The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic ...The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.展开更多
This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation techno...This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework.展开更多
Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborh...Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.展开更多
A genetic algorithm(GA)-based new method is designed to evaluate thecircularity error of mechanical parts. The method uses the capability of nonlinear optimization ofGA to search for the optimal solution of circularit...A genetic algorithm(GA)-based new method is designed to evaluate thecircularity error of mechanical parts. The method uses the capability of nonlinear optimization ofGA to search for the optimal solution of circularity error. The finely-designed GA (FDGA)characterized dynamical bisexual recombination and Gaussian mutation. The mathematical model of thenonlinear problem is given. The implementation details in FDGA are described such as the crossoveror recombination mechanism which utilized a bisexual reproduction scheme and the elitist reservationmethod; and the adaptive mutation which used the Gaussian probability distribution to determine thevalues of the offspring produced by mutation mechanism. The examples are provided to verify thedesigned FDGA. The computation results indicate that the FDGA works very well in the field of formerror evaluation such as circularity evaluation.展开更多
Longley-Rice channel model modifies the atmospheric refraction by the equivalent earth radius method, which is simple calculation but is not accurate. As it only uses the horizontal difference, but does not make use o...Longley-Rice channel model modifies the atmospheric refraction by the equivalent earth radius method, which is simple calculation but is not accurate. As it only uses the horizontal difference, but does not make use of the vertical section information, it does not agree with the actual propagation path. The atmospheric refraction error correction method of the Longley-Rice channel model has been improved. The improved method makes use of the vertical section information sufficiently and maps the distance between the receiver and transmitter to the radio wave propagation distance, It can exactly reflect the infection of propagation distance for the radio wave propagation loss. It is predicted to be more close to the experimental results by simulation in comparison with the measured data. The effectiveness of improved methods is proved by simulation.展开更多
To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is propos...To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools.展开更多
To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an impr...To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an improved artificial bee colony algorithm without derivative and the bootstrap method to estimate the parameters and evaluate the accuracy of MAM error model.The improved artificial bee colony algorithm can update individuals in multiple dimensions and improve the cooperation ability between individuals by constructing a new search equation based on the idea of quasi-affine transformation.The experimental results show that based on the weighted least squares criterion,the algorithm can get the results consistent with the weighted least squares method without multiple formula derivation.The parameter estimation and accuracy evaluation method based on the bootstrap method can get better parameter estimation and more reasonable accuracy information than existing methods,which provides a new idea for the theory of parameter estimation and accuracy evaluation of the MAM error model.展开更多
A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar de...A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar denominator. The generalized inverse introduced by [3]is gen-eralized to rectangular matrix case in this paper. An exact error formula for interpolation is ob-tained, which is an extension in matrix form of bivariate scalar and vector valued rational interpola-tion discussed by Siemaszko[l2] and by Gu Chuangqing [7] respectively. By defining row and col-umn-transformation in the sense of the partial inverted differences for matrices, two type matrix algorithms are established to construct corresponding two different BGIRI, which hold for the vec-tor case and the scalar case.展开更多
Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient n...Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient nonlinear universal approximator,which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed.Results The neuro-fuzzy hybrid system,i.e.BP FS,is then applied to construct nonlinear inverse model of pressure sensor.The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation,and thus the performance of pressure sensor is significantly improved.Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output.展开更多
Taking the accelerometer installation errors into consideration, the attitude optimization algorithm of Gyro Free Inertial Meastement Unit (GFIMU) is studied in the high spinning condition in this paper. A ten-accel...Taking the accelerometer installation errors into consideration, the attitude optimization algorithm of Gyro Free Inertial Meastement Unit (GFIMU) is studied in the high spinning condition in this paper. A ten-accelerometer configuration is designed so as to establish a mathematical model to acquire the angular speeds in the case of installation errors. Precision of the algorithm is evaluated by using damping GaussNewton method. A large amotmt of sinmlation results show that ff the accelertlmter's angleinstallation errors main-tain small (〈5°), the errors of attitude angles can be limited within ±1°. Hence, the algorithm has a great applicable value in engineering.展开更多
A universal locking model for single ion optical clocks was built based on a simple integrator and a double integrator.Different integrator algorithm parameters have been analyzed in both numerical simulations and exp...A universal locking model for single ion optical clocks was built based on a simple integrator and a double integrator.Different integrator algorithm parameters have been analyzed in both numerical simulations and experiments.The frequency variation measured by the comparison of two optical clocks coincides well with the simulation results for different second integrator parameters.According to the experimental results,the sensitivity of the servo error influenced by laser frequency drift with the addition of a double integrator was suppressed by a factor of 107.In a week-long comparison of optical clocks,the relative uncertainty of the servo error is determined to be 1.9×10^(-18),which is meaningful for the systematic uncertainty of the transportable single^(40)Ca^(+)ion optical clock entering the 10^(-18)level.展开更多
In this paper, a class of generalized strongly nonlinear quasivariational inclusions are studied. By using the properties of the resolvent operator associated with a maximal monotone; mapping in Hilbert space, an exis...In this paper, a class of generalized strongly nonlinear quasivariational inclusions are studied. By using the properties of the resolvent operator associated with a maximal monotone; mapping in Hilbert space, an existence theorem of solutions for generalized strongly nonlinear quasivariational inclusion is established and a new proximal point algorithm with errors is suggested for finding approximate solutions which strongly converge to the exact solution of the generalized strongly, nonlinear quasivariational inclusion. As special cases, some known results in this field are also discussed.展开更多
Considering the characteristics of spatial straightness error, this paper puts forward a kind of evaluation method of spatial straightness error using Geometric Approximation Searching Algorithm (GASA). According to t...Considering the characteristics of spatial straightness error, this paper puts forward a kind of evaluation method of spatial straightness error using Geometric Approximation Searching Algorithm (GASA). According to the minimum condition principle of form error evaluation, the mathematic model and optimization objective of the GASA are given. The algorithm avoids the optimization and linearization, and can be fulfilled in three steps. First construct two parallel quadrates based on the preset two reference points of the spatial line respectively;second construct centerlines by connecting one quadrate each vertices to another quadrate each vertices;after that, calculate the distances between measured points and the constructed centerlines. The minimum zone straightness error is obtained by repeating comparing and reconstructing quadrates. The principle and steps of the algorithm to evaluate spatial straightness error is described in detail, and the mathematical formula and program flowchart are given also. Results show that this algorithm can evaluate spatial straightness error more effectively and exactly.展开更多
Extended Kalman Filter(EKF)algorithm is widely used in parameter estimation for nonlinear systems.The estimation precision is sensitively dependent on EKF’s initial state covariance matrix and state noise matrix.The ...Extended Kalman Filter(EKF)algorithm is widely used in parameter estimation for nonlinear systems.The estimation precision is sensitively dependent on EKF’s initial state covariance matrix and state noise matrix.The grid optimization method is always used to find proper initial matrix for off-line estimation.However,the grid method has the draw back being time consuming hence,coarse grid followed by a fine grid method is adopted.To further improve efficiency without the loss of estimation accuracy,we propose a genetic algorithm for the coarse grid optimization in this paper.It is recognized that the crossover rate and mutation rate are the main influencing factors for the performance of the genetic algorithm,so sensitivity experiments for these two factors are carried out and a set of genetic algorithm parameters with good adaptability were selected by testing with several gyros’experimental data.Experimental results show that the proposed algorithm has higher efficiency and better estimation accuracy than the traversing grid algorithm.展开更多
In this paper we introduce two kinds of parallel Schwarz domain decomposition me thods for general, selfadjoint, second order parabolic equations and study the dependence of their convergence rates on parameters of ti...In this paper we introduce two kinds of parallel Schwarz domain decomposition me thods for general, selfadjoint, second order parabolic equations and study the dependence of their convergence rates on parameters of time-step and space-mesh. We prove that the, approximate solution has convergence independent of iteration times at each time-level. And the L^2 error estimates are given.展开更多
The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location ...The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival(TSOA) algorithm from the root mean square error(RMSE) and geometric dilution of precision(GDOP) in additive white Gaussian noise(AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.展开更多
This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this ...This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this algorithm, a model of the algorithm with phase errors is established, and the relationship between the success rate of the algorithm, the database size, the number of iterations, and the phase error is determined. For a given database size, we obtain both the maximum success rate of the algorithm and the required number of iterations when phase errors are present in the algorithm. Analyses and numerical simulations show that the optimized quantum random-walk search algorithm is more robust against phase errors than Grover's algorithm.展开更多
Error analysis methods in frequency domain are developed in this paper for determining the characteristic root and transfer function errors when the linear multipass algorithms are used to solve linear differential eq...Error analysis methods in frequency domain are developed in this paper for determining the characteristic root and transfer function errors when the linear multipass algorithms are used to solve linear differential equations. The relation between the local truncation error in time domain and the error in frequency domain is established, which is the basis for developing the error estimation methods. The error estimation methods for the digital simulation model constructed by using the Runge-Kutta algorithms and the linear multistep predictor-corrector algorithms are also given.展开更多
According to the test data of subdivision errors in the measuring cycle of angular measuring system, the characteristics of subdivision errors generated by this system are analyzed. It is found that the subdivision er...According to the test data of subdivision errors in the measuring cycle of angular measuring system, the characteristics of subdivision errors generated by this system are analyzed. It is found that the subdivision errors are mainly due to the rotary-type inductosyn itself. For the characteristic of cyclical change, the subdivision errors in other measuring cycles can be compensated by the subdivision error model in one measuring cycle. Using the measured error data as training samples, combining GA and BP algorithm, an ANN model of subdivision error is designed. Simulation results indicate that GA reduces the uncertainty in the training process of the ANN model, and enhances the generalization of the model. Compared with the error model based on the least-mean-squared method, the designed ANN model of subdivision errors can achieve higher compensating precision.展开更多
The human error mechanism in coal mine safety is analyzed specifically from safety psychological and physiological factors, worker' s quality, safety management, safety education, mechanical equipment, and working en...The human error mechanism in coal mine safety is analyzed specifically from safety psychological and physiological factors, worker' s quality, safety management, safety education, mechanical equipment, and working environment, and also a human error' dominant factors classification model playing a great effect on the safety production of coal mine is established with the application of ant clustering algorithm. The experimental results show that management is the key in the human errors of coal mine.展开更多
基金the Research of New Intelligent Integrated Transport Information System,Technical Plan Project of Binhai New District,Tianjin(No.2015XJR21017)
文摘The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.
文摘This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework.
文摘Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.
基金The project is supported by National Natural Science Foundation of China(No.59975025).
文摘A genetic algorithm(GA)-based new method is designed to evaluate thecircularity error of mechanical parts. The method uses the capability of nonlinear optimization ofGA to search for the optimal solution of circularity error. The finely-designed GA (FDGA)characterized dynamical bisexual recombination and Gaussian mutation. The mathematical model of thenonlinear problem is given. The implementation details in FDGA are described such as the crossoveror recombination mechanism which utilized a bisexual reproduction scheme and the elitist reservationmethod; and the adaptive mutation which used the Gaussian probability distribution to determine thevalues of the offspring produced by mutation mechanism. The examples are provided to verify thedesigned FDGA. The computation results indicate that the FDGA works very well in the field of formerror evaluation such as circularity evaluation.
文摘Longley-Rice channel model modifies the atmospheric refraction by the equivalent earth radius method, which is simple calculation but is not accurate. As it only uses the horizontal difference, but does not make use of the vertical section information, it does not agree with the actual propagation path. The atmospheric refraction error correction method of the Longley-Rice channel model has been improved. The improved method makes use of the vertical section information sufficiently and maps the distance between the receiver and transmitter to the radio wave propagation distance, It can exactly reflect the infection of propagation distance for the radio wave propagation loss. It is predicted to be more close to the experimental results by simulation in comparison with the measured data. The effectiveness of improved methods is proved by simulation.
基金The National Natural Science Foundation of China(No.51465035)the Natural Science Foundation of Gansu,China(No.20JR5R-A466)。
文摘To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools.
基金supported by the National Natural Science Foundation of China(No.42174011 and No.41874001).
文摘To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an improved artificial bee colony algorithm without derivative and the bootstrap method to estimate the parameters and evaluate the accuracy of MAM error model.The improved artificial bee colony algorithm can update individuals in multiple dimensions and improve the cooperation ability between individuals by constructing a new search equation based on the idea of quasi-affine transformation.The experimental results show that based on the weighted least squares criterion,the algorithm can get the results consistent with the weighted least squares method without multiple formula derivation.The parameter estimation and accuracy evaluation method based on the bootstrap method can get better parameter estimation and more reasonable accuracy information than existing methods,which provides a new idea for the theory of parameter estimation and accuracy evaluation of the MAM error model.
文摘A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar denominator. The generalized inverse introduced by [3]is gen-eralized to rectangular matrix case in this paper. An exact error formula for interpolation is ob-tained, which is an extension in matrix form of bivariate scalar and vector valued rational interpola-tion discussed by Siemaszko[l2] and by Gu Chuangqing [7] respectively. By defining row and col-umn-transformation in the sense of the partial inverted differences for matrices, two type matrix algorithms are established to construct corresponding two different BGIRI, which hold for the vec-tor case and the scalar case.
基金This work was supported by National Natural Science Foundation of China(No.60276037).
文摘Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient nonlinear universal approximator,which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed.Results The neuro-fuzzy hybrid system,i.e.BP FS,is then applied to construct nonlinear inverse model of pressure sensor.The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation,and thus the performance of pressure sensor is significantly improved.Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output.
基金supported by National Key Laboratory for Electronic Measurement and Technology(No.9140C120401080C12)
文摘Taking the accelerometer installation errors into consideration, the attitude optimization algorithm of Gyro Free Inertial Meastement Unit (GFIMU) is studied in the high spinning condition in this paper. A ten-accelerometer configuration is designed so as to establish a mathematical model to acquire the angular speeds in the case of installation errors. Precision of the algorithm is evaluated by using damping GaussNewton method. A large amotmt of sinmlation results show that ff the accelertlmter's angleinstallation errors main-tain small (〈5°), the errors of attitude angles can be limited within ±1°. Hence, the algorithm has a great applicable value in engineering.
基金the National Key Research and Development Program of China(Grant No.2017YFA0304404)the National Natural Science Foundation of China(Grant No.11674357)。
文摘A universal locking model for single ion optical clocks was built based on a simple integrator and a double integrator.Different integrator algorithm parameters have been analyzed in both numerical simulations and experiments.The frequency variation measured by the comparison of two optical clocks coincides well with the simulation results for different second integrator parameters.According to the experimental results,the sensitivity of the servo error influenced by laser frequency drift with the addition of a double integrator was suppressed by a factor of 107.In a week-long comparison of optical clocks,the relative uncertainty of the servo error is determined to be 1.9×10^(-18),which is meaningful for the systematic uncertainty of the transportable single^(40)Ca^(+)ion optical clock entering the 10^(-18)level.
文摘In this paper, a class of generalized strongly nonlinear quasivariational inclusions are studied. By using the properties of the resolvent operator associated with a maximal monotone; mapping in Hilbert space, an existence theorem of solutions for generalized strongly nonlinear quasivariational inclusion is established and a new proximal point algorithm with errors is suggested for finding approximate solutions which strongly converge to the exact solution of the generalized strongly, nonlinear quasivariational inclusion. As special cases, some known results in this field are also discussed.
文摘Considering the characteristics of spatial straightness error, this paper puts forward a kind of evaluation method of spatial straightness error using Geometric Approximation Searching Algorithm (GASA). According to the minimum condition principle of form error evaluation, the mathematic model and optimization objective of the GASA are given. The algorithm avoids the optimization and linearization, and can be fulfilled in three steps. First construct two parallel quadrates based on the preset two reference points of the spatial line respectively;second construct centerlines by connecting one quadrate each vertices to another quadrate each vertices;after that, calculate the distances between measured points and the constructed centerlines. The minimum zone straightness error is obtained by repeating comparing and reconstructing quadrates. The principle and steps of the algorithm to evaluate spatial straightness error is described in detail, and the mathematical formula and program flowchart are given also. Results show that this algorithm can evaluate spatial straightness error more effectively and exactly.
文摘Extended Kalman Filter(EKF)algorithm is widely used in parameter estimation for nonlinear systems.The estimation precision is sensitively dependent on EKF’s initial state covariance matrix and state noise matrix.The grid optimization method is always used to find proper initial matrix for off-line estimation.However,the grid method has the draw back being time consuming hence,coarse grid followed by a fine grid method is adopted.To further improve efficiency without the loss of estimation accuracy,we propose a genetic algorithm for the coarse grid optimization in this paper.It is recognized that the crossover rate and mutation rate are the main influencing factors for the performance of the genetic algorithm,so sensitivity experiments for these two factors are carried out and a set of genetic algorithm parameters with good adaptability were selected by testing with several gyros’experimental data.Experimental results show that the proposed algorithm has higher efficiency and better estimation accuracy than the traversing grid algorithm.
基金This work was supported by Natural Science Foundation of China and Shandong Province.
文摘In this paper we introduce two kinds of parallel Schwarz domain decomposition me thods for general, selfadjoint, second order parabolic equations and study the dependence of their convergence rates on parameters of time-step and space-mesh. We prove that the, approximate solution has convergence independent of iteration times at each time-level. And the L^2 error estimates are given.
基金supported by the Joint Civil Aviation Fund of National Natural Science Foundation of China(Nos.U1533108 and U1233112)
文摘The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival(TSOA) algorithm from the root mean square error(RMSE) and geometric dilution of precision(GDOP) in additive white Gaussian noise(AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this algorithm, a model of the algorithm with phase errors is established, and the relationship between the success rate of the algorithm, the database size, the number of iterations, and the phase error is determined. For a given database size, we obtain both the maximum success rate of the algorithm and the required number of iterations when phase errors are present in the algorithm. Analyses and numerical simulations show that the optimized quantum random-walk search algorithm is more robust against phase errors than Grover's algorithm.
基金This project was supported by the National Natural Science Foundation of China (No. 19871080).
文摘Error analysis methods in frequency domain are developed in this paper for determining the characteristic root and transfer function errors when the linear multipass algorithms are used to solve linear differential equations. The relation between the local truncation error in time domain and the error in frequency domain is established, which is the basis for developing the error estimation methods. The error estimation methods for the digital simulation model constructed by using the Runge-Kutta algorithms and the linear multistep predictor-corrector algorithms are also given.
文摘According to the test data of subdivision errors in the measuring cycle of angular measuring system, the characteristics of subdivision errors generated by this system are analyzed. It is found that the subdivision errors are mainly due to the rotary-type inductosyn itself. For the characteristic of cyclical change, the subdivision errors in other measuring cycles can be compensated by the subdivision error model in one measuring cycle. Using the measured error data as training samples, combining GA and BP algorithm, an ANN model of subdivision error is designed. Simulation results indicate that GA reduces the uncertainty in the training process of the ANN model, and enhances the generalization of the model. Compared with the error model based on the least-mean-squared method, the designed ANN model of subdivision errors can achieve higher compensating precision.
文摘The human error mechanism in coal mine safety is analyzed specifically from safety psychological and physiological factors, worker' s quality, safety management, safety education, mechanical equipment, and working environment, and also a human error' dominant factors classification model playing a great effect on the safety production of coal mine is established with the application of ant clustering algorithm. The experimental results show that management is the key in the human errors of coal mine.