In this paper, a new equivalent nonlinearization method is developed and used in analysing the response of nonlinear systems to Gaussian while noise excitation. Its basic idea and calculation method are expounded. Wit...In this paper, a new equivalent nonlinearization method is developed and used in analysing the response of nonlinear systems to Gaussian while noise excitation. Its basic idea and calculation method are expounded. With the help of the presented method, several kinds of usual nonlinear random vibration systems are analyzed. The numerical results show that the mean square responses of the proposed approach are much closer to the exact solutions or Monte Carlo solutions, than that obtained from equivalent linearization method.展开更多
We studied the response of fractional-order van de Pol oscillator to Gaussian white noise excitation in this letter. An equivalent integral-order nonlinear stochastic system is obtained to replace the given system bas...We studied the response of fractional-order van de Pol oscillator to Gaussian white noise excitation in this letter. An equivalent integral-order nonlinear stochastic system is obtained to replace the given system based on the principle of minimum mean-square error. Through stochastic averaging, an averaged Ito equation is deduced. We obtained the Fokker–Planck–Kolmogorov equation connected to the averaged Ito equation and solved it to yield the approximate stationary response of the system. The analytical solution is confirmed by using Monte Carlo simulation.展开更多
文摘In this paper, a new equivalent nonlinearization method is developed and used in analysing the response of nonlinear systems to Gaussian while noise excitation. Its basic idea and calculation method are expounded. With the help of the presented method, several kinds of usual nonlinear random vibration systems are analyzed. The numerical results show that the mean square responses of the proposed approach are much closer to the exact solutions or Monte Carlo solutions, than that obtained from equivalent linearization method.
基金supported by the National Natural Science Foundation of China(10932009,11072212,11272279,and 11002059)the Specialized Research Fund for the Doctoral Program of Higher Education(20103501120003)the Fundamental Research Funds for Huaqiao University(JB-SJ1010)
文摘We studied the response of fractional-order van de Pol oscillator to Gaussian white noise excitation in this letter. An equivalent integral-order nonlinear stochastic system is obtained to replace the given system based on the principle of minimum mean-square error. Through stochastic averaging, an averaged Ito equation is deduced. We obtained the Fokker–Planck–Kolmogorov equation connected to the averaged Ito equation and solved it to yield the approximate stationary response of the system. The analytical solution is confirmed by using Monte Carlo simulation.