The effects of forward extrusion as well as extrusion combined with reversible torsion(KoBo extrusion),followed by additional deformation via the MaxStrain module of the Gleeble thermomechanical simulator,on the micro...The effects of forward extrusion as well as extrusion combined with reversible torsion(KoBo extrusion),followed by additional deformation via the MaxStrain module of the Gleeble thermomechanical simulator,on the microstructure,mechanical properties,and electrical conductivity of a Cu−0.7Mg(wt.%)alloy,were investigated.The simulation results highlighted the critical influence of processing history on determining the equivalent strain distribution.The sample subjected to forward extrusion at 400℃and subsequent MaxStrain processing(FM sample),possessed 76%lower grain size compared to the sample processed solely with MaxStrain(AM sample).Likewise,the KoBo-extruded and MaxStrain-processed sample(KM sample)exhibited 66%smaller grain size compared to the AM sample.Tensile test results revealed that the AM,FM,and KM samples,respectively,possessed 251%,288%,and 360%higher yield strength,and 95%,121%,and 169%higher tensile strength compared to the initial annealed alloy,as a result of grain refinement as well as deformation strengthening.Finally,the electrical conductivity measurements revealed that AM,FM,and KM samples,respectively,possessed electrical conductivity values of 37.9,35.6,and 32.0 MS/m,which,by considering their mechanical properties,makes them eligible to be categorized as high-strength and high-conductivity copper alloys.展开更多
In the present paper the analytical formulas for calculating the equivalent deterministic transients for multivariable cross correlated random processes are developed.The formulas permit the determination of the Root-...In the present paper the analytical formulas for calculating the equivalent deterministic transients for multivariable cross correlated random processes are developed.The formulas permit the determination of the Root-mean-square of the responses of a linear time-invariant system to stationary multiple random inputs in the time domain.The method is applicable in the study of flight of airplanes in atmospheric turbulence and is also useful for general engineering applications of stochastc processes control.展开更多
The equivalent damage calculation formulae of fatigue crack formation andgrowth are established. In order to compile the fatigue crack formation and growth accelerated loadspectra, the main wave shapes and load sequen...The equivalent damage calculation formulae of fatigue crack formation andgrowth are established. In order to compile the fatigue crack formation and growth accelerated loadspectra, the main wave shapes and load sequence of the actual load spectrum are kept constant, andthe carrier waves are cut off. And secondary waves are put together into new secondary waves toshorten the test time according to the equivalent damage calculation formulae respectively. Then bythe fatigue cumulative damage calculation of the fatigue crack formation and growth accelerated loadspectra, the one corresponding to the bigger damage is determined as the fatigue accelerated testload spectrum. Therefore in the test process, the fatigue accelerated test spectrum may be appliedtill fatigue failure, the engineering fatigue crack length of full-scale structure need not beinspected, and the fatigue crack formation accelerated load spectrum need not be transferred intothe fatigue crack growth accelerated load spectrum. Finally, it is verified by tests of two kinds ofspecimens that the damages of the specimens caused by the accelerated load spectra are near tothose by the actual load spectra; namely, the tested life of actual load spectra is similar to thatof accelerated load spectra. But the test time of accelerated load spectra is shortened by aboutthree-quarters that of actual load spectra. From these tests, it is also found that the fatigueaccelerated test spectrum has an advantage over FALSTAFF spectra.展开更多
基金financially supported by Silesian University of Technology,Poland(No.11/030/BK_23/1127)V?B–Technical University of Ostrava Czech Republic(No.CZ.02.1.01/0.0/0.0/17_049/0008399)。
文摘The effects of forward extrusion as well as extrusion combined with reversible torsion(KoBo extrusion),followed by additional deformation via the MaxStrain module of the Gleeble thermomechanical simulator,on the microstructure,mechanical properties,and electrical conductivity of a Cu−0.7Mg(wt.%)alloy,were investigated.The simulation results highlighted the critical influence of processing history on determining the equivalent strain distribution.The sample subjected to forward extrusion at 400℃and subsequent MaxStrain processing(FM sample),possessed 76%lower grain size compared to the sample processed solely with MaxStrain(AM sample).Likewise,the KoBo-extruded and MaxStrain-processed sample(KM sample)exhibited 66%smaller grain size compared to the AM sample.Tensile test results revealed that the AM,FM,and KM samples,respectively,possessed 251%,288%,and 360%higher yield strength,and 95%,121%,and 169%higher tensile strength compared to the initial annealed alloy,as a result of grain refinement as well as deformation strengthening.Finally,the electrical conductivity measurements revealed that AM,FM,and KM samples,respectively,possessed electrical conductivity values of 37.9,35.6,and 32.0 MS/m,which,by considering their mechanical properties,makes them eligible to be categorized as high-strength and high-conductivity copper alloys.
文摘In the present paper the analytical formulas for calculating the equivalent deterministic transients for multivariable cross correlated random processes are developed.The formulas permit the determination of the Root-mean-square of the responses of a linear time-invariant system to stationary multiple random inputs in the time domain.The method is applicable in the study of flight of airplanes in atmospheric turbulence and is also useful for general engineering applications of stochastc processes control.
基金This project is supported by National Natural Science and Aeronautic Science Foundation of China (No. 50005003, No. 01A51011)
文摘The equivalent damage calculation formulae of fatigue crack formation andgrowth are established. In order to compile the fatigue crack formation and growth accelerated loadspectra, the main wave shapes and load sequence of the actual load spectrum are kept constant, andthe carrier waves are cut off. And secondary waves are put together into new secondary waves toshorten the test time according to the equivalent damage calculation formulae respectively. Then bythe fatigue cumulative damage calculation of the fatigue crack formation and growth accelerated loadspectra, the one corresponding to the bigger damage is determined as the fatigue accelerated testload spectrum. Therefore in the test process, the fatigue accelerated test spectrum may be appliedtill fatigue failure, the engineering fatigue crack length of full-scale structure need not beinspected, and the fatigue crack formation accelerated load spectrum need not be transferred intothe fatigue crack growth accelerated load spectrum. Finally, it is verified by tests of two kinds ofspecimens that the damages of the specimens caused by the accelerated load spectra are near tothose by the actual load spectra; namely, the tested life of actual load spectra is similar to thatof accelerated load spectra. But the test time of accelerated load spectra is shortened by aboutthree-quarters that of actual load spectra. From these tests, it is also found that the fatigueaccelerated test spectrum has an advantage over FALSTAFF spectra.