The performance degradation of an orthogonal frequency division multiplexing (OFDM) systems due to clock synchronization error is analyzed and a pilot-aided maximum likelihood (ML) estimating method is proposed to cor...The performance degradation of an orthogonal frequency division multiplexing (OFDM) systems due to clock synchronization error is analyzed and a pilot-aided maximum likelihood (ML) estimating method is proposed to correct it. The proposed algorithm enables clock synchronization error estimation from a pilot whose duration is only two symbol periods. The study shows that this method is simple and exact. The clock synchronization error can be corrected almost entirely.展开更多
By taking the subsequence out of the input-output sequence of a system polluted by white noise, an independent observation sequence and its probability density are obtained and then a maximum likelihood estimation of ...By taking the subsequence out of the input-output sequence of a system polluted by white noise, an independent observation sequence and its probability density are obtained and then a maximum likelihood estimation of the identification parameters is given. In order to decrease the asymptotic error, a corrector of maximum likelihood (CML) estimation with its recursive algorithm is given. It has been proved that the corrector has smaller asymptotic error than the least square methods. A simulation example shows that the corrector of maximum likelihood estimation is of higher approximating precision to the true parameters than the least square methods.展开更多
Iteration methods and their convergences of the maximum likelihoodestimator are discussed in this paper.We study Gauss-Newton method and give a set ofsufficient conditions for the convergence of asymptotic numerical s...Iteration methods and their convergences of the maximum likelihoodestimator are discussed in this paper.We study Gauss-Newton method and give a set ofsufficient conditions for the convergence of asymptotic numerical stability.The modifiedGauss-Newton method is also studied and the sufficient conditions of the convergence arepresented.Two numerical examples are given to illustrate our results.展开更多
Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level met...Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution.展开更多
The calibration of transfer functions is essential for accurate pavement performance predictions in the PavementME design. Several studies have used the least square approach to calibrate these transfer functions. Lea...The calibration of transfer functions is essential for accurate pavement performance predictions in the PavementME design. Several studies have used the least square approach to calibrate these transfer functions. Least square is a widely used simplistic approach based on certain assumptions. Literature shows that these least square approach assumptions may not apply to the non-normal distributions. This study introduces a new methodology for calibrating the transverse cracking and international roughness index(IRI) models in rigid pavements using maximum likelihood estimation(MLE). Synthetic data for transverse cracking, with and without variability, are generated to illustrate the applicability of MLE using different known probability distributions(exponential,gamma, log-normal, and negative binomial). The approach uses measured data from the Michigan Department of Transportation's(MDOT) pavement management system(PMS) database for 70 jointed plain concrete pavement(JPCP) sections to calibrate and validate transfer functions. The MLE approach is combined with resampling techniques to improve the robustness of calibration coefficients. The results show that the MLE transverse cracking model using the gamma distribution consistently outperforms the least square for synthetic and observed data. For observed data, MLE estimates of parameters produced lower SSE and bias than least squares(e.g., for the transverse cracking model, the SSE values are 3.98 vs. 4.02, and the bias values are 0.00 and-0.41). Although negative binomial distribution is the most suitable fit for the IRI model for MLE, the least square results are slightly better than MLE. The bias values are-0.312 and 0.000 for the MLE and least square methods. Overall, the findings indicate that MLE is a robust method for calibration, especially for non-normally distributed data such as transverse cracking.展开更多
This paper deals with the problems of consistency and strong consistency of the maximum likelihood estimators of the mean and variance of the drift fractional Brownian motions observed at discrete time instants. Both ...This paper deals with the problems of consistency and strong consistency of the maximum likelihood estimators of the mean and variance of the drift fractional Brownian motions observed at discrete time instants. Both the central limit theorem and the Berry-Ess′een bounds for these estimators are obtained by using the Stein’s method via Malliavin calculus.展开更多
In reliability analysis,the stress-strength model is often used to describe the life of a component which has a random strength(X)and is subjected to a random stress(Y).In this paper,we considered the problem of estim...In reliability analysis,the stress-strength model is often used to describe the life of a component which has a random strength(X)and is subjected to a random stress(Y).In this paper,we considered the problem of estimating the reliability𝑅𝑅=P[Y<X]when the distributions of both stress and strength are independent and follow exponentiated Pareto distribution.The maximum likelihood estimator of the stress strength reliability is calculated under simple random sample,ranked set sampling and median ranked set sampling methods.Four different reliability estimators under median ranked set sampling are derived.Two estimators are obtained when both strength and stress have an odd or an even set size.The two other estimators are obtained when the strength has an odd size and the stress has an even set size and vice versa.The performances of the suggested estimators are compared with their competitors under simple random sample via a simulation study.The simulation study revealed that the stress strength reliability estimates based on ranked set sampling and median ranked set sampling are more efficient than their competitors via simple random sample.In general,the stress strength reliability estimates based on median ranked set sampling are smaller than the corresponding estimates under ranked set sampling and simple random sample methods.Keywords:Stress-Strength model,ranked set sampling,median ranked set sampling,maximum likelihood estimation,mean square error.corresponding estimates under ranked set sampling and simple random sample methods.展开更多
In the presence of multicollinearity in logistic regression, the variance of the Maximum Likelihood Estimator (MLE) becomes inflated. Siray et al. (2015) [1] proposed a restricted Liu estimator in logistic regression ...In the presence of multicollinearity in logistic regression, the variance of the Maximum Likelihood Estimator (MLE) becomes inflated. Siray et al. (2015) [1] proposed a restricted Liu estimator in logistic regression model with exact linear restrictions. However, there are some situations, where the linear restrictions are stochastic. In this paper, we propose a Stochastic Restricted Maximum Likelihood Estimator (SRMLE) for the logistic regression model with stochastic linear restrictions to overcome this issue. Moreover, a Monte Carlo simulation is conducted for comparing the performances of the MLE, Restricted Maximum Likelihood Estimator (RMLE), Ridge Type Logistic Estimator(LRE), Liu Type Logistic Estimator(LLE), and SRMLE for the logistic regression model by using Scalar Mean Squared Error (SMSE).展开更多
According to the principle, “The failure data is the basis of software reliability analysis”, we built a software reliability expert system (SRES) by adopting the artificial intelligence technology. By reasoning out...According to the principle, “The failure data is the basis of software reliability analysis”, we built a software reliability expert system (SRES) by adopting the artificial intelligence technology. By reasoning out the conclusion from the fitting results of failure data of a software project, the SRES can recommend users “the most suitable model” as a software reliability measurement model. We believe that the SRES can overcome the inconsistency in applications of software reliability models well. We report investigation results of singularity and parameter estimation methods of experimental models in SRES.展开更多
By exponentiating each of the components of a finite mixture of two exponential components model by a positive parameter, several shapes of hazard rate functions are obtained. Maximum likelihood and Bayes methods, bas...By exponentiating each of the components of a finite mixture of two exponential components model by a positive parameter, several shapes of hazard rate functions are obtained. Maximum likelihood and Bayes methods, based on square error loss function and objective prior, are used to obtain estimators based on balanced square error loss function for the parameters, survival and hazard rate functions of a mixture of two exponentiated exponential components model. Approximate interval estimators of the parameters of the model are obtained.展开更多
In this paper maximum ranked set sampling procedure with unequal samples (MRSSU) is proposed. Maximum likelihood estimator and modified maximum likelihood estimator are obtained and their properties are studied under ...In this paper maximum ranked set sampling procedure with unequal samples (MRSSU) is proposed. Maximum likelihood estimator and modified maximum likelihood estimator are obtained and their properties are studied under exponential distribution. These methods are studied under both perfect and imperfect ranking (with errors in ranking). These estimators are then compared with estimators based on simple random sampling (SRS) and ranked set sampling (RSS) procedures. It is shown that relative efficiencies of the estimators based on MRSSU are better than those of the estimator based on SRS. Simulation results show that efficiency of proposed estimator is better than estimator based on RSS under ranking error.展开更多
In this paper we give an almost sharp error estimate of Halley’s iteration for the majorizing sequence. Compared with the corresponding results in [6,14], it is far better. Meanwhile,the convergence theorem is establ...In this paper we give an almost sharp error estimate of Halley’s iteration for the majorizing sequence. Compared with the corresponding results in [6,14], it is far better. Meanwhile,the convergence theorem is established .for Halley’s iteration in Banach spaces.展开更多
In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original...In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original scale. We obtain two estimators which minimize the asymptotic mean squared error (MM) and the asymptotic bias (MB), respectively. Both the estimators are very easy to implement, and simulation studies show that they are perform better.展开更多
In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fi...In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fixed point type iterative algorithm for unknown parameters are presented, and the least square estimates of the parameters are also proposed. Meanwhile, confidence intervals of model parameters are constructed by using the asymptotic theory and bootstrap technique. Numerical illustration is given to investigate the performance of our methods.展开更多
Correctly estimating the forecast error covariance matrix is a key step in any data assimilation scheme. If it is not correctly estimated, the assimilated states could be far from the true states. A popular method to ...Correctly estimating the forecast error covariance matrix is a key step in any data assimilation scheme. If it is not correctly estimated, the assimilated states could be far from the true states. A popular method to address this problem is error covariance matrix inflation. That is, to multiply the forecast error covariance matrix by an appropriate factor. In this paper, analysis states are used to construct the forecast error covariance matrix and an adaptive estimation procedure associated with the error covariance matrix inflation technique is developed. The proposed assimilation scheme was tested on the Lorenz-96 model and 2D Shallow Water Equation model, both of which are associated with spatially correlated observational systems. The experiments showed that by introducing the proposed structure of the forecast error eovariance matrix and applying its adaptive estimation procedure, the assimilation results were further improved.展开更多
Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degrad...Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.展开更多
To break through the limitations of traditional discriminators used in vector tracking loops, this paper presents an iterative maximum likelihood estimation(IMLE) method for extracting navigation state errors from mul...To break through the limitations of traditional discriminators used in vector tracking loops, this paper presents an iterative maximum likelihood estimation(IMLE) method for extracting navigation state errors from multi-satellite signals. The IMLE method takes into account both computational cost and estimation accuracy. The associated gradient vector and Hessian matrix of the MLE cost function are derived. The characteristics of the proposed joint discriminator are analyzed based on the properties of the MLE cost function,gradient vector, and Hessian matrix. The effectiveness of IMLE is verified by Monte Carlo simulation.展开更多
Estimation of the unknown mean, μ and variance, σ2 of a univariate Gaussian distribution given a single study variable x is considered. We propose an approach that does not require initialization of the sufficient u...Estimation of the unknown mean, μ and variance, σ2 of a univariate Gaussian distribution given a single study variable x is considered. We propose an approach that does not require initialization of the sufficient unknown distribution parameters. The approach is motivated by linearizing the Gaussian distribution through differential techniques, and estimating, μ and σ2 as regression coefficients using the ordinary least squares method. Two simulated datasets on hereditary traits and morphometric analysis of housefly strains are used to evaluate the proposed method (PM), the maximum likelihood estimation (MLE), and the method of moments (MM). The methods are evaluated by re-estimating the required Gaussian parameters on both large and small samples. The root mean squared error (RMSE), mean error (ME), and the standard deviation (SD) are used to assess the accuracy of the PM and MLE;confidence intervals (CIs) are also constructed for the ME estimate. The PM compares well with both the MLE and MM approaches as they all produce estimates whose errors have good asymptotic properties, also small CIs are observed for the ME using the PM and MLE. The PM can be used symbiotically with the MLE to provide initial approximations at the expectation maximization step.展开更多
In this paper, we consider the construction of the approximate profile-</span><span style="font-family:""> </span><span style="font-family:Verdana;">likelihood confiden...In this paper, we consider the construction of the approximate profile-</span><span style="font-family:""> </span><span style="font-family:Verdana;">likelihood confidence intervals for parameters of the 2-parameter Weibull distribution based on small type-2 censored samples. In previous research works, the traditional Wald method has been used to construct approximate confidence intervals for the 2-parameter Weibull distribution</span><span style="font-family:""> </span><span style="font-family:Verdana;">under type-2 censoring scheme. However, the Wald technique is based on normality assumption and thus may not produce accurate interval estimates for small samples. The profile-likelihood and Wald confidence intervals are constructed for the shape and scale parameters of the 2-parameter Weibull distribution based on simulated and real type-2 censored data, and are hence compared using confidence length and coverage probability.展开更多
文摘The performance degradation of an orthogonal frequency division multiplexing (OFDM) systems due to clock synchronization error is analyzed and a pilot-aided maximum likelihood (ML) estimating method is proposed to correct it. The proposed algorithm enables clock synchronization error estimation from a pilot whose duration is only two symbol periods. The study shows that this method is simple and exact. The clock synchronization error can be corrected almost entirely.
文摘By taking the subsequence out of the input-output sequence of a system polluted by white noise, an independent observation sequence and its probability density are obtained and then a maximum likelihood estimation of the identification parameters is given. In order to decrease the asymptotic error, a corrector of maximum likelihood (CML) estimation with its recursive algorithm is given. It has been proved that the corrector has smaller asymptotic error than the least square methods. A simulation example shows that the corrector of maximum likelihood estimation is of higher approximating precision to the true parameters than the least square methods.
文摘Iteration methods and their convergences of the maximum likelihoodestimator are discussed in this paper.We study Gauss-Newton method and give a set ofsufficient conditions for the convergence of asymptotic numerical stability.The modifiedGauss-Newton method is also studied and the sufficient conditions of the convergence arepresented.Two numerical examples are given to illustrate our results.
文摘Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution.
基金the Michigan Department of Transportation (MDOT) for the financial support of this study (report no. SPR1723)。
文摘The calibration of transfer functions is essential for accurate pavement performance predictions in the PavementME design. Several studies have used the least square approach to calibrate these transfer functions. Least square is a widely used simplistic approach based on certain assumptions. Literature shows that these least square approach assumptions may not apply to the non-normal distributions. This study introduces a new methodology for calibrating the transverse cracking and international roughness index(IRI) models in rigid pavements using maximum likelihood estimation(MLE). Synthetic data for transverse cracking, with and without variability, are generated to illustrate the applicability of MLE using different known probability distributions(exponential,gamma, log-normal, and negative binomial). The approach uses measured data from the Michigan Department of Transportation's(MDOT) pavement management system(PMS) database for 70 jointed plain concrete pavement(JPCP) sections to calibrate and validate transfer functions. The MLE approach is combined with resampling techniques to improve the robustness of calibration coefficients. The results show that the MLE transverse cracking model using the gamma distribution consistently outperforms the least square for synthetic and observed data. For observed data, MLE estimates of parameters produced lower SSE and bias than least squares(e.g., for the transverse cracking model, the SSE values are 3.98 vs. 4.02, and the bias values are 0.00 and-0.41). Although negative binomial distribution is the most suitable fit for the IRI model for MLE, the least square results are slightly better than MLE. The bias values are-0.312 and 0.000 for the MLE and least square methods. Overall, the findings indicate that MLE is a robust method for calibration, especially for non-normally distributed data such as transverse cracking.
基金supported by the National Science Foundations (DMS0504783 DMS0604207)National Science Fund for Distinguished Young Scholars of China (70825005)
文摘This paper deals with the problems of consistency and strong consistency of the maximum likelihood estimators of the mean and variance of the drift fractional Brownian motions observed at discrete time instants. Both the central limit theorem and the Berry-Ess′een bounds for these estimators are obtained by using the Stein’s method via Malliavin calculus.
文摘In reliability analysis,the stress-strength model is often used to describe the life of a component which has a random strength(X)and is subjected to a random stress(Y).In this paper,we considered the problem of estimating the reliability𝑅𝑅=P[Y<X]when the distributions of both stress and strength are independent and follow exponentiated Pareto distribution.The maximum likelihood estimator of the stress strength reliability is calculated under simple random sample,ranked set sampling and median ranked set sampling methods.Four different reliability estimators under median ranked set sampling are derived.Two estimators are obtained when both strength and stress have an odd or an even set size.The two other estimators are obtained when the strength has an odd size and the stress has an even set size and vice versa.The performances of the suggested estimators are compared with their competitors under simple random sample via a simulation study.The simulation study revealed that the stress strength reliability estimates based on ranked set sampling and median ranked set sampling are more efficient than their competitors via simple random sample.In general,the stress strength reliability estimates based on median ranked set sampling are smaller than the corresponding estimates under ranked set sampling and simple random sample methods.Keywords:Stress-Strength model,ranked set sampling,median ranked set sampling,maximum likelihood estimation,mean square error.corresponding estimates under ranked set sampling and simple random sample methods.
文摘In the presence of multicollinearity in logistic regression, the variance of the Maximum Likelihood Estimator (MLE) becomes inflated. Siray et al. (2015) [1] proposed a restricted Liu estimator in logistic regression model with exact linear restrictions. However, there are some situations, where the linear restrictions are stochastic. In this paper, we propose a Stochastic Restricted Maximum Likelihood Estimator (SRMLE) for the logistic regression model with stochastic linear restrictions to overcome this issue. Moreover, a Monte Carlo simulation is conducted for comparing the performances of the MLE, Restricted Maximum Likelihood Estimator (RMLE), Ridge Type Logistic Estimator(LRE), Liu Type Logistic Estimator(LLE), and SRMLE for the logistic regression model by using Scalar Mean Squared Error (SMSE).
基金the National Natural Science Foundation of China
文摘According to the principle, “The failure data is the basis of software reliability analysis”, we built a software reliability expert system (SRES) by adopting the artificial intelligence technology. By reasoning out the conclusion from the fitting results of failure data of a software project, the SRES can recommend users “the most suitable model” as a software reliability measurement model. We believe that the SRES can overcome the inconsistency in applications of software reliability models well. We report investigation results of singularity and parameter estimation methods of experimental models in SRES.
文摘By exponentiating each of the components of a finite mixture of two exponential components model by a positive parameter, several shapes of hazard rate functions are obtained. Maximum likelihood and Bayes methods, based on square error loss function and objective prior, are used to obtain estimators based on balanced square error loss function for the parameters, survival and hazard rate functions of a mixture of two exponentiated exponential components model. Approximate interval estimators of the parameters of the model are obtained.
文摘In this paper maximum ranked set sampling procedure with unequal samples (MRSSU) is proposed. Maximum likelihood estimator and modified maximum likelihood estimator are obtained and their properties are studied under exponential distribution. These methods are studied under both perfect and imperfect ranking (with errors in ranking). These estimators are then compared with estimators based on simple random sampling (SRS) and ranked set sampling (RSS) procedures. It is shown that relative efficiencies of the estimators based on MRSSU are better than those of the estimator based on SRS. Simulation results show that efficiency of proposed estimator is better than estimator based on RSS under ranking error.
基金Jointly supported by China Major Key Project for Basic Researcher and Provincial Natrual Science Foundation.
文摘In this paper we give an almost sharp error estimate of Halley’s iteration for the majorizing sequence. Compared with the corresponding results in [6,14], it is far better. Meanwhile,the convergence theorem is established .for Halley’s iteration in Banach spaces.
基金The NSF(11271155) of ChinaResearch Fund(20070183023) for the Doctoral Program of Higher Education
文摘In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original scale. We obtain two estimators which minimize the asymptotic mean squared error (MM) and the asymptotic bias (MB), respectively. Both the estimators are very easy to implement, and simulation studies show that they are perform better.
基金supported by the National Natural Science Foundation of China(1150143371473187)the Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ1014)
文摘In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fixed point type iterative algorithm for unknown parameters are presented, and the least square estimates of the parameters are also proposed. Meanwhile, confidence intervals of model parameters are constructed by using the asymptotic theory and bootstrap technique. Numerical illustration is given to investigate the performance of our methods.
基金supported by the National Program on Key Basic Research Project of China (Grant No. 2010CB950703)the National Natural Science foundation of China General Program (Grant No. 40975062)the Young Scholars Fundation of Beijing Normal University (Grant No. 105502GK)
文摘Correctly estimating the forecast error covariance matrix is a key step in any data assimilation scheme. If it is not correctly estimated, the assimilated states could be far from the true states. A popular method to address this problem is error covariance matrix inflation. That is, to multiply the forecast error covariance matrix by an appropriate factor. In this paper, analysis states are used to construct the forecast error covariance matrix and an adaptive estimation procedure associated with the error covariance matrix inflation technique is developed. The proposed assimilation scheme was tested on the Lorenz-96 model and 2D Shallow Water Equation model, both of which are associated with spatially correlated observational systems. The experiments showed that by introducing the proposed structure of the forecast error eovariance matrix and applying its adaptive estimation procedure, the assimilation results were further improved.
基金Projects(51475462,61374138,61370031)supported by the National Natural Science Foundation of China
文摘Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.
基金supported by National High Technology Research and Development Program of China(863)(Grant No.2013AA1548)
文摘To break through the limitations of traditional discriminators used in vector tracking loops, this paper presents an iterative maximum likelihood estimation(IMLE) method for extracting navigation state errors from multi-satellite signals. The IMLE method takes into account both computational cost and estimation accuracy. The associated gradient vector and Hessian matrix of the MLE cost function are derived. The characteristics of the proposed joint discriminator are analyzed based on the properties of the MLE cost function,gradient vector, and Hessian matrix. The effectiveness of IMLE is verified by Monte Carlo simulation.
文摘Estimation of the unknown mean, μ and variance, σ2 of a univariate Gaussian distribution given a single study variable x is considered. We propose an approach that does not require initialization of the sufficient unknown distribution parameters. The approach is motivated by linearizing the Gaussian distribution through differential techniques, and estimating, μ and σ2 as regression coefficients using the ordinary least squares method. Two simulated datasets on hereditary traits and morphometric analysis of housefly strains are used to evaluate the proposed method (PM), the maximum likelihood estimation (MLE), and the method of moments (MM). The methods are evaluated by re-estimating the required Gaussian parameters on both large and small samples. The root mean squared error (RMSE), mean error (ME), and the standard deviation (SD) are used to assess the accuracy of the PM and MLE;confidence intervals (CIs) are also constructed for the ME estimate. The PM compares well with both the MLE and MM approaches as they all produce estimates whose errors have good asymptotic properties, also small CIs are observed for the ME using the PM and MLE. The PM can be used symbiotically with the MLE to provide initial approximations at the expectation maximization step.
文摘In this paper, we consider the construction of the approximate profile-</span><span style="font-family:""> </span><span style="font-family:Verdana;">likelihood confidence intervals for parameters of the 2-parameter Weibull distribution based on small type-2 censored samples. In previous research works, the traditional Wald method has been used to construct approximate confidence intervals for the 2-parameter Weibull distribution</span><span style="font-family:""> </span><span style="font-family:Verdana;">under type-2 censoring scheme. However, the Wald technique is based on normality assumption and thus may not produce accurate interval estimates for small samples. The profile-likelihood and Wald confidence intervals are constructed for the shape and scale parameters of the 2-parameter Weibull distribution based on simulated and real type-2 censored data, and are hence compared using confidence length and coverage probability.