Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface ...Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface generation method are poor, because of the high surface recombination caused by deep etching in the conventional surface generation method for BS. In this work, a modified wet chemical etching solution with additives was developed. A homogeneous BS layer with random porous structure was obtained from the modified solution in only one step at room temperature. The BS layer had low reflectivity and shallow etching depth. The additive in the etch solution performs the function of pH-modulation. After 16-min etching, the etching depth in the samples was approximately 200 nm, and the spectrum-weighted-reflectivity in the range from 300 nm to 1200 nm was below 5%. BS solar cells were fabricated in the production line. The decreased etching depth can improve the electrical performance of solar cells because of the decrease in surface recombination. An efficiency of 15.63% for the modified etching BS solar cells was achieved on a large area, p- type single crystalline silicon substrate with a 624.32-mV open circuit voltage and a 77.88% fill factor.展开更多
A new type of 785 nm semiconductor laser device has been proposed.The thin cladding and mode expansion layer structure incorporated into the epitaxy on the p-side significantly impacts the regulation of grating etchin...A new type of 785 nm semiconductor laser device has been proposed.The thin cladding and mode expansion layer structure incorporated into the epitaxy on the p-side significantly impacts the regulation of grating etching depth.Thinning of the p-side waveguide layer makes the light field bias to the n-side cladding layer.By coordinating the confinement effect of the cladding layer,the light confinement factor on the p-side is regulated.On the other hand,the introduction of a mode expansion layer facilitates the expansion of the mode profile on the p side cladding layer.Both these factors contribute positively to reducing the grating etching depth.Compared to the reported epitaxial structures of symmetric waveguides,the new structure significantly reduces the etching depth of the grating while ensuring adequate reflection intensity and maintaining resonance.Moreover,to improve the output performance of the device,the new epitaxial structure has been optimized.Based on the traditional epitaxial structure,an energy release layer and an electron blocking layer are added to improve the electronic recombination efficiency.This improved structure has an output performance comparable to that of a symmetric waveguide,despite being able to have a smaller gain area.展开更多
文摘Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface generation method are poor, because of the high surface recombination caused by deep etching in the conventional surface generation method for BS. In this work, a modified wet chemical etching solution with additives was developed. A homogeneous BS layer with random porous structure was obtained from the modified solution in only one step at room temperature. The BS layer had low reflectivity and shallow etching depth. The additive in the etch solution performs the function of pH-modulation. After 16-min etching, the etching depth in the samples was approximately 200 nm, and the spectrum-weighted-reflectivity in the range from 300 nm to 1200 nm was below 5%. BS solar cells were fabricated in the production line. The decreased etching depth can improve the electrical performance of solar cells because of the decrease in surface recombination. An efficiency of 15.63% for the modified etching BS solar cells was achieved on a large area, p- type single crystalline silicon substrate with a 624.32-mV open circuit voltage and a 77.88% fill factor.
文摘A new type of 785 nm semiconductor laser device has been proposed.The thin cladding and mode expansion layer structure incorporated into the epitaxy on the p-side significantly impacts the regulation of grating etching depth.Thinning of the p-side waveguide layer makes the light field bias to the n-side cladding layer.By coordinating the confinement effect of the cladding layer,the light confinement factor on the p-side is regulated.On the other hand,the introduction of a mode expansion layer facilitates the expansion of the mode profile on the p side cladding layer.Both these factors contribute positively to reducing the grating etching depth.Compared to the reported epitaxial structures of symmetric waveguides,the new structure significantly reduces the etching depth of the grating while ensuring adequate reflection intensity and maintaining resonance.Moreover,to improve the output performance of the device,the new epitaxial structure has been optimized.Based on the traditional epitaxial structure,an energy release layer and an electron blocking layer are added to improve the electronic recombination efficiency.This improved structure has an output performance comparable to that of a symmetric waveguide,despite being able to have a smaller gain area.