main product.Despite there are differences in Al^(3+)ionic coordination in Al_(2)O_(3) with different crystal structures,the experimental data showed that the differences in Al^(3+)ionic coordination did not significantly affect the catalytic performance in the hydrogenation reaction.The formation of alcohol-ether ester chemicals is critically dependent on the interactions between Cu sites and acidic sites.Among them,EG and EtOH were dehydrated to form 2-ethoxyethanol via the SN2 mechanism,while Egly and EtOH were reacted to form ethyl ethoxyacetate(EEA)via the SN2 mechanism.This study provides a theoretical basis for the optimization of the coal-based glycol processes to achieve a diversified product portfolio.展开更多
The efficient catalytic conversion of fossil-based low-carbon small molecules to oxygen-containing chemicals is an attractive research topic in the fields of energy and chemical engineering.The selective oxidation of ...The efficient catalytic conversion of fossil-based low-carbon small molecules to oxygen-containing chemicals is an attractive research topic in the fields of energy and chemical engineering.The selective oxidation of dimethyl ether(DME),which is derived from fossil resources,represents a promising approach to producing high-concentration formaldehyde with low energy consumption.However,there is still a lack of catalysts achieving satisfactory conversion of DME with high selectivity for formaldehyde under mild conditions.In this work,an efficient iron-molybdate(FeMo)catalyst was developed for the selective oxidation of DME to formaldehyde.The DME conversion of 84% was achieved with a superior formaldehyde selectivity(77%)at 300℃,a performance that is superior to all previously reported results.In an approximately 550 h continuous reaction,the catalyst maintained a conversion of 64% and a formaldehyde selectivity of 79%.Combined X-ray diffraction(XRD),Transmission electron microscope(TEM),Ultraviolet-visible spectroscopy(UV-Vis),Hydrogen temperature-programmed reduction(H_(2)-TPR),Fourier transform infrared(FT-IR)analyses,along with density functional theory(DFT)calculations,demonstrated that the excellent FeMo catalyst was composed of active Fe_(2)(MoO_(4))_(3)and MoO_(3)phases,and there was an interaction between them,which contributed to the efficient DME dissociation and smooth hydrogen spillover,leading to a superior DME conversion.With the support of DME/O_(2)pulse experiments,in-situ Raman,in-situ Dimethyl ether infrared spectroscopy(DME-IR)and DFT calculation results,a Mars-van Krevelen(MvK)reaction mechanism was proposed:DME was dissociated on the interface between Fe_(2)(MoO_(4))_(3)and MoO_(3)phases to form active methoxy species firstly,and it dehydrogenated to give hydrogen species;the generated hydrogen species smoothly spilled over from Fe_(2)(MoO_(4))_(3)to MoO_(3)enhanced by the interaction between Fe_(2)(MoO_(4))_(3)and MoO_(3);then the hydrogen species was consumed by MoO_(3),leading to a reduction of MoO_(3),and finally,the reduced MoO_(3)was re-oxidized by O_(2),returning to the initial state.These findings offer valuable insights not only for the development of efficient FeMo catalysts but also for elucidating the reaction mechanism involved in the oxidation of DME to formaldehyde,contributing to the optimized utilization of DME derived from fossil resources.展开更多
The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of me...The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of mercury has raised concerns about its potential environmental hazards,which have prompted the search for more efficient and environmentally friendly alternatives.Crown ethers can bind lithium ions highly selectively and separate lithium isotopes effectively.A chemical exchange-based lithium isotopes separation method using crown ether decorated materials could be a viable and cost-effective alternative to the lithium amalgam method.In this review,we provide a systematic summary of the recent advances in lithium isotopes separation using crown ethers decorated materials.展开更多
Furfuryl ethyl ether(FEE)is considered as one of the most important candidates for biofuels due to its high-octane number.However,it is still challenging to produce FEE via the biomass-based route under mild condition...Furfuryl ethyl ether(FEE)is considered as one of the most important candidates for biofuels due to its high-octane number.However,it is still challenging to produce FEE via the biomass-based route under mild conditions.Here,we developed a photoinduced catalytic transfer hydrogenation(CTH)process for the efficient production of FEE through the reduction etherification of furfural(FF)using Na_(4)W_(10)O_(32)(NaDT),Pd/C,and ethanol as the hydrogen atom transfer(HAT)catalyst,hydrogenation catalyst,and the H donor,respectively.Notably,the introduction of brominated benzene(PhBr)as an additive significantly promoted the yield of FEE to 92.7%.A series of experiments and characterization results indicated that the attachment and detachment of Br atoms on Pd/C catalyst surface effectively regulate the balance between H^(+)sites and Pd sites in the NaDT+Pd/C catalytic system.The balance facilitates the preferential acetalization of FF catalyzed by H^(+)sites,followed by hydrogenation to efficiently produce FEE catalyzed by Pd sites.This photoinduced CTH process exhibits good stability and recyclability as well as universality for the transformation of various organic substrates under mild conditions.展开更多
The poor oxidation stability of ether-based solvents has long been a major challenge limiting their practical application.To enhance the oxidative stability of ether-based electrolytes,the physicochemical properties o...The poor oxidation stability of ether-based solvents has long been a major challenge limiting their practical application.To enhance the oxidative stability of ether-based electrolytes,the physicochemical properties of various glycol dimethyl ethers are screened,and diglyme(G2)is selected as the sole solvent for the electrolyte.Lithium bis(fluorosulfonyl)imide(LiFSI),a highly dissociative salt,is used as the primary salt;while lithium nitrate(LiNO_(3))and lithium difluorophosphate(LiDFP),which have small ionic sizes and strong binding energies,are added as secondary salts.The resulting electrolyte can modulate the electric double layer structure by NO_(3)^(-) and DFP^(-) on the cathode side,leading to an increased Liþconcentration that is originally repelled by the cathode.Additionally,the oxidation stability of the electrolyte is improved and the formed electrode-electrolyte interphase is more uniform and stable,thereby enhancing the electrochemical performance of the cells.As a result,cells assembled with a total of 1 M ternary lithium salts in G2 solvent can operate at high voltage of 4.4 V.The LijjNCM811 cells maintain 80.2%capacity retention after 270 cycles at room temperature,with an average Coulombic efficiency of 99.5%,and exhibit 88.4%capacity retention after 200 cycles at -30℃.展开更多
Heterogeneous precious metal catalysts are prone to agglomeration during preparation,requiring high usage with consequently high costs.Maximizing the efficiency of precious-metal utilization is of great significance i...Heterogeneous precious metal catalysts are prone to agglomeration during preparation,requiring high usage with consequently high costs.Maximizing the efficiency of precious-metal utilization is of great significance in the design of supported precious metal catalysts.Herein,2,2'-bipyridyl-5,5'-dicarboxylic acid was used as the ligand in constructing the UiO-67-Ce-BPyDC framework with Ce^(4+)coordination.This framework enables precise adsorption and coordination of Pd2+at the nitrogen sites of pyridine,promoting high dispersion of the Pd species at a single site,thereby facilitating controlled palladium loading.This precursor was used to fabricate supported Pd-based catalysts on CeO_(2)(Pd-N/CeO_(2)-P)via pyrolysis.Notably,because the Pd species are homogeneously distributed on CeO_(2)with strong interactions,Pd-N/CeO_(2)-P exhibits remarkable efficiency in cleaving the C-O bonds of diphenyl ether(DPE)to produce cyclohexanol,with a selectivity of 72.1%.The origin of the high selectivity of cyclohexanol is further elucidated using theoretical calculations;that is,DPE undergoes not only hydrogenolysis on Pd-N/CeO_(2)-P,but also hydrolysis to produce more cyclohexanol.This study not only demonstrates a successful strategy for designing highly dispersed metal catalysts,but also underscores the importance of such tailored catalysts in the advancement of sustainable lignin depolymerization technologies.展开更多
Chiral aryl cyclohex-3-en ether scaffold is widely present in bioactive natural products and drugs.The exploitation of efficient and enantioselective methods for the construction of aryl cyclohex-3-en ether scaffold i...Chiral aryl cyclohex-3-en ether scaffold is widely present in bioactive natural products and drugs.The exploitation of efficient and enantioselective methods for the construction of aryl cyclohex-3-en ether scaffold is significant.Herein we disclose a chiral N,N’-dioxide/Lewis acid complex-catalyzed asymmetric inverse-electron-demand Diels-Alder(IEDDA)reaction using electron-deficient 3-carboalkoxyl-2-pyrones and less electron-enriched aryl enol ethers as reactants.A wide range of non-and 1,2-disubstituted acyclic aryl enol ethers are applicable to deliver diverse chiral bridged bicyclic lactones in high yields and stereoselectivities(up to 96%yield,>20:1 dr,97:3 er).The bridged bicyclic lactone core can be easily converted into chiral aryl cyclohex-3-en ether scaffold.Notably,DFT calculations revealed a stepwise and endo mechanism to explain the high enantioselectivity controlled by the cooperative effect of the steric factors and the dispersion interactions between ligands and enol ethers.展开更多
Gastric cancer(GC)is characterized by high morbidity and mortality rates.Chinese agarwood comprises the resin-containing wood of Aquilaria sinensis(Lour.)Gilg.,traditionally utilized for treating asthma,cardiac ischem...Gastric cancer(GC)is characterized by high morbidity and mortality rates.Chinese agarwood comprises the resin-containing wood of Aquilaria sinensis(Lour.)Gilg.,traditionally utilized for treating asthma,cardiac ischemia,and tumors.However,comprehensive research regarding its anti-GC effects and underlying mechanisms remains limited.In this study,Chinese agarwood petroleum ether extract(CAPEE)demonstrated potent cytotoxicity against human GC cells,with half maximal inhibitory concentration(IC_(50))values for AGS,HGC27,and MGC803 cells of 2.89,2.46,and 2.37μg·mL^(−1),respectively,at 48 h.CAPEE significantly induced apoptosis in these GC cells,with B-cell lymphoma-2(BCL-2)associated X protein(BAX)/BCL-2 antagonist killer 1(BAK)likely mediating CAPEE-induced apoptosis.Furthermore,CAPEE induced G_(0)/G_(1)phase cell cycle arrest in human GC cells via activation of the deoxyribonucleic acid(DNA)damage-p21-cyclin D1/cyclin-dependent kinase 4(CDK4)signaling axis,and increased Fe^(2+),lipid peroxides and reactive oxygen species(ROS)levels,thereby inducing ferroptosis.Ribonucleic acid(RNA)sequencing,real-time quantitative polymerase chain reaction(RT-qPCR),and Western blotting analyses revealed CAPEE-mediated upregulation of heme oxygenase-1(HO-1)in human GC cells.RNA interference studies demonstrated that HO-1 knockdown reduced CAPEE sensitivity and inhibited CAPEE-induced ferroptosis in human GC cells.Additionally,CAPEE administration exhibited robust in vivo anti-GC activity without significant toxicity in nude mice while inhibiting tumor cell growth and promoting apoptosis in tumor tissues.These findings indicate that CAPEE suppresses human GC cell growth through upregulation of the DNA damage-p21-cyclin D1/CDK4 signaling axis and HO-1-mediated ferroptosis,suggesting its potential as a candidate drug for GC treatment.展开更多
8,2'-Diprenylquercetin 3-methyl ether with significant anti-breast cancer activity is the main constituent of Tibetan medicine Sinopodophylli Fructus. In the present study, we developed and validated a rapid and sens...8,2'-Diprenylquercetin 3-methyl ether with significant anti-breast cancer activity is the main constituent of Tibetan medicine Sinopodophylli Fructus. In the present study, we developed and validated a rapid and sensitive ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of 8,2'-diprenylquercetin 3-methyl ether in rat plasma. 8-Prenylkaempferol was used as the internal standard. The separation was carried out using Waters ACQUITY UPLC BEH C18 column (2.1 mm×100 ram, 1.7 μm) with a mobile phase consisting of acetonitrile and 0.1% formic acid in water on a gradient program at a flow rate of 0.4 mL'min-1 and temperature of 30 ℃. Triple quadrupole mass spectrometric detection in negative ion mode was used for multiple-reaction monitoring of the transitions at m/z 451.30→177.25 and m/z 353.25→298.15 for 8,2'-diprenylquercetin 3-methyl ether and 8-prenylkaempferol, respectively. The calibration curves were linear within the concentration range 0.1-2000 ng/mL (r = 0.9954). The recoveries were 103%-115%, and the results were consistent across low, middle and high concentration levels. The intra- and inter-day precisions were within 15%, and the bias was between --6%-15%. This method was simple, rapid and sensitive, which could be applied to the determination of 8,2'-diprenylquercetin 3-methyl ether in plasma and pharmacokinetic study in rats. Pharmacokinetic test indicated that the peak plasma concentration occurred in 2 h after the female rats were intragastrically administered with 8,2'-diprenylquercetin 3-methyl ether at the dose of 100 mg/kg, and the biological half-life was 6.79 h. The blood drug concentration maintained equal amount for 20 h, which was conducive to the in vivo effects of drugs.展开更多
The intrinsic kinetics of dimethyl ether (DME) synthesis from syngas over amethanol synthesis catalyst mixed with methanol dehydration catalyst has been investigated in atubular integral reactor at 3-7 MPa and 220-260...The intrinsic kinetics of dimethyl ether (DME) synthesis from syngas over amethanol synthesis catalyst mixed with methanol dehydration catalyst has been investigated in atubular integral reactor at 3-7 MPa and 220-260℃. The three reactions including methanol synthesisfrom CO and H_2, CO_2 and H_2, and methanol dehydration were chosen as the independent reactions.The L-H kinetic model was presented for dimethyl ether synthesis and the parameters of the modelwere obtained by using simplex method combined with genetic algorithm. The model is reliableaccording to statistical analysis and residual error analysis. The synergy effect of the reactionsover the bifunctional catalyst was compared with the effect for methanol synthesis catalyst underthe same conditions based on the model. The effects of syngas containing Na on the reactions werealso simulated.展开更多
The chars in the natural environment can affect the migration of polybrominated diphenyl ethers(PBDEs). However, there is insufficient research relating to the adsorption behavior and mechanisms of PBDEs on biochars. ...The chars in the natural environment can affect the migration of polybrominated diphenyl ethers(PBDEs). However, there is insufficient research relating to the adsorption behavior and mechanisms of PBDEs on biochars. This study examined the adsorption kinetics of 2,2′,4,4′-tetrabromodiphenyl ether(BDE-47) on maize straw-derived biochars(MSBCs) pyrolyzed at four different temperatures via batch experiments. The biochar samples were characterized using Fourier transform infrared(FTIR) spectroscopy,Raman spectra, and elemental analysis. A two-compartment first-order model and pseudo-second-order model exhibited a better fit compared to a pseudo-first-order model in describing the BDE-47 adsorption on biochars, which was dominated by a slow adsorption compartment and chemisorption. The MSBC pyrolyzed at 600 °C had the highest BDE-47 adsorption capacity owing to its relatively large specific surface area and relatively high aromaticity compared with the other three MSBCs pyrolyzed at 300, 400, and 500 ℃.However, there was no significant difference in adsorption capacity among the other three biochars. The organic functional groups coupled with the graphene structures of biochars and the hydrophobic effect of the functional groups promoted the adsorption of BDE-47. Pore diffusion was not the sole rate-limiting step;film diffusion was also involved in the adsorption process of BDE-47 on biochars. The overall results demonstrate the transport and potential treatment of PBDEs using biochars.展开更多
Low methanol permeability of proton exchange membranes (PEMs) is greatly important for direct methanol fuel cells (DMFCs). Here, sulfonated poly (ether ether ketone) (SPEEK) based semiinterpenetrating polymer networks...Low methanol permeability of proton exchange membranes (PEMs) is greatly important for direct methanol fuel cells (DMFCs). Here, sulfonated poly (ether ether ketone) (SPEEK) based semiinterpenetrating polymer networks (semi-IPNs) are successfully prepared by interpenetrating SPEEK into the in-situ synthesized crosslinking networks. The polymeric networks are formed by the covalent bonds between bromobenzyl groups of bro mo methylated poly (phenylene oxide) and amine groups of diamine linkers as well as the ionic bonds between amine species and sulfonated groups. Two linkers without and with sulfonated groups are applied to fabricate the semi-IPNs. The core properties of the membranes, like phase separation, water uptake, proton conductivity and methanol permeability, are systematically studied and compared. The DMFCs assembled by using the semi-IPN membranes display better performance than Nafion 117 in high concentration methanol solutions. The present work provides a facile way to prepare PEMs with enhanced DMFC performance.展开更多
The interconversion between the two distinct isomers of methyl vinyl ether (MVE), the formation of the primary ozonides from O3-initated reactions of MVE, the transformation between the primary ozonides, and the sub...The interconversion between the two distinct isomers of methyl vinyl ether (MVE), the formation of the primary ozonides from O3-initated reactions of MVE, the transformation between the primary ozonides, and the subsequent fragmentation were studied using quantum chemical methods at the BHandHLYP/6311++G(d,p) level of theory for optimized geometries and frequency calculations and at the QCISD/631G(d,p) level for the single point energy calculations. The rate coefficients were calculated for the temperature range 280-440 K by using the canonical transition state theory (TST). For ozone addition to MVE, there are two different possibilities discussed on the basis of two different possible orientations for ozone attack. The results of the theoretical study indicate that although the synperiplanar-MVE is 7.11 kJ/mol more stable than the antiperiplanar-MVE, the antiperiplanar-MVE plays a more important role in formation of the primary ozonides because the primary ozonides formed from the ozone addition antiperiplanar-MVE are more stable and the energy barriers corresponding to transition states are lower. The intereonversion between the primary ozonides formed from the ozone addition to antiperiplanar-MVE is the most accessible compared with the transformations between other primary ozonides. The cleavage of the primary ozonides mainly leads to the formation of the CH2OO, which is in agreement with the experimental estimates. The calculated overall rate constant for the ozone-initiated reactions is 4.8× 10^-17 cm^3/(molecule.s) at 298.15 K, which agrees with the experimental value for ethyl vinyl ether.展开更多
The paper presents the case that physics is already and effectively unified by the energetic tension field, ether. We identify this integrating power of ether first, by re-defining the action generating parameters of ...The paper presents the case that physics is already and effectively unified by the energetic tension field, ether. We identify this integrating power of ether first, by re-defining the action generating parameters of this energetic tension field as the electric-tension, <img src="Edit_1233fa02-9a1c-416a-8153-196733a12887.png" alt="" />, and the magnetic-resistance, <em>μ</em><sub>0</sub>, while re-deriving the Maxwell’s wave equation in analogy with the mechanically stretched string, where the <img src="Edit_07813a1b-d94f-4e68-a3ed-b3023cd3fb5f.png" alt="" />. Then, replacing <img src="Edit_7d06fa1e-760d-4b80-a503-db81378a3512.png" alt="" /> by <img src="Edit_58f15ef0-2e86-42ae-a899-d0b4741f12d0.png" alt="" /> and <em>m</em><sub>0</sub> by <img src="Edit_f8cb7020-1a27-404a-b146-5c1357e1c5b5.png" alt="" />, one can find that almost all working physics theories are being energized by<img src="Edit_f860fcdd-1dc1-40bf-aaf1-e07b0e4a7524.png" alt="" />and <em>μ</em><sub>0</sub>. To complete the unification, we can now postulate that the particles are also freely propagating EM waves, but they are spatially localized as in-phase, close-looped (IP-CL) vortex-like propagation modes of ether. Because of their IP-CL mode structure, they have space-finite spatial structures and remain spatially stationary in the absence of any spatially influencing potential gradients (forces) in their vicinity. Particles’ <em>harmonic phase</em> driven interactions between quantum particles give birth to the <em>appearance</em> of wave-particle duality. There is no need for the confusing and unnecessary de Broglie’s Pilot Wave. The inertia to spatial motion of IP-CL modes automatically accommodates Newton’s laws of motion. The cosmic universality of Maxwellian wave velocity, and particles as IP-CL modes, jointly accommodate the two key postulates of special relativity without the need for unphysical four-dimensionality. The observable universe is represented only by its diverse oscillatory excited states. The stable and stationary Cosmic Ether keeps holding 100% of its energy all the time. We have proposed a one-way light pulse propagation experiment to directly validate the existence of ether, rather than approaching Michelson’s way of measuring the ether drag. We have identified a good number of examples of working theoretical expressions in terms of <img src="Edit_fd739625-efbd-4edd-9e1e-ba4ab5b7c07f.png" alt="" />and<em> μ</em><sub>0</sub> and presented our critical views in physics thinking, belonging to Classical, Relativity, Quantum and Cosmology Physics.展开更多
Structurally diverse bispropargyl ethers using resorcinol,quinol,4,4¢-dihydroxy biphenyl,bisphenol-A,4,4¢-dihydroxy diphenyl ketone,4,4¢-dihydroxy diphenylsulphone,trimethyl indane bisphenol and tetramethyl spirobi...Structurally diverse bispropargyl ethers using resorcinol,quinol,4,4¢-dihydroxy biphenyl,bisphenol-A,4,4¢-dihydroxy diphenyl ketone,4,4¢-dihydroxy diphenylsulphone,trimethyl indane bisphenol and tetramethyl spirobiindane bisphenol were prepared by using phase transfer catalyst.Synthesized materials were separately blended with 4,4¢-bismaleimido diphenyl methane(BMIM)in mole ratios(0.5:0.5).The materials were thermally cured and the structural characterisation and the thermal properties of these cross-linked materials are investigated using Fourier-transform infrared(FTIR)spectrophotometer and thermogravimetric analyzer(TGA).Among the different materials investigated poly MRPE,poly MBPEBPA and poly MSPE show higher onset degradation temperature of 300°C indicating higher thermal stability.The degradation kinetics is investigated using Flynn-Wall-Ozawa(FWO),Vyazovkin(VYZ)and Friedman(FRD)methods.Amongst the various cured materials investigated,the activation energy(Ea-D)values obtained for poly MRPE and poly MKPE were observed to increase continuously froma=0.2 to 0.8 and the values range from 199 kJ/mol to 245 k J/mol and 153 k J/mol to 295 k J/mol respectively.The crosslinked materials resulting from these bispropargyl monomers definitely need more energy for bond cleavage due to the presence of more aromatic units.The volatile products obtained during the thermal degradation of the polymers were analyzed using thermogravimetric-Fourier transform infrared analyses(TG-FTIR).The phenols,substituted phenols,carbon monoxide,carbon dioxide and small amount of aniline were found to be the major products during thermal degradation of these cured blends.展开更多
Network crewn ether polymer with pendant sulfide side ohain in the networkstructure units has been synthesized via ring- opening copolymerization of β-ethylthioethyl glycidyl ether and diethylene glycol bisglycidyl e...Network crewn ether polymer with pendant sulfide side ohain in the networkstructure units has been synthesized via ring- opening copolymerization of β-ethylthioethyl glycidyl ether and diethylene glycol bisglycidyl ether. A kind of active catalyst suitable for this reaction was suggested. The title polymer was found tobe a good ligand for platinous chloride, and the platinous complex could catalyze thehydrosilylation of olefins with triethoxysilane efficiently.展开更多
Dimethyl ether (DME) is considered as a significant fuel alternative with a critical manufacturing process. Only a few authors have presented the kinetic analysis of attractive and alternative catalysts to Al<sub&g...Dimethyl ether (DME) is considered as a significant fuel alternative with a critical manufacturing process. Only a few authors have presented the kinetic analysis of attractive and alternative catalysts to Al<sub>2</sub>O<sub>3</sub> and/or zeolite in DME production, despite the fact that there is a large library of kinetic studies for these commercial catalysts. The purpose of this research was to contribute to this direction by conducting a catalytic test to determine kinetic parameters for methanol dehydration over sulfonic acid catalysts (resin). However, due to the relevance of the mathematical description of this process in the industry was also studied, a study of kinetics parameters and mathematical modeling of methanol dehydration in an atmospheric gas phase in a fixed bed reactor with a temperature range (90°C - 120°C) was examined. The Langmuir-Hinshelwood (L-H) model provides the best fit to experimental data, with an excellent R<sup>2</sup> = 0.9997, and the experimental results were compared to those predicted by these models with very small deviations. The kinetic parameters were found to be in good agreement with the Arrhenius equation, with acceptable straight-line graphs. The activation energy E was computed and found to be 27.66 kJ/mole, with an average variation of 0.32 percent between the predicted and calculated results. Simple mathematical continuum models (plug flow reactor PFR) showed an acceptable agreement with the experimental data.展开更多
基金supported by the National Key Research and Development Program of China(No.2019YFC1804202)the National Natural Science Foundation of China(No.22020102004)+1 种基金the Tianjin Municipal Science and Technology Bureau(No.21JCZDJC00280)the Fundamental Research Funds for the Central Universities by the Ministry of Education of China(No.T2017002).
文摘Polybromodiphenyl ethers(PBDEs),the widely used flame retardants,are common contaminants in surface soils at e-waste recycling sites.The association of PBDEs with soil colloids has been observed,indicating the potential risk to groundwater due to colloid-facilitated transport.However,the extent to which soil colloidsmay enhance the spreading of PBDEs in groundwater is largely unknown.Herein,we report the co-transport of decabromodiphenyl ester(BDE-209)and soil colloids in saturated porous media.The colloids released froma soil sample collected at an e-waste recycling site in Tianjin,China,contain high concentration of PBDEs,with BDE-209 being the most abundant conger(320±30 mg/kg).The colloids exhibit relatively high mobility in saturated sand columns,under conditions commonly observed in groundwater environments.Notably,under all the tested conditions(i.e.,varying flow velocity,pH,ionic species and ionic strength),the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids,even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved.Additionally,the mass of BDE-209 retained in the columns also correlates strongly with themass of retained colloids.Apparently,the PBDEs remain bound to soil colloids during transport in porous media.Findings in this study indicate that soil colloidsmay significantly promote the transport of PBDEs in groundwater by serving as an effective carrier.This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.
文摘A new gold self-relay catalytic annulation/nucleophilic substitution cascade of 1,3-enyne acetates with cyclic ether acetals is reported,enabling highly diastereoselective access to cyclic etherified cyclopentenones with cyclic quaternary centers in moderate to good yields and>19∶1 dr.This catalysis enables the direct construction of two types of carboncyclic skeletons by adjusting the olefin types of 1,3-enyne acetates.When 1,3-enyne acetates bearing a cyclic alkene unit were used,5~6 fused bicarbocyclic products were diastereoselectively synthesized,whereas the reaction of acyclic 1,3-enyne acetates resulted in five-memebered carbocyclic framework.Notably,cyclic ether acetals are commonly used as protecting groups in traditional multistep organic syntheses,and in this reaction,such reagents serve as electrophilic cyclic ether precursors,achieving new uses for old reagents.The current method demonstrates good functional group compatibility,a broad substrate scope and high diastereoselectivity,providing a new synthetic strategy toward functionalized cyclopentenones.
文摘The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques including XRD,XPS,N2O titration,and 27Al MAS-NMR.The results showed that when the crystal configurations of Al_(2)O_(3) were the same,increasing the specific surface area could effectively refine the size of copper nanoparticles(Cu NPs),and ultimately improve the conversion of DEO.Meanwhile,the smaller size ofγ-Al_(2)O_(3)(HSAl and SBAl)loaded Cu NPs promotes the reaction towards the deep hydrogenation to produce ethanol(EtOH)and ethylene glycol(EG).Besides,the larger size of Cu NPs on the surface of amorphous Al_(2)O_(3)(HTAl and SolAl)resulted in a lower conversion rate,where ethyl glycolate(Egly)is the main product.Despite there are differences in Al^(3+)ionic coordination in Al_(2)O_(3) with different crystal structures,the experimental data showed that the differences in Al^(3+)ionic coordination did not significantly affect the catalytic performance in the hydrogenation reaction.The formation of alcohol-ether ester chemicals is critically dependent on the interactions between Cu sites and acidic sites.Among them,EG and EtOH were dehydrated to form 2-ethoxyethanol via the SN2 mechanism,while Egly and EtOH were reacted to form ethyl ethoxyacetate(EEA)via the SN2 mechanism.This study provides a theoretical basis for the optimization of the coal-based glycol processes to achieve a diversified product portfolio.
基金supported by the National Natural Science Foundation of China(U23A2088,22025206)the Dalian Innovation Support Plan for High Level Talents(2022RG13)+2 种基金DICP(Grant:DICP I202453,DICP I202234)the Fundamental Research Funds for the Central Universities(20720220008)support of the Liaoning Key Laboratory of Biomass Conversion for Energy and Material。
文摘The efficient catalytic conversion of fossil-based low-carbon small molecules to oxygen-containing chemicals is an attractive research topic in the fields of energy and chemical engineering.The selective oxidation of dimethyl ether(DME),which is derived from fossil resources,represents a promising approach to producing high-concentration formaldehyde with low energy consumption.However,there is still a lack of catalysts achieving satisfactory conversion of DME with high selectivity for formaldehyde under mild conditions.In this work,an efficient iron-molybdate(FeMo)catalyst was developed for the selective oxidation of DME to formaldehyde.The DME conversion of 84% was achieved with a superior formaldehyde selectivity(77%)at 300℃,a performance that is superior to all previously reported results.In an approximately 550 h continuous reaction,the catalyst maintained a conversion of 64% and a formaldehyde selectivity of 79%.Combined X-ray diffraction(XRD),Transmission electron microscope(TEM),Ultraviolet-visible spectroscopy(UV-Vis),Hydrogen temperature-programmed reduction(H_(2)-TPR),Fourier transform infrared(FT-IR)analyses,along with density functional theory(DFT)calculations,demonstrated that the excellent FeMo catalyst was composed of active Fe_(2)(MoO_(4))_(3)and MoO_(3)phases,and there was an interaction between them,which contributed to the efficient DME dissociation and smooth hydrogen spillover,leading to a superior DME conversion.With the support of DME/O_(2)pulse experiments,in-situ Raman,in-situ Dimethyl ether infrared spectroscopy(DME-IR)and DFT calculation results,a Mars-van Krevelen(MvK)reaction mechanism was proposed:DME was dissociated on the interface between Fe_(2)(MoO_(4))_(3)and MoO_(3)phases to form active methoxy species firstly,and it dehydrogenated to give hydrogen species;the generated hydrogen species smoothly spilled over from Fe_(2)(MoO_(4))_(3)to MoO_(3)enhanced by the interaction between Fe_(2)(MoO_(4))_(3)and MoO_(3);then the hydrogen species was consumed by MoO_(3),leading to a reduction of MoO_(3),and finally,the reduced MoO_(3)was re-oxidized by O_(2),returning to the initial state.These findings offer valuable insights not only for the development of efficient FeMo catalysts but also for elucidating the reaction mechanism involved in the oxidation of DME to formaldehyde,contributing to the optimized utilization of DME derived from fossil resources.
基金support from the National Natural Science Foundation of China (Grant No.U21B2094 and Grant No.U2067212)。
文摘The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of mercury has raised concerns about its potential environmental hazards,which have prompted the search for more efficient and environmentally friendly alternatives.Crown ethers can bind lithium ions highly selectively and separate lithium isotopes effectively.A chemical exchange-based lithium isotopes separation method using crown ether decorated materials could be a viable and cost-effective alternative to the lithium amalgam method.In this review,we provide a systematic summary of the recent advances in lithium isotopes separation using crown ethers decorated materials.
文摘Furfuryl ethyl ether(FEE)is considered as one of the most important candidates for biofuels due to its high-octane number.However,it is still challenging to produce FEE via the biomass-based route under mild conditions.Here,we developed a photoinduced catalytic transfer hydrogenation(CTH)process for the efficient production of FEE through the reduction etherification of furfural(FF)using Na_(4)W_(10)O_(32)(NaDT),Pd/C,and ethanol as the hydrogen atom transfer(HAT)catalyst,hydrogenation catalyst,and the H donor,respectively.Notably,the introduction of brominated benzene(PhBr)as an additive significantly promoted the yield of FEE to 92.7%.A series of experiments and characterization results indicated that the attachment and detachment of Br atoms on Pd/C catalyst surface effectively regulate the balance between H^(+)sites and Pd sites in the NaDT+Pd/C catalytic system.The balance facilitates the preferential acetalization of FF catalyzed by H^(+)sites,followed by hydrogenation to efficiently produce FEE catalyzed by Pd sites.This photoinduced CTH process exhibits good stability and recyclability as well as universality for the transformation of various organic substrates under mild conditions.
文摘The poor oxidation stability of ether-based solvents has long been a major challenge limiting their practical application.To enhance the oxidative stability of ether-based electrolytes,the physicochemical properties of various glycol dimethyl ethers are screened,and diglyme(G2)is selected as the sole solvent for the electrolyte.Lithium bis(fluorosulfonyl)imide(LiFSI),a highly dissociative salt,is used as the primary salt;while lithium nitrate(LiNO_(3))and lithium difluorophosphate(LiDFP),which have small ionic sizes and strong binding energies,are added as secondary salts.The resulting electrolyte can modulate the electric double layer structure by NO_(3)^(-) and DFP^(-) on the cathode side,leading to an increased Liþconcentration that is originally repelled by the cathode.Additionally,the oxidation stability of the electrolyte is improved and the formed electrode-electrolyte interphase is more uniform and stable,thereby enhancing the electrochemical performance of the cells.As a result,cells assembled with a total of 1 M ternary lithium salts in G2 solvent can operate at high voltage of 4.4 V.The LijjNCM811 cells maintain 80.2%capacity retention after 270 cycles at room temperature,with an average Coulombic efficiency of 99.5%,and exhibit 88.4%capacity retention after 200 cycles at -30℃.
基金Project supported by the National Natural Science Foundation of China(22221001,22131007,22102193)the National Key R&D Program of China(2021YFA1501101,2022YFA1504601)+1 种基金the 111 Project(B20027)a Startup Program of the State Key Laboratory for Oxo Synthesis and Selective Oxidation of LICP(EOSX0184)。
文摘Heterogeneous precious metal catalysts are prone to agglomeration during preparation,requiring high usage with consequently high costs.Maximizing the efficiency of precious-metal utilization is of great significance in the design of supported precious metal catalysts.Herein,2,2'-bipyridyl-5,5'-dicarboxylic acid was used as the ligand in constructing the UiO-67-Ce-BPyDC framework with Ce^(4+)coordination.This framework enables precise adsorption and coordination of Pd2+at the nitrogen sites of pyridine,promoting high dispersion of the Pd species at a single site,thereby facilitating controlled palladium loading.This precursor was used to fabricate supported Pd-based catalysts on CeO_(2)(Pd-N/CeO_(2)-P)via pyrolysis.Notably,because the Pd species are homogeneously distributed on CeO_(2)with strong interactions,Pd-N/CeO_(2)-P exhibits remarkable efficiency in cleaving the C-O bonds of diphenyl ether(DPE)to produce cyclohexanol,with a selectivity of 72.1%.The origin of the high selectivity of cyclohexanol is further elucidated using theoretical calculations;that is,DPE undergoes not only hydrogenolysis on Pd-N/CeO_(2)-P,but also hydrolysis to produce more cyclohexanol.This study not only demonstrates a successful strategy for designing highly dispersed metal catalysts,but also underscores the importance of such tailored catalysts in the advancement of sustainable lignin depolymerization technologies.
基金National Natural Science Foundation of China(Nos.22001177,22203023)Guangdong Pearl River Talent Program(no.2021QN020268)+3 种基金the Natural Science Foundation of Guangdong Province(Nos.2024A1515012381,2022A1515011859)Shenzhen Bay Laboratory Startup Fund(No.S201100003)Major Program of Shenzhen Bay Laboratory(No.S211101001-4)Shenzhen Bay Qihang Fellow Program(No.QH23001)for generous financial support.
文摘Chiral aryl cyclohex-3-en ether scaffold is widely present in bioactive natural products and drugs.The exploitation of efficient and enantioselective methods for the construction of aryl cyclohex-3-en ether scaffold is significant.Herein we disclose a chiral N,N’-dioxide/Lewis acid complex-catalyzed asymmetric inverse-electron-demand Diels-Alder(IEDDA)reaction using electron-deficient 3-carboalkoxyl-2-pyrones and less electron-enriched aryl enol ethers as reactants.A wide range of non-and 1,2-disubstituted acyclic aryl enol ethers are applicable to deliver diverse chiral bridged bicyclic lactones in high yields and stereoselectivities(up to 96%yield,>20:1 dr,97:3 er).The bridged bicyclic lactone core can be easily converted into chiral aryl cyclohex-3-en ether scaffold.Notably,DFT calculations revealed a stepwise and endo mechanism to explain the high enantioselectivity controlled by the cooperative effect of the steric factors and the dispersion interactions between ligands and enol ethers.
基金supported by the Natural Science Foundation of Beijing City(No.J230034)the Fundamental Research Funds for the Central Universities(No.2023-JYB-JBQN-051)the Talent Cultivation Project of Beijing University of Chinese Medicine(No.JZPY202206).
文摘Gastric cancer(GC)is characterized by high morbidity and mortality rates.Chinese agarwood comprises the resin-containing wood of Aquilaria sinensis(Lour.)Gilg.,traditionally utilized for treating asthma,cardiac ischemia,and tumors.However,comprehensive research regarding its anti-GC effects and underlying mechanisms remains limited.In this study,Chinese agarwood petroleum ether extract(CAPEE)demonstrated potent cytotoxicity against human GC cells,with half maximal inhibitory concentration(IC_(50))values for AGS,HGC27,and MGC803 cells of 2.89,2.46,and 2.37μg·mL^(−1),respectively,at 48 h.CAPEE significantly induced apoptosis in these GC cells,with B-cell lymphoma-2(BCL-2)associated X protein(BAX)/BCL-2 antagonist killer 1(BAK)likely mediating CAPEE-induced apoptosis.Furthermore,CAPEE induced G_(0)/G_(1)phase cell cycle arrest in human GC cells via activation of the deoxyribonucleic acid(DNA)damage-p21-cyclin D1/cyclin-dependent kinase 4(CDK4)signaling axis,and increased Fe^(2+),lipid peroxides and reactive oxygen species(ROS)levels,thereby inducing ferroptosis.Ribonucleic acid(RNA)sequencing,real-time quantitative polymerase chain reaction(RT-qPCR),and Western blotting analyses revealed CAPEE-mediated upregulation of heme oxygenase-1(HO-1)in human GC cells.RNA interference studies demonstrated that HO-1 knockdown reduced CAPEE sensitivity and inhibited CAPEE-induced ferroptosis in human GC cells.Additionally,CAPEE administration exhibited robust in vivo anti-GC activity without significant toxicity in nude mice while inhibiting tumor cell growth and promoting apoptosis in tumor tissues.These findings indicate that CAPEE suppresses human GC cell growth through upregulation of the DNA damage-p21-cyclin D1/CDK4 signaling axis and HO-1-mediated ferroptosis,suggesting its potential as a candidate drug for GC treatment.
基金National Natural Science Foundation of China(Grant No.81673590)National Key Technology R&D Program "New Drug Innovation" of China(Grant No.2013ZX09103002-006)
文摘8,2'-Diprenylquercetin 3-methyl ether with significant anti-breast cancer activity is the main constituent of Tibetan medicine Sinopodophylli Fructus. In the present study, we developed and validated a rapid and sensitive ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of 8,2'-diprenylquercetin 3-methyl ether in rat plasma. 8-Prenylkaempferol was used as the internal standard. The separation was carried out using Waters ACQUITY UPLC BEH C18 column (2.1 mm×100 ram, 1.7 μm) with a mobile phase consisting of acetonitrile and 0.1% formic acid in water on a gradient program at a flow rate of 0.4 mL'min-1 and temperature of 30 ℃. Triple quadrupole mass spectrometric detection in negative ion mode was used for multiple-reaction monitoring of the transitions at m/z 451.30→177.25 and m/z 353.25→298.15 for 8,2'-diprenylquercetin 3-methyl ether and 8-prenylkaempferol, respectively. The calibration curves were linear within the concentration range 0.1-2000 ng/mL (r = 0.9954). The recoveries were 103%-115%, and the results were consistent across low, middle and high concentration levels. The intra- and inter-day precisions were within 15%, and the bias was between --6%-15%. This method was simple, rapid and sensitive, which could be applied to the determination of 8,2'-diprenylquercetin 3-methyl ether in plasma and pharmacokinetic study in rats. Pharmacokinetic test indicated that the peak plasma concentration occurred in 2 h after the female rats were intragastrically administered with 8,2'-diprenylquercetin 3-methyl ether at the dose of 100 mg/kg, and the biological half-life was 6.79 h. The blood drug concentration maintained equal amount for 20 h, which was conducive to the in vivo effects of drugs.
基金Supported by Development Project of Shanghai Priority Academic Discipline
文摘The intrinsic kinetics of dimethyl ether (DME) synthesis from syngas over amethanol synthesis catalyst mixed with methanol dehydration catalyst has been investigated in atubular integral reactor at 3-7 MPa and 220-260℃. The three reactions including methanol synthesisfrom CO and H_2, CO_2 and H_2, and methanol dehydration were chosen as the independent reactions.The L-H kinetic model was presented for dimethyl ether synthesis and the parameters of the modelwere obtained by using simplex method combined with genetic algorithm. The model is reliableaccording to statistical analysis and residual error analysis. The synergy effect of the reactionsover the bifunctional catalyst was compared with the effect for methanol synthesis catalyst underthe same conditions based on the model. The effects of syngas containing Na on the reactions werealso simulated.
基金financially supported by the Outstanding Youth Fund of the Natural Science Foundation of Jiangsu, China (No. BK20150050)the National Key Research and Development Program, China (No. 2016YFD0800204)+2 种基金the National Natural Science Foundation of China (No. 21677149)the Institute of Soil Science, Chinese Academy of Sciences (No. ISSASIP1616)the Key Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDJSSW-DQC035)
文摘The chars in the natural environment can affect the migration of polybrominated diphenyl ethers(PBDEs). However, there is insufficient research relating to the adsorption behavior and mechanisms of PBDEs on biochars. This study examined the adsorption kinetics of 2,2′,4,4′-tetrabromodiphenyl ether(BDE-47) on maize straw-derived biochars(MSBCs) pyrolyzed at four different temperatures via batch experiments. The biochar samples were characterized using Fourier transform infrared(FTIR) spectroscopy,Raman spectra, and elemental analysis. A two-compartment first-order model and pseudo-second-order model exhibited a better fit compared to a pseudo-first-order model in describing the BDE-47 adsorption on biochars, which was dominated by a slow adsorption compartment and chemisorption. The MSBC pyrolyzed at 600 °C had the highest BDE-47 adsorption capacity owing to its relatively large specific surface area and relatively high aromaticity compared with the other three MSBCs pyrolyzed at 300, 400, and 500 ℃.However, there was no significant difference in adsorption capacity among the other three biochars. The organic functional groups coupled with the graphene structures of biochars and the hydrophobic effect of the functional groups promoted the adsorption of BDE-47. Pore diffusion was not the sole rate-limiting step;film diffusion was also involved in the adsorption process of BDE-47 on biochars. The overall results demonstrate the transport and potential treatment of PBDEs using biochars.
基金support of the National Natural Science Foundation of China(Nos. 21603197, 21703212,21233006 and 21473164)Natural Science Foundation of Hubei Province of China(No.2016CFB181)+1 种基金Fundamental Research Funds for the Central University, China University of Geosciences (Wuhan)(No. CUGL180403)China University of Geosciences (Wuhan) for the program of Center for Advanced Energy Research and Technologies
文摘Low methanol permeability of proton exchange membranes (PEMs) is greatly important for direct methanol fuel cells (DMFCs). Here, sulfonated poly (ether ether ketone) (SPEEK) based semiinterpenetrating polymer networks (semi-IPNs) are successfully prepared by interpenetrating SPEEK into the in-situ synthesized crosslinking networks. The polymeric networks are formed by the covalent bonds between bromobenzyl groups of bro mo methylated poly (phenylene oxide) and amine groups of diamine linkers as well as the ionic bonds between amine species and sulfonated groups. Two linkers without and with sulfonated groups are applied to fabricate the semi-IPNs. The core properties of the membranes, like phase separation, water uptake, proton conductivity and methanol permeability, are systematically studied and compared. The DMFCs assembled by using the semi-IPN membranes display better performance than Nafion 117 in high concentration methanol solutions. The present work provides a facile way to prepare PEMs with enhanced DMFC performance.
文摘The interconversion between the two distinct isomers of methyl vinyl ether (MVE), the formation of the primary ozonides from O3-initated reactions of MVE, the transformation between the primary ozonides, and the subsequent fragmentation were studied using quantum chemical methods at the BHandHLYP/6311++G(d,p) level of theory for optimized geometries and frequency calculations and at the QCISD/631G(d,p) level for the single point energy calculations. The rate coefficients were calculated for the temperature range 280-440 K by using the canonical transition state theory (TST). For ozone addition to MVE, there are two different possibilities discussed on the basis of two different possible orientations for ozone attack. The results of the theoretical study indicate that although the synperiplanar-MVE is 7.11 kJ/mol more stable than the antiperiplanar-MVE, the antiperiplanar-MVE plays a more important role in formation of the primary ozonides because the primary ozonides formed from the ozone addition antiperiplanar-MVE are more stable and the energy barriers corresponding to transition states are lower. The intereonversion between the primary ozonides formed from the ozone addition to antiperiplanar-MVE is the most accessible compared with the transformations between other primary ozonides. The cleavage of the primary ozonides mainly leads to the formation of the CH2OO, which is in agreement with the experimental estimates. The calculated overall rate constant for the ozone-initiated reactions is 4.8× 10^-17 cm^3/(molecule.s) at 298.15 K, which agrees with the experimental value for ethyl vinyl ether.
文摘The paper presents the case that physics is already and effectively unified by the energetic tension field, ether. We identify this integrating power of ether first, by re-defining the action generating parameters of this energetic tension field as the electric-tension, <img src="Edit_1233fa02-9a1c-416a-8153-196733a12887.png" alt="" />, and the magnetic-resistance, <em>μ</em><sub>0</sub>, while re-deriving the Maxwell’s wave equation in analogy with the mechanically stretched string, where the <img src="Edit_07813a1b-d94f-4e68-a3ed-b3023cd3fb5f.png" alt="" />. Then, replacing <img src="Edit_7d06fa1e-760d-4b80-a503-db81378a3512.png" alt="" /> by <img src="Edit_58f15ef0-2e86-42ae-a899-d0b4741f12d0.png" alt="" /> and <em>m</em><sub>0</sub> by <img src="Edit_f8cb7020-1a27-404a-b146-5c1357e1c5b5.png" alt="" />, one can find that almost all working physics theories are being energized by<img src="Edit_f860fcdd-1dc1-40bf-aaf1-e07b0e4a7524.png" alt="" />and <em>μ</em><sub>0</sub>. To complete the unification, we can now postulate that the particles are also freely propagating EM waves, but they are spatially localized as in-phase, close-looped (IP-CL) vortex-like propagation modes of ether. Because of their IP-CL mode structure, they have space-finite spatial structures and remain spatially stationary in the absence of any spatially influencing potential gradients (forces) in their vicinity. Particles’ <em>harmonic phase</em> driven interactions between quantum particles give birth to the <em>appearance</em> of wave-particle duality. There is no need for the confusing and unnecessary de Broglie’s Pilot Wave. The inertia to spatial motion of IP-CL modes automatically accommodates Newton’s laws of motion. The cosmic universality of Maxwellian wave velocity, and particles as IP-CL modes, jointly accommodate the two key postulates of special relativity without the need for unphysical four-dimensionality. The observable universe is represented only by its diverse oscillatory excited states. The stable and stationary Cosmic Ether keeps holding 100% of its energy all the time. We have proposed a one-way light pulse propagation experiment to directly validate the existence of ether, rather than approaching Michelson’s way of measuring the ether drag. We have identified a good number of examples of working theoretical expressions in terms of <img src="Edit_fd739625-efbd-4edd-9e1e-ba4ab5b7c07f.png" alt="" />and<em> μ</em><sub>0</sub> and presented our critical views in physics thinking, belonging to Classical, Relativity, Quantum and Cosmology Physics.
基金financially supported by the Management and Principal of Kamaraj College of Engineering and Technology,S.P.G.C.Nagar,K.Vellakulam Post-625701,India for providing all of the facilities to do the work
文摘Structurally diverse bispropargyl ethers using resorcinol,quinol,4,4¢-dihydroxy biphenyl,bisphenol-A,4,4¢-dihydroxy diphenyl ketone,4,4¢-dihydroxy diphenylsulphone,trimethyl indane bisphenol and tetramethyl spirobiindane bisphenol were prepared by using phase transfer catalyst.Synthesized materials were separately blended with 4,4¢-bismaleimido diphenyl methane(BMIM)in mole ratios(0.5:0.5).The materials were thermally cured and the structural characterisation and the thermal properties of these cross-linked materials are investigated using Fourier-transform infrared(FTIR)spectrophotometer and thermogravimetric analyzer(TGA).Among the different materials investigated poly MRPE,poly MBPEBPA and poly MSPE show higher onset degradation temperature of 300°C indicating higher thermal stability.The degradation kinetics is investigated using Flynn-Wall-Ozawa(FWO),Vyazovkin(VYZ)and Friedman(FRD)methods.Amongst the various cured materials investigated,the activation energy(Ea-D)values obtained for poly MRPE and poly MKPE were observed to increase continuously froma=0.2 to 0.8 and the values range from 199 kJ/mol to 245 k J/mol and 153 k J/mol to 295 k J/mol respectively.The crosslinked materials resulting from these bispropargyl monomers definitely need more energy for bond cleavage due to the presence of more aromatic units.The volatile products obtained during the thermal degradation of the polymers were analyzed using thermogravimetric-Fourier transform infrared analyses(TG-FTIR).The phenols,substituted phenols,carbon monoxide,carbon dioxide and small amount of aniline were found to be the major products during thermal degradation of these cured blends.
文摘Network crewn ether polymer with pendant sulfide side ohain in the networkstructure units has been synthesized via ring- opening copolymerization of β-ethylthioethyl glycidyl ether and diethylene glycol bisglycidyl ether. A kind of active catalyst suitable for this reaction was suggested. The title polymer was found tobe a good ligand for platinous chloride, and the platinous complex could catalyze thehydrosilylation of olefins with triethoxysilane efficiently.
文摘Dimethyl ether (DME) is considered as a significant fuel alternative with a critical manufacturing process. Only a few authors have presented the kinetic analysis of attractive and alternative catalysts to Al<sub>2</sub>O<sub>3</sub> and/or zeolite in DME production, despite the fact that there is a large library of kinetic studies for these commercial catalysts. The purpose of this research was to contribute to this direction by conducting a catalytic test to determine kinetic parameters for methanol dehydration over sulfonic acid catalysts (resin). However, due to the relevance of the mathematical description of this process in the industry was also studied, a study of kinetics parameters and mathematical modeling of methanol dehydration in an atmospheric gas phase in a fixed bed reactor with a temperature range (90°C - 120°C) was examined. The Langmuir-Hinshelwood (L-H) model provides the best fit to experimental data, with an excellent R<sup>2</sup> = 0.9997, and the experimental results were compared to those predicted by these models with very small deviations. The kinetic parameters were found to be in good agreement with the Arrhenius equation, with acceptable straight-line graphs. The activation energy E was computed and found to be 27.66 kJ/mole, with an average variation of 0.32 percent between the predicted and calculated results. Simple mathematical continuum models (plug flow reactor PFR) showed an acceptable agreement with the experimental data.