A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to...A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to improve the performance of the DE algorithm. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters' self-adaptation. The .performance of the proposed method is studied with the use of nine benchmark problems and compared with original DE algorithm ~nd-other well-known self-adaptive DE algorithms. The experiments conducted show that the ISDE clearly outperforms the other DE algorithms in all benchmark functions. Furthermore, ISDE is applied to develop the kinetic model for homogeneous mercury. (Hg) oxidation in flue gas, and satisfactory results are obtained.展开更多
Aims Data assimilation is a useful tool to extract information from large datasets of the net ecosystem exchange(NEE)of CO_(2) obtained by eddy-flux measurements.However,the number of parameters in ecosystem models th...Aims Data assimilation is a useful tool to extract information from large datasets of the net ecosystem exchange(NEE)of CO_(2) obtained by eddy-flux measurements.However,the number of parameters in ecosystem models that can be constrained by eddy-flux data is limited by conventional inverse analysis that estimates parameter values based on one-time inversion.This study aimed to improve data assimilation to increase the number of constrained parameters.Methods In this study,we developed conditional Bayesian inversion to maximize the number of parameters to be constrained by NEE data in several steps.In each step,we conducted a Bayesian inversion to constrain parameters.The maximum likelihood estimates of the constrained parameters were then used as prior to fix parameter values in the next step of inversion.The conditional inversion was repeated until there were no more parameters that could be further constrained.We applied the conditional inversion to hourly NEE data from Harvard Forest with a physiologically based ecosystem model.Important Findings Results showed that the conventional inversion method constrained 6 of 16 parameters in the model while the conditional inversion method constrained 13 parameters after six steps.The cost function that indicates mismatch between the modeled and observed data decreased with each step of conditional Bayesian inversion.The Bayesian information criterion also decreased,suggesting reduced information loss with each step of conditional Bayesian inversion.A wavelet analysis reflected that model performance under conditional Bayesian inversion was better than that under conventional inversion at multiple time scales,except for seasonal and half-yearly scales.In addition,our analysis also demonstrated that parameter convergence in a subsequent step of the conditional inversion depended on correlations with the parameters constrained in a previous step.Overall,the conditional Bayesian inversion substantially increased the number of parameters to be constrained by NEE data and can be a powerful tool to be used in data assimilation in ecology.展开更多
Parameter estimation is always a difficult issue for crop model users, and inaccurate parameter values will result in deceptive model predictions. Parameter values may vary with different inversion methods due to equi...Parameter estimation is always a difficult issue for crop model users, and inaccurate parameter values will result in deceptive model predictions. Parameter values may vary with different inversion methods due to equifinality and differences in the estimating processes. Therefore, it is of great importance to evaluate the factors which may influence parameter estimates and to make a comparison of the current widely-used methods. In this study, three popular frequentist methods(SCE-UA, GA and PEST) and two Bayesian-based methods(GLUE and MCMC-AM) were applied to estimate nine cultivar parameters using the ORYZA(v3) Model. The results showed that there were substantial differences between the parameter estimates derived by the different methods, and they had strong effects on model predictions. The parameter estimates given by the frequentist methods were obviously sensitive to initial values, and the extent of the sensitivity varied with algorithms and objective functions. Among the frequentist methods, the SCE-UA was recommended due to the balance between stable convergence and high efficiency. All the parameter estimates remarkably improved the goodness of model-fit, and the parameter estimates derived from the Bayesian-based methods had relatively worse performance compared to the frequentist methods. In particular, the parameter estimates with the highest probability density of posterior distributions derived from the MCMC-AM method(MCMC_P_(max)) led to results equivalent to those derived from the frequentist methods, and even better in some situations. Additionally, model accuracy was greatly influenced by the values of phenology parameters in validation.展开更多
Designing optimal time and spatial difference step size is the key technology for quantum-random filtering(QSF)to realize time-varying frequency periodic signal filtering.In this paper,it was proposed to use the short...Designing optimal time and spatial difference step size is the key technology for quantum-random filtering(QSF)to realize time-varying frequency periodic signal filtering.In this paper,it was proposed to use the short-time Fourier transform(STFT)to dynamically estimate the signal to noise ratio(SNR)and relative frequency of the input time-varying frequency periodic signal.Then the model of time and space difference step size and signal to noise ratio(SNR)and relative frequency of quantum random filter is established by least square method.Finally,the parameters of the quantum filter can be determined step by step by analyzing the characteristics of the actual signal.The simulation results of single-frequency signal and frequency time-varying signal show that the proposed method can quickly and accurately design the optimal filter parameters based on the characteristics of the input signal,and achieve significant filtering effects.展开更多
Mathematical models for phenomena in the physical sciences are typically parameter-dependent, and the estimation of parameters that optimally model the trends suggested by experimental observation depends on how model...Mathematical models for phenomena in the physical sciences are typically parameter-dependent, and the estimation of parameters that optimally model the trends suggested by experimental observation depends on how model-observation discrepancies are quantified. Commonly used parameter estimation techniques based on least-squares minimization of the model-observation discrepancies assume that the discrepancies are quantified with the L<sup>2</sup>-norm applied to a discrepancy function. While techniques based on such an assumption work well for many applications, other applications are better suited for least-squared minimization approaches that are based on other norm or inner-product induced topologies. Motivated by an application in the material sciences, the new alternative least-squares approach is defined and an insightful analytical comparison with a baseline least-squares approach is provided.展开更多
In this paper, a new estimator of the shape parameter in the family of Gamma distribution is constructed by using the moment idea, and it is proved that this estimator is strongly consistent and asymptotically normal.
Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in c...Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
The constitutive model is essential for predicting the deformation and stability of rocksoil mass.The estimation of constitutive model parameters is a necessary and important task for the reliable characterization of ...The constitutive model is essential for predicting the deformation and stability of rocksoil mass.The estimation of constitutive model parameters is a necessary and important task for the reliable characterization of mechanical behaviors.However,constitutive model parameters cannot be evaluated accurately with a limited amount of test data,resulting in uncertainty in the prediction of stress-strain curves.This paper proposes a Bayesian analysis framework to address this issue.It combines the Bayesian updating with the structural reliability and adaptive conditional sampling methods to assess the equation parameter of constitutive models.Based on the triaxial and ring shear tests on shear zone soils from the Huangtupo landslide,a statistical damage constitutive model and a critical state hypoplastic constitutive model were used to demonstrate the effectiveness of the proposed framework.Moreover,the parameter uncertainty effects of the damage constitutive model on landslide stability were investigated.Results show that reasonable assessments of the constitutive model parameter can be well realized.The variability of stress-strain curves is strongly related to the model prediction performance.The estimation uncertainty of constitutive model parameters should not be ignored for the landslide stability calculation.Our study provides a reference for uncertainty analysis and parameter assessment of the constitutive model.展开更多
Aiming to address the challenge of directly measuring the real-time adhesion coefficient between wheels and rails,this paper proposes an online estimation algorithm for the adhesion coefficient based on parameter esti...Aiming to address the challenge of directly measuring the real-time adhesion coefficient between wheels and rails,this paper proposes an online estimation algorithm for the adhesion coefficient based on parameter estimation.Firstly,a force analysis of the single-wheel pair model of the train is conducted to derive the calculation relationship for the wheel-rail adhesion coefficient in train dynamics.Then,an estimator based on parameter estimation is designed,and its stability is verified.This estimator is combined with the wheelset force analysis to estimate the wheel-rail adhesion coefficient.Finally,the approach is validated through joint simulations on the MATLAB/Simulink and AMESim platforms,as well as a hardware-in-the-loop semi-physical simulation experimental platform that accounts for system delay and noise conditions.The results indicate that the proposed algorithm effectively tracks changes in the adhesion coefficient during train braking,including the decrease in adhesion when the train brakes and slides,and the overall increase as the train speed decreases.The effectiveness of the algorithm was verified by setting different test conditions.The results show that the estimation algorithm can accurately estimate the adhesion coefficient,and through error analysis,it is found that the error between the estimated value of the adhesion coefficient and the theoretical value of the adhesion coefficient is within 5%.The adhesion coefficient obtained through the online estimation method based on the parameter estimation proposed in this paper demonstrates strong followability in both simulation and practical applications.展开更多
The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critica...The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.展开更多
The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessar...The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessary information for model predictive control.Despite the many advantages of MHE,long computation time has limited its applications for system-level models of liquid propellant rocket engines.To address this issue,we propose an asynchronous MHE method called advanced-multi-step MHE with Noise Covariance Estimation(amsMHE-NCE).This method computes the MHE problem asynchronously to obtain the states and parameters and can be applied to multi-threaded computations.In the background,the state and covariance estimation optimization problems are computed using multiple sampling times.In real-time,sensitivity is used to quickly approximate state and parameter estimates.A covariance estimation method is developed using sensitivity to avoid redundant MHE problem calculations in case of sensor degradation during engine reuse.The amsMHE-NCE is validated through three cases based on the space shuttle main engine system-level model,and we demonstrate that it can provide more accurate real-time estimates of states and parameters compared to other commonly used estimation methods.展开更多
The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars ref...The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars reflects sea surface dynamics, to which ocean waves make important contributions. Low-incidence-angle real aperture radar(RAR)demonstrates great potential for independently observing vectorial Doppler information on the ocean surface. To systematically characterize and accurately estimate the wave-induced Doppler frequency shift(WVF) from lowincidence-angle RAR, this study conducts comprehensive influencing factor analysis and establishes sea-stateparameterized WVF models. First, a simulated WVF dataset is generated under a rotating low-incidence-angle RAR.The feature parameters of WVF are then determined by analysing contributing factors including wind waves, swells,and sea state parameters. Furthermore, two WVF models(WVF_Ku P9 with 9 inputs and WVF_Ku P4 with 4 inputs) are constructed by the Transformer encoder for different application scenarios. Both models achieve high accuracy for WVF estimation with root mean square errors(RMSE) of 1.874 Hz and 2.716 Hz, respectively. The reliability and superiority of the proposed models are validated through comparisons with the Ka DOP, which is a typical geophysical model function(GMF). The findings in this paper advance the understanding of WVF characteristics and generation mechanisms. The proposed estimation models can provide reliable estimates, offering critical references for lowincidence-angle RAR applications such as ocean surface current retrieval.展开更多
Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution g...Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution grids.This study measures the effectiveness of the Puma optimizer(PO)algorithm in parameter estimation of PSC(perovskite solar cells)dynamic models with hysteresis consideration considering the electric field effects on operation.The models used in this study will incorporate hysteresis effects to capture the time-dependent behavior of PSCs accurately.The PO optimizes the proposed modified triple diode model(TDM)with a variable voltage capacitor and resistances(VVCARs)considering the hysteresis behavior.The suggested PO algorithm contrasts with other wellknown optimizers from the literature to demonstrate its superiority.The results emphasize that the PO realizes a lower RMSE(Root mean square errors),which proves its capability and efficacy in parameter extraction for the models.The statistical results emphasize the efficiency and supremacy of the proposed PO compared to the other well-known competing optimizers.The convergence rates show good,fast,and stable convergence rates with lower RMSE via PO compared to the other five competitive optimizers.Moreover,the lowermean realized via the PO optimizer is illustrated by the box plot for all optimizers.展开更多
In recent years,the development of domestic commercial synthetic aperture radar(SAR)is in full swing,with multiple commercial SAR satellites in orbit,showing great potential in disaster monitoring,natural resource man...In recent years,the development of domestic commercial synthetic aperture radar(SAR)is in full swing,with multiple commercial SAR satellites in orbit,showing great potential in disaster monitoring,natural resource management and deformation observation.Fucheng-1 is the first C-band commercial SAR satellite for interferometric SAR(InSAR)service developed by Spacety China,which marks the gradual maturity of China’s remote sensing data service.Based on the raw data collected by Fucheng-1,this paper firstly introduces the range-Doppler algorithm(RDA),then illustrates the parameter estimation method on the basis of fractional Fourier transform(FrFT)to realize the accurate estimation of azimuth chirp rate,which effectively improves imaging quality.Finally,the L1-norm regularization based sparse imaging method is utilized to reconstruct images from down-sampled data.Experimental results show that the sparse imaging algorithm can accurately reconstruct the down-sampled Fucheng-1 data and suppress sidelobes and clutter.展开更多
In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes fu...In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes full advantage of the original electromagnetic scattering data and its conjugated form by combining them with the novel covariance matrices.To analyse the superiority of the modified algorithm,the mathematical expression of equivalent signal to noise ratio(SNR)is derived,which can validate our proposed algorithm theoretically.In addition,compared with the conventional matrix pencil(MP)algorithm and the conventional root-multiple signal classification(Root-MUSIC)algorithm,the proposed algorithm has better parameter estimation performance and more accurate multiband fusion results at the same SNR situations.Validity and effectiveness of the proposed algorithm is demonstrated by simulation data and real radar data.展开更多
Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characterist...Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characteristic,rendering traditional distribution models and parameter estimation methods less effective.To address this,this paper proposes a dual compound-Gaussian model with inverse Gaussian texture(CG-IG)distribution model and combines it with an improved Adam algorithm to introduce a method for parameter correction.This method effectively fits sea clutter with heavy-tailed characteristics.Experiments with real measured sea clutter data show that the dual CGIG distribution model,after parameter correction,accurately describes the heavy-tailed phenomenon in sea clutter amplitude distribution,and the overall mean square error of the distribution is reduced.展开更多
As far as the nonlinear regression method is concerned, the condition when both independent and dependent variable take the Fuzzy value, while the parameter, θ∈ΘR m the real value, have been discussed in . But for...As far as the nonlinear regression method is concerned, the condition when both independent and dependent variable take the Fuzzy value, while the parameter, θ∈ΘR m the real value, have been discussed in . But for most of actual conditions, the independent variable generally takes the real value, while both parameter and dependent variable take the Fuzzy value. This paper propounded a method for the latter and its relevant Fuzzy regreession model. In addition the Fuzzy observation, matrix distribution and the rational estimation of modeling parameter have also been discussed. Furthermore, the Max min estimation of modeling parameter and its corresponding calculating sequence have also been offered to and the calculating example shows the method is feasible.展开更多
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula...In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.展开更多
Aerodynamic modeling and parameter estimation from quick accesses recorder (QAR) data is an important technical way to analyze the effects of highland weather conditions upon aerodynamic characteristics of airplane....Aerodynamic modeling and parameter estimation from quick accesses recorder (QAR) data is an important technical way to analyze the effects of highland weather conditions upon aerodynamic characteristics of airplane. It is also an essential content of flight accident analysis. The related techniques are developed in the present paper, including the geometric method for angle of attack and sideslip angle estimation, the extended Kalman filter associated with modified Bryson-Frazier smoother (EKF-MBF) method for aerodynamic coefficient identification, the radial basis function (RBF) neural network method for aerodynamic mod- eling, and the Delta method for stability/control derivative estimation. As an application example, the QAR data of a civil air- plane approaching a high-altitude airport are processed and the aerodynamic coefficient and derivative estimates are obtained. The estimation results are reasonable, which shows that the developed techniques are feasible. The causes for the distribution of aerodynamic derivative estimates are analyzed. Accordingly, several measures to improve estimation accuracy are put forward.展开更多
基金Supported by the National Natural Science Foundation of China (20506003, 20776042) and the National High-Tech Research and Development Program of China (2007AA04Z 164).
文摘A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to improve the performance of the DE algorithm. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters' self-adaptation. The .performance of the proposed method is studied with the use of nine benchmark problems and compared with original DE algorithm ~nd-other well-known self-adaptive DE algorithms. The experiments conducted show that the ISDE clearly outperforms the other DE algorithms in all benchmark functions. Furthermore, ISDE is applied to develop the kinetic model for homogeneous mercury. (Hg) oxidation in flue gas, and satisfactory results are obtained.
基金National Science Foundation(DEB 0444518,DEB 0743778)Office of Science(BER),Department of Energy(DE-FG02-006ER64319)Midwestern Regional Center of the National Institute for Climatic Change Research at Michigan Technological University(Award Number DE-FC02-06ER64158).
文摘Aims Data assimilation is a useful tool to extract information from large datasets of the net ecosystem exchange(NEE)of CO_(2) obtained by eddy-flux measurements.However,the number of parameters in ecosystem models that can be constrained by eddy-flux data is limited by conventional inverse analysis that estimates parameter values based on one-time inversion.This study aimed to improve data assimilation to increase the number of constrained parameters.Methods In this study,we developed conditional Bayesian inversion to maximize the number of parameters to be constrained by NEE data in several steps.In each step,we conducted a Bayesian inversion to constrain parameters.The maximum likelihood estimates of the constrained parameters were then used as prior to fix parameter values in the next step of inversion.The conditional inversion was repeated until there were no more parameters that could be further constrained.We applied the conditional inversion to hourly NEE data from Harvard Forest with a physiologically based ecosystem model.Important Findings Results showed that the conventional inversion method constrained 6 of 16 parameters in the model while the conditional inversion method constrained 13 parameters after six steps.The cost function that indicates mismatch between the modeled and observed data decreased with each step of conditional Bayesian inversion.The Bayesian information criterion also decreased,suggesting reduced information loss with each step of conditional Bayesian inversion.A wavelet analysis reflected that model performance under conditional Bayesian inversion was better than that under conventional inversion at multiple time scales,except for seasonal and half-yearly scales.In addition,our analysis also demonstrated that parameter convergence in a subsequent step of the conditional inversion depended on correlations with the parameters constrained in a previous step.Overall,the conditional Bayesian inversion substantially increased the number of parameters to be constrained by NEE data and can be a powerful tool to be used in data assimilation in ecology.
基金supported by the National Natural Science Foundation of China(NSFC 51909004)。
文摘Parameter estimation is always a difficult issue for crop model users, and inaccurate parameter values will result in deceptive model predictions. Parameter values may vary with different inversion methods due to equifinality and differences in the estimating processes. Therefore, it is of great importance to evaluate the factors which may influence parameter estimates and to make a comparison of the current widely-used methods. In this study, three popular frequentist methods(SCE-UA, GA and PEST) and two Bayesian-based methods(GLUE and MCMC-AM) were applied to estimate nine cultivar parameters using the ORYZA(v3) Model. The results showed that there were substantial differences between the parameter estimates derived by the different methods, and they had strong effects on model predictions. The parameter estimates given by the frequentist methods were obviously sensitive to initial values, and the extent of the sensitivity varied with algorithms and objective functions. Among the frequentist methods, the SCE-UA was recommended due to the balance between stable convergence and high efficiency. All the parameter estimates remarkably improved the goodness of model-fit, and the parameter estimates derived from the Bayesian-based methods had relatively worse performance compared to the frequentist methods. In particular, the parameter estimates with the highest probability density of posterior distributions derived from the MCMC-AM method(MCMC_P_(max)) led to results equivalent to those derived from the frequentist methods, and even better in some situations. Additionally, model accuracy was greatly influenced by the values of phenology parameters in validation.
基金Projects(2017H0022,2016H6015)supported by Fujian Science and Technology Key Project,China
文摘Designing optimal time and spatial difference step size is the key technology for quantum-random filtering(QSF)to realize time-varying frequency periodic signal filtering.In this paper,it was proposed to use the short-time Fourier transform(STFT)to dynamically estimate the signal to noise ratio(SNR)and relative frequency of the input time-varying frequency periodic signal.Then the model of time and space difference step size and signal to noise ratio(SNR)and relative frequency of quantum random filter is established by least square method.Finally,the parameters of the quantum filter can be determined step by step by analyzing the characteristics of the actual signal.The simulation results of single-frequency signal and frequency time-varying signal show that the proposed method can quickly and accurately design the optimal filter parameters based on the characteristics of the input signal,and achieve significant filtering effects.
文摘Mathematical models for phenomena in the physical sciences are typically parameter-dependent, and the estimation of parameters that optimally model the trends suggested by experimental observation depends on how model-observation discrepancies are quantified. Commonly used parameter estimation techniques based on least-squares minimization of the model-observation discrepancies assume that the discrepancies are quantified with the L<sup>2</sup>-norm applied to a discrepancy function. While techniques based on such an assumption work well for many applications, other applications are better suited for least-squared minimization approaches that are based on other norm or inner-product induced topologies. Motivated by an application in the material sciences, the new alternative least-squares approach is defined and an insightful analytical comparison with a baseline least-squares approach is provided.
文摘In this paper, a new estimator of the shape parameter in the family of Gamma distribution is constructed by using the moment idea, and it is proved that this estimator is strongly consistent and asymptotically normal.
基金supported by the National Key R&D Program of China [grant number 2023YFF0805202]the National Natural Science Foun-dation of China [grant number 42175045]the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDB42000000]。
文摘Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
基金supported by the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(No.GLAB 2024ZR03)the National Natural Science Foundation of China(No.42407248)+2 种基金the Guizhou Provincial Basic Research Program(Natural Science)(No.QKHJC-[2023]-YB066)the Key Laboratory of Smart Earth(No.KF2023YB04-02)the Fundamental Research Funds for the Central Universities。
文摘The constitutive model is essential for predicting the deformation and stability of rocksoil mass.The estimation of constitutive model parameters is a necessary and important task for the reliable characterization of mechanical behaviors.However,constitutive model parameters cannot be evaluated accurately with a limited amount of test data,resulting in uncertainty in the prediction of stress-strain curves.This paper proposes a Bayesian analysis framework to address this issue.It combines the Bayesian updating with the structural reliability and adaptive conditional sampling methods to assess the equation parameter of constitutive models.Based on the triaxial and ring shear tests on shear zone soils from the Huangtupo landslide,a statistical damage constitutive model and a critical state hypoplastic constitutive model were used to demonstrate the effectiveness of the proposed framework.Moreover,the parameter uncertainty effects of the damage constitutive model on landslide stability were investigated.Results show that reasonable assessments of the constitutive model parameter can be well realized.The variability of stress-strain curves is strongly related to the model prediction performance.The estimation uncertainty of constitutive model parameters should not be ignored for the landslide stability calculation.Our study provides a reference for uncertainty analysis and parameter assessment of the constitutive model.
基金supported by the National Natural Science Foundation of China(grant/award number 52072266).
文摘Aiming to address the challenge of directly measuring the real-time adhesion coefficient between wheels and rails,this paper proposes an online estimation algorithm for the adhesion coefficient based on parameter estimation.Firstly,a force analysis of the single-wheel pair model of the train is conducted to derive the calculation relationship for the wheel-rail adhesion coefficient in train dynamics.Then,an estimator based on parameter estimation is designed,and its stability is verified.This estimator is combined with the wheelset force analysis to estimate the wheel-rail adhesion coefficient.Finally,the approach is validated through joint simulations on the MATLAB/Simulink and AMESim platforms,as well as a hardware-in-the-loop semi-physical simulation experimental platform that accounts for system delay and noise conditions.The results indicate that the proposed algorithm effectively tracks changes in the adhesion coefficient during train braking,including the decrease in adhesion when the train brakes and slides,and the overall increase as the train speed decreases.The effectiveness of the algorithm was verified by setting different test conditions.The results show that the estimation algorithm can accurately estimate the adhesion coefficient,and through error analysis,it is found that the error between the estimated value of the adhesion coefficient and the theoretical value of the adhesion coefficient is within 5%.The adhesion coefficient obtained through the online estimation method based on the parameter estimation proposed in this paper demonstrates strong followability in both simulation and practical applications.
基金National Key R&D Program of China(No.2017YFB1304000)Fundamental Research Funds for the Central Universities,China(No.2232023G-05-1)。
文摘The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.
基金supported by the National Natural Science Foundation of China(Nos.62120106003 and 62173301)。
文摘The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessary information for model predictive control.Despite the many advantages of MHE,long computation time has limited its applications for system-level models of liquid propellant rocket engines.To address this issue,we propose an asynchronous MHE method called advanced-multi-step MHE with Noise Covariance Estimation(amsMHE-NCE).This method computes the MHE problem asynchronously to obtain the states and parameters and can be applied to multi-threaded computations.In the background,the state and covariance estimation optimization problems are computed using multiple sampling times.In real-time,sensitivity is used to quickly approximate state and parameter estimates.A covariance estimation method is developed using sensitivity to avoid redundant MHE problem calculations in case of sensor degradation during engine reuse.The amsMHE-NCE is validated through three cases based on the space shuttle main engine system-level model,and we demonstrate that it can provide more accurate real-time estimates of states and parameters compared to other commonly used estimation methods.
基金The National Natural Science Foundation of China under contract No. 42274159the Project supported by Key Laboratory of Space Ocean Remote Sensing and Application,MNR under contract No.2023CFO016。
文摘The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars reflects sea surface dynamics, to which ocean waves make important contributions. Low-incidence-angle real aperture radar(RAR)demonstrates great potential for independently observing vectorial Doppler information on the ocean surface. To systematically characterize and accurately estimate the wave-induced Doppler frequency shift(WVF) from lowincidence-angle RAR, this study conducts comprehensive influencing factor analysis and establishes sea-stateparameterized WVF models. First, a simulated WVF dataset is generated under a rotating low-incidence-angle RAR.The feature parameters of WVF are then determined by analysing contributing factors including wind waves, swells,and sea state parameters. Furthermore, two WVF models(WVF_Ku P9 with 9 inputs and WVF_Ku P4 with 4 inputs) are constructed by the Transformer encoder for different application scenarios. Both models achieve high accuracy for WVF estimation with root mean square errors(RMSE) of 1.874 Hz and 2.716 Hz, respectively. The reliability and superiority of the proposed models are validated through comparisons with the Ka DOP, which is a typical geophysical model function(GMF). The findings in this paper advance the understanding of WVF characteristics and generation mechanisms. The proposed estimation models can provide reliable estimates, offering critical references for lowincidence-angle RAR applications such as ocean surface current retrieval.
基金supported via funding from Prince Sattam Bin Abdulaziz University project number(PSAU/2025/R/1446).
文摘Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution grids.This study measures the effectiveness of the Puma optimizer(PO)algorithm in parameter estimation of PSC(perovskite solar cells)dynamic models with hysteresis consideration considering the electric field effects on operation.The models used in this study will incorporate hysteresis effects to capture the time-dependent behavior of PSCs accurately.The PO optimizes the proposed modified triple diode model(TDM)with a variable voltage capacitor and resistances(VVCARs)considering the hysteresis behavior.The suggested PO algorithm contrasts with other wellknown optimizers from the literature to demonstrate its superiority.The results emphasize that the PO realizes a lower RMSE(Root mean square errors),which proves its capability and efficacy in parameter extraction for the models.The statistical results emphasize the efficiency and supremacy of the proposed PO compared to the other well-known competing optimizers.The convergence rates show good,fast,and stable convergence rates with lower RMSE via PO compared to the other five competitive optimizers.Moreover,the lowermean realized via the PO optimizer is illustrated by the box plot for all optimizers.
基金supported in part by the National Natural Science Foundation of China(No.62271248)the Natural Science Foundation of Jiangsu Province(No.BK20230090)the Key Laboratory of Land Satellite Remote Sensing Application through the Ministry of Natural Resources of China(No.KLSMNR-K202303).
文摘In recent years,the development of domestic commercial synthetic aperture radar(SAR)is in full swing,with multiple commercial SAR satellites in orbit,showing great potential in disaster monitoring,natural resource management and deformation observation.Fucheng-1 is the first C-band commercial SAR satellite for interferometric SAR(InSAR)service developed by Spacety China,which marks the gradual maturity of China’s remote sensing data service.Based on the raw data collected by Fucheng-1,this paper firstly introduces the range-Doppler algorithm(RDA),then illustrates the parameter estimation method on the basis of fractional Fourier transform(FrFT)to realize the accurate estimation of azimuth chirp rate,which effectively improves imaging quality.Finally,the L1-norm regularization based sparse imaging method is utilized to reconstruct images from down-sampled data.Experimental results show that the sparse imaging algorithm can accurately reconstruct the down-sampled Fucheng-1 data and suppress sidelobes and clutter.
文摘In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes full advantage of the original electromagnetic scattering data and its conjugated form by combining them with the novel covariance matrices.To analyse the superiority of the modified algorithm,the mathematical expression of equivalent signal to noise ratio(SNR)is derived,which can validate our proposed algorithm theoretically.In addition,compared with the conventional matrix pencil(MP)algorithm and the conventional root-multiple signal classification(Root-MUSIC)algorithm,the proposed algorithm has better parameter estimation performance and more accurate multiband fusion results at the same SNR situations.Validity and effectiveness of the proposed algorithm is demonstrated by simulation data and real radar data.
文摘Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characteristic,rendering traditional distribution models and parameter estimation methods less effective.To address this,this paper proposes a dual compound-Gaussian model with inverse Gaussian texture(CG-IG)distribution model and combines it with an improved Adam algorithm to introduce a method for parameter correction.This method effectively fits sea clutter with heavy-tailed characteristics.Experiments with real measured sea clutter data show that the dual CGIG distribution model,after parameter correction,accurately describes the heavy-tailed phenomenon in sea clutter amplitude distribution,and the overall mean square error of the distribution is reduced.
文摘As far as the nonlinear regression method is concerned, the condition when both independent and dependent variable take the Fuzzy value, while the parameter, θ∈ΘR m the real value, have been discussed in . But for most of actual conditions, the independent variable generally takes the real value, while both parameter and dependent variable take the Fuzzy value. This paper propounded a method for the latter and its relevant Fuzzy regreession model. In addition the Fuzzy observation, matrix distribution and the rational estimation of modeling parameter have also been discussed. Furthermore, the Max min estimation of modeling parameter and its corresponding calculating sequence have also been offered to and the calculating example shows the method is feasible.
基金Supported by the Natural Science Foundation of Anhui Education Committee
文摘In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.
基金National Natural Science Foundation of China(60832012)
文摘Aerodynamic modeling and parameter estimation from quick accesses recorder (QAR) data is an important technical way to analyze the effects of highland weather conditions upon aerodynamic characteristics of airplane. It is also an essential content of flight accident analysis. The related techniques are developed in the present paper, including the geometric method for angle of attack and sideslip angle estimation, the extended Kalman filter associated with modified Bryson-Frazier smoother (EKF-MBF) method for aerodynamic coefficient identification, the radial basis function (RBF) neural network method for aerodynamic mod- eling, and the Delta method for stability/control derivative estimation. As an application example, the QAR data of a civil air- plane approaching a high-altitude airport are processed and the aerodynamic coefficient and derivative estimates are obtained. The estimation results are reasonable, which shows that the developed techniques are feasible. The causes for the distribution of aerodynamic derivative estimates are analyzed. Accordingly, several measures to improve estimation accuracy are put forward.