An error matrix equation based on error matrix theory was presented in previous research of the error-eliminating theory. The purpose of solving the error matrix equation is to create a decision support on how to swit...An error matrix equation based on error matrix theory was presented in previous research of the error-eliminating theory. The purpose of solving the error matrix equation is to create a decision support on how to switch from bad to good status. A matrix based on error logic is used to express current status u, expectant status u1 and transformation matrix T. It is u, u1, and T that are used to build error matrix equation T (u)= u1. This allows us to find a method whereby bad status “u” changes to good status “u1” by solving the equation. The conversion method that transform from current to expectant status can be obtained from the transformation matrix T. On this basis, this paper proposes a new kind of error matrix equation named “containing-type error matrix equation”. This equation is more suitable for analyzing the realistic question. The method of solving, existence and form of solution for this type of equation have been presented in this paper. This research provides a potential useful new technique for decision analysis.展开更多
Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage...Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations.展开更多
An adaptive method for the solution of compressible flows is described. The idea results from the desire for an efficient grid system,and an accurate and robust solution method are used to resolve flow features of the...An adaptive method for the solution of compressible flows is described. The idea results from the desire for an efficient grid system,and an accurate and robust solution method are used to resolve flow features of the interest. The adaptation flow solution is proposed,including the detection of flow features based on the matrix error; the mesh adaptation using the mesh movement,the mesh refinement,the mesh coarsening,and their combination. The feature detection based on the matrix error can maintain the high resolution property for shock waves of the one-dimensional approximate Riemann solver and the higher order reconstruction scheme. The high grid efficiency is obtained with the anisotropically directional grid corresponding to feature directions,and the error of the flow-field is averaged. The procedure and its application to flow solutions of shock waves are described. Results validate that the method is reliable.展开更多
A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar de...A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar denominator. The generalized inverse introduced by [3]is gen-eralized to rectangular matrix case in this paper. An exact error formula for interpolation is ob-tained, which is an extension in matrix form of bivariate scalar and vector valued rational interpola-tion discussed by Siemaszko[l2] and by Gu Chuangqing [7] respectively. By defining row and col-umn-transformation in the sense of the partial inverted differences for matrices, two type matrix algorithms are established to construct corresponding two different BGIRI, which hold for the vec-tor case and the scalar case.展开更多
Parallel kinematic machines (PKMs) have the advantages of a compact structure,high stiffness,a low moving inertia,and a high load/weight ratio.PKMs have been intensively studied since the 1980s,and are still attract...Parallel kinematic machines (PKMs) have the advantages of a compact structure,high stiffness,a low moving inertia,and a high load/weight ratio.PKMs have been intensively studied since the 1980s,and are still attracting much attention.Compared with extensive researches focus on their type/dimensional synthesis,kinematic/dynamic analyses,the error modeling and separation issues in PKMs are not studied adequately,which is one of the most important obstacles in its commercial applications widely.Taking a 3-PRS parallel manipulator as an example,this paper presents a separation method of source errors for 3-DOF parallel manipulator into the compensable and non-compensable errors effectively.The kinematic analysis of 3-PRS parallel manipulator leads to its six-dimension Jacobian matrix,which can be mapped into the Jacobian matrix of actuations and constraints,and then the compensable and non-compensable errors can be separated accordingly.The compensable errors can be compensated by the kinematic calibration,while the non-compensable errors may be adjusted by the manufacturing and assembling process.Followed by the influence of the latter,i.e.,the non-compensable errors,on the pose error of the moving platform through the sensitivity analysis with the aid of the Monte-Carlo method,meanwhile,the configurations of the manipulator are sought as the pose errors of the moving platform approaching their maximum.The compensable and non-compensable errors in limited-DOF parallel manipulators can be separated effectively by means of the Jacobian matrix of actuations and constraints,providing designers with an informative guideline to taking proper measures for enhancing the pose accuracy via component tolerancing and/or kinematic calibration,which can lay the foundation for the error distinguishment and compensation.展开更多
For a system of two seerningly umrelated regressions.some general results of mean square er-ror matrix comparisons are presented.A class of linear estimators and a class of two-stage estimatorsbased on a generalized u...For a system of two seerningly umrelated regressions.some general results of mean square er-ror matrix comparisons are presented.A class of linear estimators and a class of two-stage estimatorsbased on a generalized unrestricted estimate of the dispersion matrix are proposed.Some exact finitesample properties of the two-stage estimators are obtained.展开更多
The notion of a communication channel is one of the key notions in information theory but like the notion “information” it has not any general mathematical definition. The existing examples of the communication chan...The notion of a communication channel is one of the key notions in information theory but like the notion “information” it has not any general mathematical definition. The existing examples of the communication channels: the Gaussian ones;the binary symmetric ones;the ones with symbol drop-out and drop-in;the ones with error packets etc., characterize the distortions which take place in information conducted through the corresponding channel.展开更多
Aiming at the assembly accuracy of a large aircraft transport jig, the effect of component error and the error of work-piece surface on the work-piece position and orientation in the 3-2-1 fixturing scheme is studied ...Aiming at the assembly accuracy of a large aircraft transport jig, the effect of component error and the error of work-piece surface on the work-piece position and orientation in the 3-2-1 fixturing scheme is studied with the object pose space description method. The error mapping model between the connecting part of the front frame rack and its support base is modeled using the homogeneous transformation matrix(HTM) method. The probabilistic error is simulated using the Monte Carlo method. The measurement experiment was conducted by the laser tracker to verify the effectiveness of the approach, and the approach has been successfully applied to the production of transport jig.展开更多
Through the analysis of roundness error separation technique of three-point method and based on the invariability and periodicity of the geometrical characteristic of measured round contour, a new matrix algorithm, wh...Through the analysis of roundness error separation technique of three-point method and based on the invariability and periodicity of the geometrical characteristic of measured round contour, a new matrix algorithm, which can be used to solve directly the roundness of the measured round contour without Fourier transform, is presented. On the basis of the research and analysis of the rotation error movement which is separated by using the three-point method, a mathematical equation is derived, which can be used to separate the eccentric motion of least square center of measured round contour and the pure rotation motion error of spindle in rotation motion. The correctness of this method is validated by means of simulation.展开更多
Computing the eigenvalue of smallest modulus and its corresponding eigneveclor of an irreducible nonsingular M-matrix A is considered, It is shown that if the entries of A are known with high relative accuracy, its ei...Computing the eigenvalue of smallest modulus and its corresponding eigneveclor of an irreducible nonsingular M-matrix A is considered, It is shown that if the entries of A are known with high relative accuracy, its eigenvalue of smallest modulus and each component of the corresponding eigenvector will be determined to much higher accuracy than the standard perturbation theory suggests. An algorithm is presented to compute them with a small componentwise backward error, which is consistent with the perturbation results.展开更多
The Bjorck and Pereyra algorithms used for solving Vandermonde systemof equation are modified for the case where the points are symmetricly situated aroundzero. The working operation is saved about half. A forward err...The Bjorck and Pereyra algorithms used for solving Vandermonde systemof equation are modified for the case where the points are symmetricly situated aroundzero. The working operation is saved about half. A forward error analysis is presentedfor the modified algorithms, and it's shown that if the points are situated in some order,the error bound are as good as Higham's result in 1987.展开更多
The quality of the radiation dose depends upon the gamma count rate of the radionuclide used. Any reduction in error in the count rate is reflected in the reduction in error in the activity and consequently on the qua...The quality of the radiation dose depends upon the gamma count rate of the radionuclide used. Any reduction in error in the count rate is reflected in the reduction in error in the activity and consequently on the quality of dose. All the efforts so far have been directed only to minimize the random errors in count rate by repetition. In the absence of probability distribution for the systematic errors, we propose to minimize these errors by estimating the upper and lower limits by the technique of determinant in equalities developed by us. Using the algorithm we have developed based on the tech- nique of determinant inequalities and the concept of maximization of mutual information (MI), we show how to process element by element of the covariance matrix to minimize the correlated systematic errors in the count rate of 113 mIn. The element wise processing of covariance matrix is so unique by our technique that it gives experimentalists enough maneuverability to mitigate different factors causing systematic errors in the count rate and consequently the activity of 113 mIn.展开更多
This paper puts forward a machining complex oriented compensation strategy for the generalized kinematic errors (GKEs). According to this strategy, the error map, which is constructed by using the off line measuring ...This paper puts forward a machining complex oriented compensation strategy for the generalized kinematic errors (GKEs). According to this strategy, the error map, which is constructed by using the off line measuring information of the machined workpiece, is not oriented for the machine tool but for the machining complex to compensate the GKEs. The error map is derived by the proposed predictive learning control algorithm (PLCA), which is supported by the information model of machining complex. Experimental results show that the machining complex oriented GKEs compensation strategy and the information model based PLCA is effective.展开更多
Clarke’s matrix has been applied as a phase-mode transformation matrix to three-phase transmission lines substituting the eigenvector matrices. Considering symmetrical untransposed three-phase lines, an actual symmet...Clarke’s matrix has been applied as a phase-mode transformation matrix to three-phase transmission lines substituting the eigenvector matrices. Considering symmetrical untransposed three-phase lines, an actual symmetrical three-phase line on untransposed conditions is associated with Clarke’s matrix for error and frequency scan analyses in this paper. Error analyses are calculated for the eigenvalue diagonal elements obtained from Clarke’s matrix. The eigenvalue off-diagonal elements from the Clarke’s matrix application are compared to the correspondent exact eigenvalues. Based on the characteristic impedance and propagation function values, the frequency scan analyses show that there are great differences between the Clarke’s matrix results and the exact ones, considering frequency values from 10 kHz to 1 MHz. A correction procedure is applied obtaining two new transformation matrices. These matrices lead to good approximated results when compared to the exact ones. With the correction procedure applied to Clarke’s matrix, the relative values of the eigenvalue matrix off-diagonal element obtained from Clarke’s matrix are decreased while the frequency scan results are improved. The steps of correction procedure application are detailed, investigating the influence of each step on the obtained two new phase-mode transformation matrices.展开更多
文摘An error matrix equation based on error matrix theory was presented in previous research of the error-eliminating theory. The purpose of solving the error matrix equation is to create a decision support on how to switch from bad to good status. A matrix based on error logic is used to express current status u, expectant status u1 and transformation matrix T. It is u, u1, and T that are used to build error matrix equation T (u)= u1. This allows us to find a method whereby bad status “u” changes to good status “u1” by solving the equation. The conversion method that transform from current to expectant status can be obtained from the transformation matrix T. On this basis, this paper proposes a new kind of error matrix equation named “containing-type error matrix equation”. This equation is more suitable for analyzing the realistic question. The method of solving, existence and form of solution for this type of equation have been presented in this paper. This research provides a potential useful new technique for decision analysis.
文摘Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations.
文摘An adaptive method for the solution of compressible flows is described. The idea results from the desire for an efficient grid system,and an accurate and robust solution method are used to resolve flow features of the interest. The adaptation flow solution is proposed,including the detection of flow features based on the matrix error; the mesh adaptation using the mesh movement,the mesh refinement,the mesh coarsening,and their combination. The feature detection based on the matrix error can maintain the high resolution property for shock waves of the one-dimensional approximate Riemann solver and the higher order reconstruction scheme. The high grid efficiency is obtained with the anisotropically directional grid corresponding to feature directions,and the error of the flow-field is averaged. The procedure and its application to flow solutions of shock waves are described. Results validate that the method is reliable.
文摘A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar denominator. The generalized inverse introduced by [3]is gen-eralized to rectangular matrix case in this paper. An exact error formula for interpolation is ob-tained, which is an extension in matrix form of bivariate scalar and vector valued rational interpola-tion discussed by Siemaszko[l2] and by Gu Chuangqing [7] respectively. By defining row and col-umn-transformation in the sense of the partial inverted differences for matrices, two type matrix algorithms are established to construct corresponding two different BGIRI, which hold for the vec-tor case and the scalar case.
基金supported by Tianjin Research Program of Application Foundation and Advanced Technology of China (Grant No.11JCZDJC22700)National Natural Science Foundation of China (GrantNo. 51075295,Grant No. 50675151)+1 种基金National High-tech Research and Development Program of China (863 Program,Grant No.2007AA042001)PhD Programs Foundation of Ministry of Education of China (Grant No. 20060056018)
文摘Parallel kinematic machines (PKMs) have the advantages of a compact structure,high stiffness,a low moving inertia,and a high load/weight ratio.PKMs have been intensively studied since the 1980s,and are still attracting much attention.Compared with extensive researches focus on their type/dimensional synthesis,kinematic/dynamic analyses,the error modeling and separation issues in PKMs are not studied adequately,which is one of the most important obstacles in its commercial applications widely.Taking a 3-PRS parallel manipulator as an example,this paper presents a separation method of source errors for 3-DOF parallel manipulator into the compensable and non-compensable errors effectively.The kinematic analysis of 3-PRS parallel manipulator leads to its six-dimension Jacobian matrix,which can be mapped into the Jacobian matrix of actuations and constraints,and then the compensable and non-compensable errors can be separated accordingly.The compensable errors can be compensated by the kinematic calibration,while the non-compensable errors may be adjusted by the manufacturing and assembling process.Followed by the influence of the latter,i.e.,the non-compensable errors,on the pose error of the moving platform through the sensitivity analysis with the aid of the Monte-Carlo method,meanwhile,the configurations of the manipulator are sought as the pose errors of the moving platform approaching their maximum.The compensable and non-compensable errors in limited-DOF parallel manipulators can be separated effectively by means of the Jacobian matrix of actuations and constraints,providing designers with an informative guideline to taking proper measures for enhancing the pose accuracy via component tolerancing and/or kinematic calibration,which can lay the foundation for the error distinguishment and compensation.
基金Suppported in part by Henan Natural Setence Foundatron(004051300)
文摘For a system of two seerningly umrelated regressions.some general results of mean square er-ror matrix comparisons are presented.A class of linear estimators and a class of two-stage estimatorsbased on a generalized unrestricted estimate of the dispersion matrix are proposed.Some exact finitesample properties of the two-stage estimators are obtained.
文摘The notion of a communication channel is one of the key notions in information theory but like the notion “information” it has not any general mathematical definition. The existing examples of the communication channels: the Gaussian ones;the binary symmetric ones;the ones with symbol drop-out and drop-in;the ones with error packets etc., characterize the distortions which take place in information conducted through the corresponding channel.
基金Supported by National Key Technology Research and Development Program of China(No.2012BAF01B07)
文摘Aiming at the assembly accuracy of a large aircraft transport jig, the effect of component error and the error of work-piece surface on the work-piece position and orientation in the 3-2-1 fixturing scheme is studied with the object pose space description method. The error mapping model between the connecting part of the front frame rack and its support base is modeled using the homogeneous transformation matrix(HTM) method. The probabilistic error is simulated using the Monte Carlo method. The measurement experiment was conducted by the laser tracker to verify the effectiveness of the approach, and the approach has been successfully applied to the production of transport jig.
基金Henan Innovation Project for University Prominent Research Talents (2004KYCX006)Ph.D.Inital Foundation of Henan University of Science &Techonologythe Natural Science Foundation of Henan Education Agency (2008A460007)
文摘Through the analysis of roundness error separation technique of three-point method and based on the invariability and periodicity of the geometrical characteristic of measured round contour, a new matrix algorithm, which can be used to solve directly the roundness of the measured round contour without Fourier transform, is presented. On the basis of the research and analysis of the rotation error movement which is separated by using the three-point method, a mathematical equation is derived, which can be used to separate the eccentric motion of least square center of measured round contour and the pure rotation motion error of spindle in rotation motion. The correctness of this method is validated by means of simulation.
文摘Computing the eigenvalue of smallest modulus and its corresponding eigneveclor of an irreducible nonsingular M-matrix A is considered, It is shown that if the entries of A are known with high relative accuracy, its eigenvalue of smallest modulus and each component of the corresponding eigenvector will be determined to much higher accuracy than the standard perturbation theory suggests. An algorithm is presented to compute them with a small componentwise backward error, which is consistent with the perturbation results.
基金Supported by National Natural Science Foundation of China,under Grant Number 60175008.and Natural Science Foundation of Fujian Province under Grant A0110004.
文摘The Bjorck and Pereyra algorithms used for solving Vandermonde systemof equation are modified for the case where the points are symmetricly situated aroundzero. The working operation is saved about half. A forward error analysis is presentedfor the modified algorithms, and it's shown that if the points are situated in some order,the error bound are as good as Higham's result in 1987.
文摘The quality of the radiation dose depends upon the gamma count rate of the radionuclide used. Any reduction in error in the count rate is reflected in the reduction in error in the activity and consequently on the quality of dose. All the efforts so far have been directed only to minimize the random errors in count rate by repetition. In the absence of probability distribution for the systematic errors, we propose to minimize these errors by estimating the upper and lower limits by the technique of determinant in equalities developed by us. Using the algorithm we have developed based on the tech- nique of determinant inequalities and the concept of maximization of mutual information (MI), we show how to process element by element of the covariance matrix to minimize the correlated systematic errors in the count rate of 113 mIn. The element wise processing of covariance matrix is so unique by our technique that it gives experimentalists enough maneuverability to mitigate different factors causing systematic errors in the count rate and consequently the activity of 113 mIn.
文摘This paper puts forward a machining complex oriented compensation strategy for the generalized kinematic errors (GKEs). According to this strategy, the error map, which is constructed by using the off line measuring information of the machined workpiece, is not oriented for the machine tool but for the machining complex to compensate the GKEs. The error map is derived by the proposed predictive learning control algorithm (PLCA), which is supported by the information model of machining complex. Experimental results show that the machining complex oriented GKEs compensation strategy and the information model based PLCA is effective.
文摘Clarke’s matrix has been applied as a phase-mode transformation matrix to three-phase transmission lines substituting the eigenvector matrices. Considering symmetrical untransposed three-phase lines, an actual symmetrical three-phase line on untransposed conditions is associated with Clarke’s matrix for error and frequency scan analyses in this paper. Error analyses are calculated for the eigenvalue diagonal elements obtained from Clarke’s matrix. The eigenvalue off-diagonal elements from the Clarke’s matrix application are compared to the correspondent exact eigenvalues. Based on the characteristic impedance and propagation function values, the frequency scan analyses show that there are great differences between the Clarke’s matrix results and the exact ones, considering frequency values from 10 kHz to 1 MHz. A correction procedure is applied obtaining two new transformation matrices. These matrices lead to good approximated results when compared to the exact ones. With the correction procedure applied to Clarke’s matrix, the relative values of the eigenvalue matrix off-diagonal element obtained from Clarke’s matrix are decreased while the frequency scan results are improved. The steps of correction procedure application are detailed, investigating the influence of each step on the obtained two new phase-mode transformation matrices.