期刊文献+
共找到9,244篇文章
< 1 2 250 >
每页显示 20 50 100
RankXLAN:An explainable ensemble-based machine learning framework for biomarker detection,therapeutic target identification,and classification using transcriptomic and epigenomic stomach cancer data
1
作者 Kasmika Borah Himanish Shekhar Das +1 位作者 Mudassir Khan Saurav Mallik 《Medical Data Mining》 2026年第1期13-31,共19页
Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-through... Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-throughput sequencing technology have become prominent in biomedical research,and they reveal molecular aspects of cancer diagnosis and therapy.Despite the development of advanced sequencing technology,the presence of high-dimensionality in multi-omics data makes it challenging to interpret the data.Methods:In this study,we introduce RankXLAN,an explainable ensemble-based multi-omics framework that integrates feature selection(FS),ensemble learning,bioinformatics,and in-silico validation for robust biomarker detection,potential therapeutic drug-repurposing candidates’identification,and classification of SC.To enhance the interpretability of the model,we incorporated explainable artificial intelligence(SHapley Additive exPlanations analysis),as well as accuracy,precision,F1-score,recall,cross-validation,specificity,likelihood ratio(LR)+,LR−,and Youden index results.Results:The experimental results showed that the top four FS algorithms achieved improved results when applied to the ensemble learning classification model.The proposed ensemble model produced an area under the curve(AUC)score of 0.994 for gene expression,0.97 for methylation,and 0.96 for miRNA expression data.Through the integration of bioinformatics and ML approach of the transcriptomic and epigenomic multi-omics dataset,we identified potential marker genes,namely,UBE2D2,HPCAL4,IGHA1,DPT,and FN3K.In-silico molecular docking revealed a strong binding affinity between ANKRD13C and the FDA-approved drug Everolimus(binding affinity−10.1 kcal/mol),identifying ANKRD13C as a potential therapeutic drug-repurposing target for SC.Conclusion:The proposed framework RankXLAN outperforms other existing frameworks for serum biomarker identification,therapeutic target identification,and SC classification with multi-omics datasets. 展开更多
关键词 stomach cancer BIOINFORMATICS ensemble learning classifier BIOMARKER targets
在线阅读 下载PDF
PhishNet: A Real-Time, Scalable Ensemble Framework for Smishing Attack Detection Using Transformers and LLMs
2
作者 Abeer Alhuzali Qamar Al-Qahtani +2 位作者 Asmaa Niyazi Lama Alshehri Fatemah Alharbi 《Computers, Materials & Continua》 2026年第1期2194-2212,共19页
The surge in smishing attacks underscores the urgent need for robust,real-time detection systems powered by advanced deep learning models.This paper introduces PhishNet,a novel ensemble learning framework that integra... The surge in smishing attacks underscores the urgent need for robust,real-time detection systems powered by advanced deep learning models.This paper introduces PhishNet,a novel ensemble learning framework that integrates transformer-based models(RoBERTa)and large language models(LLMs)(GPT-OSS 120B,LLaMA3.370B,and Qwen332B)to enhance smishing detection performance significantly.To mitigate class imbalance,we apply synthetic data augmentation using T5 and leverage various text preprocessing techniques.Our system employs a duallayer voting mechanism:weighted majority voting among LLMs and a final ensemble vote to classify messages as ham,spam,or smishing.Experimental results show an average accuracy improvement from 96%to 98.5%compared to the best standalone transformer,and from 93%to 98.5%when compared to LLMs across datasets.Furthermore,we present a real-time,user-friendly application to operationalize our detection model for practical use.PhishNet demonstrates superior scalability,usability,and detection accuracy,filling critical gaps in current smishing detection methodologies. 展开更多
关键词 Smishing attack detection phishing attacks ensemble learning CYBERSECURITY deep learning transformer-based models large language models
在线阅读 下载PDF
Non-reciprocal Synchronization in Thermal Rydberg Ensembles
3
作者 Yunlong Xue Zhengyang Bai 《Chinese Physics Letters》 2026年第1期26-30,共5页
Optical non-reciprocity is a fundamental phenomenon in photonics.It is crucial for developing devices that rely on directional signal control,such as optical isolators and circulators.However,most research in this fie... Optical non-reciprocity is a fundamental phenomenon in photonics.It is crucial for developing devices that rely on directional signal control,such as optical isolators and circulators.However,most research in this field has focused on systems in equilibrium or steady states.In this work,we demonstrate a room-temperature Rydberg atomic platform where the unidirectional propagation of light acts as a switch to mediate time-crystalline-like collective oscillations through atomic synchronization. 展开更多
关键词 atomic synchronization non reciprocal synchronization optical non reciprocity optical isolators thermal Rydberg ensembles directional signal controlsuch time crystalline oscillations unidirectional propagation light
原文传递
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
4
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
Multi-model ensemble learning for battery state-of-health estimation:Recent advances and perspectives 被引量:2
5
作者 Chuanping Lin Jun Xu +4 位作者 Delong Jiang Jiayang Hou Ying Liang Zhongyue Zou Xuesong Mei 《Journal of Energy Chemistry》 2025年第1期739-759,共21页
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per... The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions. 展开更多
关键词 Lithium-ion battery State-of-health estimation DATA-DRIVEN Machine learning ensemble learning ensemble diversity
在线阅读 下载PDF
不平衡集成算法LASSO-EasyEnsemble在冠心病预后预测中的应用及可解释性研究
6
作者 昝家昕 杨弘 +4 位作者 田晶 闫晶晶 和紫铉 杜宇涛 张岩波 《中国卫生统计》 北大核心 2025年第2期197-203,共7页
目的 针对冠心病预后预测中遇到的高噪声、类间不平衡的特点,通过LASSO特征筛选后,构建EasyEnsemble不平衡集成模型并对模型性能进行评估。方法 基于2009—2018年美国健康与营养调查公共数据库的调查数据,随访时间截止到2019年。预后有... 目的 针对冠心病预后预测中遇到的高噪声、类间不平衡的特点,通过LASSO特征筛选后,构建EasyEnsemble不平衡集成模型并对模型性能进行评估。方法 基于2009—2018年美国健康与营养调查公共数据库的调查数据,随访时间截止到2019年。预后有无因病死亡作为结局,通过LASSO进行特征选择,使用筛选后特征构建EasyEnsemble不平衡集成预测模型和SMOTE+LightGBM、XGBoost、Random Forest预测模型,采用网格搜索法对每个模型进行参数优化,通过AUC、精确率、特异度、G-mean和性能曲线评价其分类性能;应用SHAP(shapley additive explanation)进行模型可解释性分析。结果 EasyEnsemble模型的综合性能最高,AUC为0.80(95%CI:0.79~0.82),精确率为0.86(95%CI:0.78~0.93),特异度为0.99(95%CI:0.98~0.99)和G-mean为0.79(95%CI:0.76~0.83),性能曲线也显示最高。同时,年龄、血清磷、糖尿病、白蛋白等是影响患者预后的重要因素。结论 基于LASSO-EasyEnsemble的不平衡集成模型能够实现对冠心病患者预后的精准预测,结合SHAP可以帮助临床医生更好地评估疾病严重程度和识别高危人群以便实现患者个性化管理。 展开更多
关键词 冠心病 不平衡数据 集成学习 预后预测 可解释性
暂未订购
Ensemble Deep Learning Approaches in Health Care:A Review 被引量:1
7
作者 Aziz Alotaibi 《Computers, Materials & Continua》 2025年第3期3741-3771,共31页
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensem... Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/decisions.With the growth in popularity of deep learning and ensemble learning algorithms,they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big data.Ensemble deep learning has exhibited significant performance in enhancing learning generalization through the use of multiple deep learning algorithms.Although ensemble deep learning has large quantities of training parameters,which results in time and space overheads,it performs much better than traditional ensemble learning.Ensemble deep learning has been successfully used in several areas,such as bioinformatics,finance,and health care.In this paper,we review and investigate recent ensemble deep learning algorithms and techniques in health care domains,medical imaging,health care data analytics,genomics,diagnosis,disease prevention,and drug discovery.We cover several widely used deep learning algorithms along with their architectures,including deep neural networks(DNNs),convolutional neural networks(CNNs),recurrent neural networks(RNNs),and generative adversarial networks(GANs).Common healthcare tasks,such as medical imaging,electronic health records,and genomics,are also demonstrated.Furthermore,in this review,the challenges inherent in reducing the burden on the healthcare system are discussed and explored.Finally,future directions and opportunities for enhancing healthcare model performance are discussed. 展开更多
关键词 Deep learning ensemble learning deep ensemble learning deep learning approaches for health care health care
在线阅读 下载PDF
Steel Surface Defect Recognition in Smart Manufacturing Using Deep Ensemble Transfer Learning-Based Techniques
8
作者 Tajmal Hussain Jongwon Seok 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期231-250,共20页
Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,re... Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,reduce costs,and ensure product quality.In light of the recent advancement of Industry 4.0,identifying defects has become important for ensuring the quality of products during the manufacturing process.In this research,we present an ensemble methodology for accurately classifying hot rolled steel surface defects by combining the strengths of four pre-trained convolutional neural network(CNN)architectures:VGG16,VGG19,Xception,and Mobile-Net V2,compensating for their individual weaknesses.We evaluated our methodology on the Xsteel surface defect dataset(XSDD),which comprises seven different classes.The ensemble methodology integrated the predictions of individual models through two methods:model averaging and weighted averaging.Our evaluation showed that the model averaging ensemble achieved an accuracy of 98.89%,a recall of 98.92%,a precision of 99.05%,and an F1-score of 98.97%,while the weighted averaging ensemble reached an accuracy of 99.72%,a recall of 99.74%,a precision of 99.67%,and an F1-score of 99.70%.The proposed weighted averaging ensemble model outperformed the model averaging method and the individual models in detecting defects in terms of accuracy,recall,precision,and F1-score.Comparative analysis with recent studies also showed the superior performance of our methodology. 展开更多
关键词 Smart manufacturing CNN steel defects ensemble models
在线阅读 下载PDF
TELL-Me:A time-series-decomposition-based ensembled lightweight learning model for diverse battery prognosis and diagnosis 被引量:1
9
作者 Kun-Yu Liu Ting-Ting Wang +2 位作者 Bo-Bo Zou Hong-Jie Peng Xinyan Liu 《Journal of Energy Chemistry》 2025年第7期1-8,共8页
As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigat... As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigation of degradation mechanisms.However,dynamic operating conditions,cell-to-cell inconsistencies,and limited availability of labeled data have posed significant challenges to accurate and robust prognosis and diagnosis.Herein,we introduce a time-series-decomposition-based ensembled lightweight learning model(TELL-Me),which employs a synergistic dual-module framework to facilitate accurate and reliable forecasting.The feature module formulates features with physical implications and sheds light on battery aging mechanisms,while the gradient module monitors capacity degradation rates and captures aging trend.TELL-Me achieves high accuracy in end-of-life prediction using minimal historical data from a single battery without requiring offline training dataset,and demonstrates impressive generality and robustness across various operating conditions and battery types.Additionally,by correlating feature contributions with degradation mechanisms across different datasets,TELL-Me is endowed with the diagnostic ability that not only enhances prediction reliability but also provides critical insights into the design and optimization of next-generation batteries. 展开更多
关键词 Battery prognosis Interpretable machine learning Degradation diagnosis ensemble learning Online prediction Lightweight model
在线阅读 下载PDF
Weighted Voting Ensemble Model Integrated with IoT for Detecting Security Threats in Satellite Systems and Aerial Vehicles
10
作者 Raed Alharthi 《Journal of Computer and Communications》 2025年第2期250-281,共32页
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl... Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy. 展开更多
关键词 Intrusion Detection Cyber-Physical Systems Drone Security Weighted ensemble Voting Unmanned Vehicles Security Strategies
在线阅读 下载PDF
FISHER INFORMATION AMONG β-ENSEMBLES
11
作者 Yutao MA 《Acta Mathematica Scientia》 2025年第2期493-513,共21页
In this paper,we consider the Fisher informations among three classical type β-ensembles when β>0 scales with n satisfying lim βn=∞.We offer the exact order of-the corresponding two Fisher informations,which in... In this paper,we consider the Fisher informations among three classical type β-ensembles when β>0 scales with n satisfying lim βn=∞.We offer the exact order of-the corresponding two Fisher informations,which indicates that theβ-Laguerre ensembles do not satisfy the logarithmic Sobolev inequality.We also give some limit theorems on the extremals of β-Jacobi ensembles for β>0 fixed. 展开更多
关键词 β-Hermite ensemble βB-Laguerre ensemble β-Jacobi ensemble Fisher information Tracy-Widom law
在线阅读 下载PDF
Explainable artificial intelligence and ensemble learning for hepatocellular carcinoma classification:State of the art,performance,and clinical implications
12
作者 Sami Akbulut Cemil Colak 《World Journal of Hepatology》 2025年第11期11-25,共15页
Hepatocellular carcinoma(HCC)remains a leading cause of cancer-related mortality globally,necessitating advanced diagnostic tools to improve early detection and personalized targeted therapy.This review synthesizes ev... Hepatocellular carcinoma(HCC)remains a leading cause of cancer-related mortality globally,necessitating advanced diagnostic tools to improve early detection and personalized targeted therapy.This review synthesizes evidence on explainable ensemble learning approaches for HCC classification,emphasizing their integration with clinical workflows and multi-omics data.A systematic analysis[including datasets such as The Cancer Genome Atlas,Gene Expression Omnibus,and the Surveillance,Epidemiology,and End Results(SEER)datasets]revealed that explainable ensemble learning models achieve high diagnostic accuracy by combining clinical features,serum biomarkers such as alpha-fetoprotein,imaging features such as computed tomography and magnetic resonance imaging,and genomic data.For instance,SHapley Additive exPlanations(SHAP)-based random forests trained on NCBI GSE14520 microarray data(n=445)achieved 96.53%accuracy,while stacking ensembles applied to the SEER program data(n=1897)demonstrated an area under the receiver operating characteristic curve of 0.779 for mortality prediction.Despite promising results,challenges persist,including the computational costs of SHAP and local interpretable model-agnostic explanations analyses(e.g.,TreeSHAP requiring distributed computing for metabolomics datasets)and dataset biases(e.g.,SEER’s Western population dominance limiting generalizability).Future research must address inter-cohort heterogeneity,standardize explainability metrics,and prioritize lightweight surrogate models for resource-limited settings.This review presents the potential of explainable ensemble learning frameworks to bridge the gap between predictive accuracy and clinical interpretability,though rigorous validation in independent,multi-center cohorts is critical for real-world deployment. 展开更多
关键词 Hepatocellular carcinoma Artificial intelligence Explainable artificial intelligence ensemble learning Explainable ensemble learning
在线阅读 下载PDF
Ensemble learning-driven multi-objective optimization of the co-pyrolysis process of biomass and coal for high economic and environmental performance
13
作者 Qingchun Yang Dongwen Rong +2 位作者 Qiwen Guo Runjie Bao Dawei Zhang 《Chinese Journal of Chemical Engineering》 2025年第8期23-34,共12页
The biomass and coal co-pyrolysis (BCP) technology combines the advantages of both resources, achieving efficient resource complementarity, reducing reliance on coal, and minimizing pollutant emissions. However, this ... The biomass and coal co-pyrolysis (BCP) technology combines the advantages of both resources, achieving efficient resource complementarity, reducing reliance on coal, and minimizing pollutant emissions. However, this process still encounters numerous challenges in attaining optimal economic and environmental performance. Therefore, an ensemble learning (EL) framework is proposed for the BCP process in this study to optimize the synergistic benefits while minimizing negative environmental impacts. Six different ensemble learning models are developed to investigate the impact of input features, such as biomass characteristics, coal characteristics, and pyrolysis conditions on the product profit and CO_(2) emissions of the BCP processes. The Optuna method is further employed to automatically optimize the hyperparameters of BCP process models for enhancing their predictive accuracy and robustness. The results indicate that the categorical boosting (CAB) model of the BCP process has demonstrated exceptional performance in accurately predicting its product profit and CO_(2) emission (R2>0.92) after undergoing five-fold cross-validation. To enhance the interpretability of this preferred model, the Shapley additive explanations and partial dependence plot analyses are conducted to evaluate the impact and importance of biomass characteristics, coal characteristics, and pyrolysis conditions on the product profitability and CO_(2) emissions of the BCP processes. Finally, the preferred model coupled with a reference vector guided evolutionary algorithm is carried to identify the optimal conditions for maximizing the product profit of BCP process products while minimizing CO_(2) emissions. It indicates the optimal BCP process can achieve high product profits (5290.85 CNY·t−1) and low CO_(2) emissions (7.45 kg·t^(−1)). 展开更多
关键词 BIOMASS PYROLYSIS Optimal design ensemble learning Economic analysis
在线阅读 下载PDF
Understanding the initial conditions contributing to the rapid intensification of typhoons through ensemble sensitivity analysis
14
作者 Yixuan Ren Lili Lei +2 位作者 Jian-Feng Gu Zhe-Min Tan Yi Zhang 《Atmospheric and Oceanic Science Letters》 2025年第2期36-42,共7页
While steady improvements have been achieved for the track forecasts of typhoons,there has been a lack of improvement for intensity forecasts.One challenge for intensity forecasts is to capture the rapid intensificati... While steady improvements have been achieved for the track forecasts of typhoons,there has been a lack of improvement for intensity forecasts.One challenge for intensity forecasts is to capture the rapid intensification(RI),whose nonlinear characteristics impose great difficulties for numerical models.The ensemble sensitivity analysis(ESA)method is used here to analyze the initial conditions that contribute to typhoon intensity forecasts,especially with RI.Six RI processes from five typhoons(Chaba,Haima,Meranti,Sarika,and Songda)in 2016,are applied with ESA,which also gives a composite initial condition that favors subsequent RI.Results from individual cases have generally similar patterns of ESA,but with different magnitudes,when various cumulus parameterization schemes are applied.To draw the initial conditions with statistical significance,sample-mean azimuthal components of ESA are obtained.Results of the composite sensitivity show that typhoons that experience RI in 24 h favor enhanced primary circulation from low to high levels,intensified secondary circulation with increased radial inflow at lower levels and increased radial outflow at upper levels,a prominent warm core at around 300 hPa,and increased humidity at low levels.As the forecast lead time increases,the patterns of ESA are retained,while the sensitivity magnitudes decay.Given the general and quantitative composite sensitivity along with associated uncertainties for different cumulus parameterization schemes,appropriate sampling of the composite sensitivity in numerical models could be beneficial to capturing the RI and improving the forecasting of typhoon intensity. 展开更多
关键词 TYPHOON Rapid intensification ensemble sensitivity analysis Composite sensitivity
在线阅读 下载PDF
Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight
15
作者 Iman S.Al-Mahdi Saad M.Darwish Magda M.Madbouly 《Computer Modeling in Engineering & Sciences》 2025年第4期875-909,共35页
Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irr... Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction. 展开更多
关键词 Heart disease prediction feature selection ensemble deep learning optimization genetic algorithm(GA) ensemble deep learning tunicate swarm algorithm(TSA) feature selection
在线阅读 下载PDF
High-skill members in the subseasonal forecast ensemble of extreme cold events in East Asia
16
作者 Xinli Liu Jingzhi Su +1 位作者 Yihao Peng Xiaolei Liu 《Atmospheric and Oceanic Science Letters》 2025年第6期22-28,共7页
Subseasonal forecasting of extreme events is crucial for early warning systems.However,the forecast skills for extreme events are limited.Taking the extreme cold events in January 2018 as a specific example,and analyz... Subseasonal forecasting of extreme events is crucial for early warning systems.However,the forecast skills for extreme events are limited.Taking the extreme cold events in January 2018 as a specific example,and analyzing the 34 extreme cold events in East Asia from 1998 to 2020,the authors evaluated the forecast skills of the ECMWF model ensemble members on subseasonal time scales.The results show that while the ensemble mean has limited skills for forecasting extreme cold events at the 3-week lead time,some individual members demonstrate high forecast skills.For most extreme cold events,there are>10%of members among the total ensembles that can well predict the rapid temperature transitions at the 14-day lead time.This highlights the untapped potential of the ECMWF model to forecast extreme cold events on subseasonal time scales.High-skill ensemble members rely on accurate predictions of atmospheric circulation patterns(500-hPa geopotential height,mean sea level pressure)and key weather systems,including the Ural Blocking and Siberian High,that influence extreme cold events. 展开更多
关键词 Subseasonal forecast Forecast skill ensemble members Extreme cold event
在线阅读 下载PDF
Ground-Glass Lung Nodules Recognition Based on CatBoost Feature Selection and Stacking Ensemble Learning
17
作者 MIAO Jun CHANG Yiru +5 位作者 CHEN Chen ZHANG Maoxuan LIU Yan QI Honggang GUO Zhijun XU Qian 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期790-799,共10页
Aimed at the issues of high feature dimensionality,excessive data redundancy,and low recognition accuracy of using single classifiers on ground-glass lung nodule recognition,a recognition method was proposed based on ... Aimed at the issues of high feature dimensionality,excessive data redundancy,and low recognition accuracy of using single classifiers on ground-glass lung nodule recognition,a recognition method was proposed based on CatBoost feature selection and Stacking ensemble learning.First,the method uses a feature selection algorithm to filter important features and remove features with less impact,achieving the effect of data dimensionality reduction.Second,random forests classifier,decision trees,K-nearest neighbor classifier,and light gradient boosting machine were used as base classifiers,and support vector machine was used as meta classifier to fuse and construct the ensemble learning model.This measure increases the accuracy of the classification model while maintaining the diversity of the base classifiers.The experimental results show that the recognition accuracy of the proposed method reaches 94.375%.Compared to the random forest algorithm with the best performance among single classifiers,the accuracy of the proposed method is increased by 1.875%.Compared to the recent deep learning methods(ResNet+GBM+Attention and MVCSNet)on ground-glass pulmonary nodule recognition,the proposed method’s performance is also better or comparative.Experiments show that the proposed model can effectively select features and make recognition on ground-glass pulmonary nodules. 展开更多
关键词 ground-glass pulmonary nodule feature selection ensemble learning
原文传递
A novel SMOTE-based ensemble boosting strategy for early diabetes detection
18
作者 Bhanu Prakash Lohani Arvind Dagur Dhirendra Kumar Shukla 《Medical Data Mining》 2025年第4期88-95,共8页
Background:Diabetes is one of the fastest rising chronic illness worldwide,and early detection is very crucial for reducing complications.Traditional machine learning models often struggle with imbalanced data and mod... Background:Diabetes is one of the fastest rising chronic illness worldwide,and early detection is very crucial for reducing complications.Traditional machine learning models often struggle with imbalanced data and moderate accuracy.To overcome these limitations,we propose a SMOTE-based ensemble boosting strategy(SMOTEBEnDi)for more accurate diabetes classification.Methods:The framework uses the Pima Indians diabetes dataset(PIDD)consisting of eight clinical features.Preprocessing steps included normalization,feature relevance analysis,and handling of missing values.The class imbalance was corrected using the synthetic minority oversampling technique(SMOTE),and multiple classifiers such as K-nearest neighbor(KNN),decision tree(DT),random forest(RF),and support vector machine(SVM)were ensembled in a boosting architecture.Hyperparameter tuning with k-fold cross validation was applied to ensure robust performance.Results:Experimental analysis showed that the proposed SMOTEBEnDi model achieved 99.5%accuracy,99.39%sensitivity,and 99.59%specificity,outperforming baseline classifiers and demonstrating near-perfect detection.The improvements in performance metrics like area under curve(AUC),precision,and specificity confirm the effectiveness of addressing class imbalance.Conclusion:The study proves that combining SMOTE with ensemble boosting greatly enhances early diabetes detection.This reduces diagnostic errors,supports clinicians in timely intervention,and can serve as a strong base for computer-aided diagnostic tools.Future work should extend this framework for real-time prediction systems,integrate with IoT health devices,and adapt it across diverse clinical datasets to improve generalization and trust in real healthcare settings. 展开更多
关键词 ensemble learning machine learning cross validation feature analysis
在线阅读 下载PDF
BDS-3 Satellite Orbit Prediction Method Based on Ensemble Learning and Neural Networks
19
作者 Ruibo Wei Yao Kong +2 位作者 Mengzhao Li Feng Liu Fang Cheng 《Computers, Materials & Continua》 2025年第7期1507-1528,共22页
To address uncertainties in satellite orbit error prediction,this study proposes a novel ensemble learning-based orbit prediction method specifically designed for the BeiDou navigation satellite system(BDS).Building o... To address uncertainties in satellite orbit error prediction,this study proposes a novel ensemble learning-based orbit prediction method specifically designed for the BeiDou navigation satellite system(BDS).Building on ephemeris data and perturbation corrections,two new models are proposed:attention-enhanced BPNN(AEBP)and Transformer-ResNet-BiLSTM(TR-BiLSTM).These models effectively capture both local and global dependencies in satellite orbit data.To further enhance prediction accuracy and stability,the outputs of these two models were integrated using the gradient boosting decision tree(GBDT)ensemble learning method,which was optimized through a grid search.The main contribution of this approach is the synergistic combination of deep learning models and GBDT,which significantly improves both the accuracy and robustness of satellite orbit predictions.This model was validated using broadcast ephemeris data from the BDS-3 MEO and inclined geosynchronous orbit(IGSO)satellites.The results show that the proposed method achieves an error correction rate of 65.4%.This ensemble learning-based approach offers a highly effective solution for high-precision and stable satellite orbit predictions. 展开更多
关键词 BDS satellite orbit ensemble learning neural networks orbit error
在线阅读 下载PDF
Enhanced Multimodal Physiological Signal Analysis for Pain Assessment Using Optimized Ensemble Deep Learning
20
作者 Karim Gasmi Olfa Hrizi +8 位作者 Najib Ben Aoun Ibrahim Alrashdi Ali Alqazzaz Omer Hamid Mohamed O.Altaieb Alameen E.M.Abdalrahman Lassaad Ben Ammar Manel Mrabet Omrane Necibi 《Computer Modeling in Engineering & Sciences》 2025年第5期2459-2489,共31页
The potential applications of multimodal physiological signals in healthcare,pain monitoring,and clinical decision support systems have garnered significant attention in biomedical research.Subjective self-reporting i... The potential applications of multimodal physiological signals in healthcare,pain monitoring,and clinical decision support systems have garnered significant attention in biomedical research.Subjective self-reporting is the foundation of conventional pain assessment methods,which may be unreliable.Deep learning is a promising alternative to resolve this limitation through automated pain classification.This paper proposes an ensemble deep-learning framework for pain assessment.The framework makes use of features collected from electromyography(EMG),skin conductance level(SCL),and electrocardiography(ECG)signals.We integrate Convolutional Neural Networks(CNN),Long Short-Term Memory Networks(LSTM),Bidirectional Gated Recurrent Units(BiGRU),and Deep Neural Networks(DNN)models.We then aggregate their predictions using a weighted averaging ensemble technique to increase the classification’s robustness.To improve computing efficiency and remove redundant features,we use Particle Swarm Optimization(PSO)for feature selection.This enables us to reduce the features’dimensionality without sacrificing the classification’s accuracy.With improved accuracy,precision,recall,and F1-score across all pain levels,the experimental results show that the suggested ensemble model performs better than individual deep learning classifiers.In our experiments,the suggested model achieved over 98%accuracy,suggesting promising automated pain assessment performance.However,due to differences in validation protocols,comparisons with previous studies are still limited.Combining deep learning and feature selection techniques significantly improves model generalization,reducing overfitting and enhancing classification performance.The evaluation was conducted using the BioVid Heat Pain Dataset,confirming the model’s effectiveness in distinguishing between different pain intensity levels. 展开更多
关键词 Pain assessment ensemble learning deep learning optimal algorithm feature selection
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部