期刊文献+
共找到63,534篇文章
< 1 2 250 >
每页显示 20 50 100
Evaluation of WRF-based Convection-Permitting Ensemble Forecasts for an Extreme Rainfall Event in East China during the Mei-yu Season
1
作者 Chengyi ZHANG Mengwen WU Yali LUO 《Advances in Atmospheric Sciences》 2025年第10期2102-2124,共23页
This study focuses on an extreme rainfall event in East China during the mei-yu season,in which the capital city(Nanjing)of Jiangsu Province experienced a maximum 14-h rainfall accumulation of 209.6 mm and a peak hour... This study focuses on an extreme rainfall event in East China during the mei-yu season,in which the capital city(Nanjing)of Jiangsu Province experienced a maximum 14-h rainfall accumulation of 209.6 mm and a peak hourly rainfall of 118.8 mm.The performance of two sets of convection-permitting ensemble forecast systems(CEFSs),each with 30 members and a 3-km horizontal grid spacing,is evaluated.The CEFS_ICBCs,using multiple initial and boundary conditions(ICs and BCs),and the CEFS_ICBCs Phys,which incorporates both multi-physics schemes and ICs/BCs,are compared to the CMA-REPS(China Meteorological Administration-Regional Ensemble Prediction System)with a coarser 10-km grid spacing.The two CEFSs demonstrate more uniform rank histograms and lower Brier scores(with higher resolution),improving precipitation intensity predictions and providing more reliable probability forecasts,although they overestimate precipitation over Mt.Dabie.It is challenging for the CEFSs to capture the evolution of mesoscale rainstorms that are known to be related to the errors in predicting the southwesterly low-level winds.Sensitivity experiments reveal that the microphysics and radiation schemes introduce considerable uncertainty in predicting the intensity and location of heavy rainfall in and near Nanjing and Mt.Dabie.In particular,the Asymmetric Convection Model 2(ACM2)planetary boundary layer scheme combined with the Pleim-Xiu surface layer scheme tends to produce a biased northeastward extension of the boundary-layer jet,contributing to the northeastward bias of heavy precipitation around Nanjing in the CEFS_ICBCs. 展开更多
关键词 extreme rainfall mei-yu season convection-permitting ensemble forecasts forecast evaluation
在线阅读 下载PDF
Impacts of lateral boundary conditions from numerical models and data-driven networks on convective-scale ensemble forecasts
2
作者 Junjie Deng Jin Zhang +3 位作者 Haoyan Liu Hongqi Li Feng Chen Jing Chen 《Atmospheric and Oceanic Science Letters》 2025年第2期78-85,共8页
The impacts of lateral boundary conditions(LBCs)provided by numerical models and data-driven networks on convective-scale ensemble forecasts are investigated in this study.Four experiments are conducted on the Hangzho... The impacts of lateral boundary conditions(LBCs)provided by numerical models and data-driven networks on convective-scale ensemble forecasts are investigated in this study.Four experiments are conducted on the Hangzhou RDP(19th Hangzhou Asian Games Research Development Project on Convective-scale Ensemble Prediction and Application)testbed,with the LBCs respectively sourced from National Centers for Environmental Prediction(NCEP)Global Forecast System(GFS)forecasts with 33 vertical levels(Exp_GFS),Pangu forecasts with 13 vertical levels(Exp_Pangu),Fuxi forecasts with 13 vertical levels(Exp_Fuxi),and NCEP GFS forecasts with the vertical levels reduced to 13(the same as those of Exp_Pangu and Exp_Fuxi)(Exp_GFSRDV).In general,Exp_Pangu performs comparably to Exp_GFS,while Exp_Fuxi shows slightly inferior performance compared to Exp_Pangu,possibly due to its less accurate large-scale predictions.Therefore,the ability of using data-driven networks to efficiently provide LBCs for convective-scale ensemble forecasts has been demonstrated.Moreover,Exp_GFSRDV has the worst convective-scale forecasts among the four experiments,which indicates the potential improvement of using data-driven networks for LBCs by increasing the vertical levels of the networks.However,the ensemble spread of the four experiments barely increases with lead time.Thus,each experiment has insufficient ensemble spread to present realistic forecast uncertainties,which will be investigated in a future study. 展开更多
关键词 ensemble forecast Convective scale Lateral boundary conditions Data-driven network
在线阅读 下载PDF
Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts 被引量:2
3
作者 Mengmeng SONG Dazhi YANG +7 位作者 Sebastian LERCH Xiang'ao XIA Gokhan Mert YAGLI Jamie M.BRIGHT Yanbo SHEN Bai LIU Xingli LIU Martin Janos MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1417-1437,共21页
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil... Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks. 展开更多
关键词 ensemble weather forecasting forecast calibration non-crossing quantile regression neural network CORP reliability diagram POST-PROCESSING
在线阅读 下载PDF
Growth and Interactions of Multi-Source Perturbations in Convection-Allowing Ensemble Forecasts
4
作者 张璐 闵锦忠 +2 位作者 庄潇然 王世璋 魏莉青 《Journal of Tropical Meteorology》 SCIE 2024年第2期118-131,共14页
This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectio... This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectionallowing ensemble forecast(CAEF)experiments.Two cases,one with strong-forcing(SF)and the other with weak-forcing(WF),occurred over the Yangtze-Huai River basin(YHRB)in East China,were selected to examine the sources of uncertainties associated with perturbation growth under varying forcing backgrounds and the influence of these backgrounds on growth.The perturbations exhibited distinct characteristics in terms of temporal evolution,spatial propagation,and vertical distribution under different forcing backgrounds,indicating a dependence between perturbation growth and forcing background.A comparison of the perturbation growth in different precipitation areas revealed that IC and LBC perturbations were significantly influenced by the location of precipitation in the SF case,while MO perturbations were more responsive to convection triggering and dominated in the WF case.The vertical distribution of perturbations showed that the sources of uncertainties and the performance of perturbations varied between SF and WF cases,with LBC perturbations displaying notable case dependence.Furthermore,the interactions between perturbations were considered by exploring the added values of different source perturbations.For the SF case,the added values of IC,LBC,and MO perturbations were reflected in different forecast periods and different source uncertainties,suggesting that the combination of multi-source perturbations can yield positive interactions.In the WF case,MO perturbations provided a more accurate estimation of uncertainties downstream of the Dabie Mountain and need to be prioritized in the research on perturbation development. 展开更多
关键词 convection-allowing ensemble forecast forcing background perturbation growth INTERACTIONS added value
在线阅读 下载PDF
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
5
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
Multi-model ensemble learning for battery state-of-health estimation:Recent advances and perspectives 被引量:1
6
作者 Chuanping Lin Jun Xu +4 位作者 Delong Jiang Jiayang Hou Ying Liang Zhongyue Zou Xuesong Mei 《Journal of Energy Chemistry》 2025年第1期739-759,共21页
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per... The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions. 展开更多
关键词 Lithium-ion battery State-of-health estimation DATA-DRIVEN Machine learning ensemble learning ensemble diversity
在线阅读 下载PDF
不平衡集成算法LASSO-EasyEnsemble在冠心病预后预测中的应用及可解释性研究
7
作者 昝家昕 杨弘 +4 位作者 田晶 闫晶晶 和紫铉 杜宇涛 张岩波 《中国卫生统计》 北大核心 2025年第2期197-203,共7页
目的 针对冠心病预后预测中遇到的高噪声、类间不平衡的特点,通过LASSO特征筛选后,构建EasyEnsemble不平衡集成模型并对模型性能进行评估。方法 基于2009—2018年美国健康与营养调查公共数据库的调查数据,随访时间截止到2019年。预后有... 目的 针对冠心病预后预测中遇到的高噪声、类间不平衡的特点,通过LASSO特征筛选后,构建EasyEnsemble不平衡集成模型并对模型性能进行评估。方法 基于2009—2018年美国健康与营养调查公共数据库的调查数据,随访时间截止到2019年。预后有无因病死亡作为结局,通过LASSO进行特征选择,使用筛选后特征构建EasyEnsemble不平衡集成预测模型和SMOTE+LightGBM、XGBoost、Random Forest预测模型,采用网格搜索法对每个模型进行参数优化,通过AUC、精确率、特异度、G-mean和性能曲线评价其分类性能;应用SHAP(shapley additive explanation)进行模型可解释性分析。结果 EasyEnsemble模型的综合性能最高,AUC为0.80(95%CI:0.79~0.82),精确率为0.86(95%CI:0.78~0.93),特异度为0.99(95%CI:0.98~0.99)和G-mean为0.79(95%CI:0.76~0.83),性能曲线也显示最高。同时,年龄、血清磷、糖尿病、白蛋白等是影响患者预后的重要因素。结论 基于LASSO-EasyEnsemble的不平衡集成模型能够实现对冠心病患者预后的精准预测,结合SHAP可以帮助临床医生更好地评估疾病严重程度和识别高危人群以便实现患者个性化管理。 展开更多
关键词 冠心病 不平衡数据 集成学习 预后预测 可解释性
暂未订购
A New Method to Calculate Nonlinear Optimal Perturbations for Ensemble Forecasting
8
作者 Junjie MA Wansuo DUAN +1 位作者 Zhuomin LIU Ye WANG 《Advances in Atmospheric Sciences》 2025年第5期952-967,共16页
Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly effi... Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly efficient calculations for O-CNOPs are still challenging in the field of ensemble forecasting.In this study,we combine a gradient-based iterative idea with the Gram‒Schmidt orthogonalization,and propose an iterative optimization method to compute O-CNOPs.This method is different from the original sequential optimization method,and allows parallel computations of O-CNOPs,thus saving a large amount of computational time.We evaluate this method by using the Lorenz-96 model on the basis of the ensemble forecasting ability achieved and on the time consumed for computing O-CNOPs.The results demonstrate that the parallel iterative method causes O-CNOPs to yield reliable ensemble members and to achieve ensemble forecasting skills similar to or even slightly higher than those produced by the sequential method.Moreover,the parallel method significantly reduces the computational time for O-CNOPs.Therefore,the parallel iterative method provides a highly effective and efficient approach for calculating O-CNOPs for ensemble forecasts.Expectedly,it can play an important role in the application of the O-CNOPs to realistic ensemble forecasts for high-impact weather and climate events. 展开更多
关键词 initial uncertainty conditional nonlinear optimal perturbation optimization method ensemble forecasting
在线阅读 下载PDF
Predictability analysis based on ensemble forecasting of the“7·20”extreme rainstorm in Henan,China
9
作者 Sai TAN Qiuping WANG +4 位作者 Xulin MA Lu SUN Xin ZHANG Xinlu LV Xin SUN 《Frontiers of Earth Science》 2025年第3期341-356,共16页
A heavy rainstorm occurred in Henan Province,China,between 19 and 21 July,2021,with a record-breaking 201.9 mm of precipitation in 1 h.To explore the key factors that led to forecasting errors for this extreme rainsto... A heavy rainstorm occurred in Henan Province,China,between 19 and 21 July,2021,with a record-breaking 201.9 mm of precipitation in 1 h.To explore the key factors that led to forecasting errors for this extreme rainstorm,as well as the dominant contributor affecting its predictability,we employed the Global/Regional Assimilation and Prediction System-Regional Ensemble Prediction System(GRAPES-REPS)to investigate the impact of the upper tropospheric cold vortex,middle-low vortex,and low-level jet on predictability and forecasting errors.The results showed that heavy rainfall was influenced by the following stable atmospheric circulation systems:subtropical highs,continental highs,and Typhoon In-Fa.Severe convection was caused by abundant water vapor,orographic uplift,and mesoscale vortices.Multiscale weather systems contributed to maintaining extreme rainfall in Henan for a long duration.The prediction ability of the optimal member of GRAPES-REPS was attributed to effective prediction of the intensity and evolution characteristics of the upper tropospheric cold vortex,middle-low vortex,and low-level jet.Conversely,the prediction deviation of unstable and dynamic conditions in the lower level of the worst member led to a decline in the forecast quality of rainfall intensity and its rainfall area.This indicates that heavy rainfall was strongly related to the short-wave throughput,upper tropospheric cold vortex,vortex,and boundary layer jet.Moreover,we observed severe uncertainty in GRAPES-REPS forecasts for rainfall caused by strong convection,whereas the predictability of rainfall caused by topography was high.Compared with the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System,GRAPES-REPS exhibits a better forecast ability for heavy rainfall,with some ensemble members able to better predict extreme precipitation. 展开更多
关键词 numerical weather prediction ensemble forecast ensemble sensitivity PREDICTABILITY extreme rainfall
原文传递
Steel Surface Defect Recognition in Smart Manufacturing Using Deep Ensemble Transfer Learning-Based Techniques
10
作者 Tajmal Hussain Jongwon Seok 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期231-250,共20页
Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,re... Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,reduce costs,and ensure product quality.In light of the recent advancement of Industry 4.0,identifying defects has become important for ensuring the quality of products during the manufacturing process.In this research,we present an ensemble methodology for accurately classifying hot rolled steel surface defects by combining the strengths of four pre-trained convolutional neural network(CNN)architectures:VGG16,VGG19,Xception,and Mobile-Net V2,compensating for their individual weaknesses.We evaluated our methodology on the Xsteel surface defect dataset(XSDD),which comprises seven different classes.The ensemble methodology integrated the predictions of individual models through two methods:model averaging and weighted averaging.Our evaluation showed that the model averaging ensemble achieved an accuracy of 98.89%,a recall of 98.92%,a precision of 99.05%,and an F1-score of 98.97%,while the weighted averaging ensemble reached an accuracy of 99.72%,a recall of 99.74%,a precision of 99.67%,and an F1-score of 99.70%.The proposed weighted averaging ensemble model outperformed the model averaging method and the individual models in detecting defects in terms of accuracy,recall,precision,and F1-score.Comparative analysis with recent studies also showed the superior performance of our methodology. 展开更多
关键词 Smart manufacturing CNN steel defects ensemble models
在线阅读 下载PDF
TELL-Me:A time-series-decomposition-based ensembled lightweight learning model for diverse battery prognosis and diagnosis 被引量:1
11
作者 Kun-Yu Liu Ting-Ting Wang +2 位作者 Bo-Bo Zou Hong-Jie Peng Xinyan Liu 《Journal of Energy Chemistry》 2025年第7期1-8,共8页
As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigat... As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigation of degradation mechanisms.However,dynamic operating conditions,cell-to-cell inconsistencies,and limited availability of labeled data have posed significant challenges to accurate and robust prognosis and diagnosis.Herein,we introduce a time-series-decomposition-based ensembled lightweight learning model(TELL-Me),which employs a synergistic dual-module framework to facilitate accurate and reliable forecasting.The feature module formulates features with physical implications and sheds light on battery aging mechanisms,while the gradient module monitors capacity degradation rates and captures aging trend.TELL-Me achieves high accuracy in end-of-life prediction using minimal historical data from a single battery without requiring offline training dataset,and demonstrates impressive generality and robustness across various operating conditions and battery types.Additionally,by correlating feature contributions with degradation mechanisms across different datasets,TELL-Me is endowed with the diagnostic ability that not only enhances prediction reliability but also provides critical insights into the design and optimization of next-generation batteries. 展开更多
关键词 Battery prognosis Interpretable machine learning Degradation diagnosis ensemble learning Online prediction Lightweight model
在线阅读 下载PDF
High-skill members in the subseasonal forecast ensemble of extreme cold events in East Asia
12
作者 Xinli Liu Jingzhi Su +1 位作者 Yihao Peng Xiaolei Liu 《Atmospheric and Oceanic Science Letters》 2025年第6期22-28,共7页
Subseasonal forecasting of extreme events is crucial for early warning systems.However,the forecast skills for extreme events are limited.Taking the extreme cold events in January 2018 as a specific example,and analyz... Subseasonal forecasting of extreme events is crucial for early warning systems.However,the forecast skills for extreme events are limited.Taking the extreme cold events in January 2018 as a specific example,and analyzing the 34 extreme cold events in East Asia from 1998 to 2020,the authors evaluated the forecast skills of the ECMWF model ensemble members on subseasonal time scales.The results show that while the ensemble mean has limited skills for forecasting extreme cold events at the 3-week lead time,some individual members demonstrate high forecast skills.For most extreme cold events,there are>10%of members among the total ensembles that can well predict the rapid temperature transitions at the 14-day lead time.This highlights the untapped potential of the ECMWF model to forecast extreme cold events on subseasonal time scales.High-skill ensemble members rely on accurate predictions of atmospheric circulation patterns(500-hPa geopotential height,mean sea level pressure)and key weather systems,including the Ural Blocking and Siberian High,that influence extreme cold events. 展开更多
关键词 Subseasonal forecast Forecast skill ensemble members Extreme cold event
在线阅读 下载PDF
Global Ensemble Weather Prediction from a Deep Learning–Based Model(Pangu-Weather)with the Initial Condition Perturbations of CMA-GEPS
13
作者 Xin LIU Jing CHEN +6 位作者 Yuejian ZHU Yongzhu LIU Fajing CHEN Zhenhua HUO Fei PENG Yanan MA Yuhang GONG 《Advances in Atmospheric Sciences》 2025年第8期1636-1660,共25页
Pangu-Weather(PGW),trained with deep learning–based methods(DL-based model),shows significant potential for global medium-range weather forecasting.However,the interpretability and trustworthiness of global medium-ra... Pangu-Weather(PGW),trained with deep learning–based methods(DL-based model),shows significant potential for global medium-range weather forecasting.However,the interpretability and trustworthiness of global medium-range DLbased models raise many concerns.This study uses the singular vector(SV)initial condition(IC)perturbations of the China Meteorological Administration's Global Ensemble Prediction System(CMA-GEPS)as inputs of PGW for global ensemble prediction(PGW-GEPS)to investigate the ensemble forecast sensitivity of DL-based models to the IC errors.Meanwhile,the CMA-GEPS forecasts serve as benchmarks for comparison and verification.The spatial structures and prediction performance of PGW-GEPS are discussed and compared to CMA-GEPS based on seasonal ensemble experiments.The results show that the ensemble mean and dispersion of PGW-GEPS are similar to those of CMA-GEPS in the medium range but with smoother forecasts.Meanwhile,PGW-GEPS is sensitive to the SV IC perturbations.Specifically,PGWGEPS can generate realistic ensemble spread beyond the sub-synoptic scale(wavenumbers≤64)with SV IC perturbations.However,PGW's kinetic energy is significantly reduced at the sub-synoptic scale,leading to error growth behavior inconsistent with CMA-GEPS at that scale.Thus,this behavior indicates that the effective resolution of PGW-GEPS is beyond the sub-synoptic scale and is limited to predicting mesoscale atmospheric motions.In terms of the global mediumrange ensemble prediction performance,the probability prediction skill of PGW-GEPS is comparable to CMA-GEPS in the extratropic when they use the same IC perturbations.That means that PGW has a general ability to provide skillful global medium-range forecasts with different ICs from numerical weather prediction. 展开更多
关键词 deep learning ensemble prediction forecast uncertainty initial condition perturbations CMA-GEPS Pangu-Weather
在线阅读 下载PDF
Methodology for Detecting Non-Technical Energy Losses Using an Ensemble of Machine Learning Algorithms
14
作者 Irbek Morgoev Roman Klyuev Angelika Morgoeva 《Computer Modeling in Engineering & Sciences》 2025年第5期1381-1399,共19页
Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of... Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of advanced metering infrastructure(AMI)and Smart Grid allows all participants in the distribution grid to store and track electricity consumption.During the research,a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings.This model is an ensemble meta-algorithm(stacking)that generalizes the algorithms of random forest,LightGBM,and a homogeneous ensemble of artificial neural networks.The best accuracy of the proposed meta-algorithm in comparison to basic classifiers is experimentally confirmed on the test sample.Such a model,due to good accuracy indicators(ROC-AUC-0.88),can be used as a methodological basis for a decision support system,the purpose of which is to form a sample of suspected NTL sources.The use of such a sample will allow the top management of electric distribution companies to increase the efficiency of raids by performers,making them targeted and accurate,which should contribute to the fight against NTL and the sustainable development of the electric power industry. 展开更多
关键词 Non-technical losses smart grid machine learning electricity theft FRAUD ensemble algorithm hybrid method forecasting classification supervised learning
在线阅读 下载PDF
Weighted Voting Ensemble Model Integrated with IoT for Detecting Security Threats in Satellite Systems and Aerial Vehicles
15
作者 Raed Alharthi 《Journal of Computer and Communications》 2025年第2期250-281,共32页
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl... Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy. 展开更多
关键词 Intrusion Detection Cyber-Physical Systems Drone Security Weighted ensemble Voting Unmanned Vehicles Security Strategies
在线阅读 下载PDF
FISHER INFORMATION AMONG β-ENSEMBLES
16
作者 Yutao MA 《Acta Mathematica Scientia》 2025年第2期493-513,共21页
In this paper,we consider the Fisher informations among three classical type β-ensembles when β>0 scales with n satisfying lim βn=∞.We offer the exact order of-the corresponding two Fisher informations,which in... In this paper,we consider the Fisher informations among three classical type β-ensembles when β>0 scales with n satisfying lim βn=∞.We offer the exact order of-the corresponding two Fisher informations,which indicates that theβ-Laguerre ensembles do not satisfy the logarithmic Sobolev inequality.We also give some limit theorems on the extremals of β-Jacobi ensembles for β>0 fixed. 展开更多
关键词 β-Hermite ensemble βB-Laguerre ensemble β-Jacobi ensemble Fisher information Tracy-Widom law
在线阅读 下载PDF
Ensemble Deep Learning Approaches in Health Care:A Review
17
作者 Aziz Alotaibi 《Computers, Materials & Continua》 2025年第3期3741-3771,共31页
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensem... Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/decisions.With the growth in popularity of deep learning and ensemble learning algorithms,they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big data.Ensemble deep learning has exhibited significant performance in enhancing learning generalization through the use of multiple deep learning algorithms.Although ensemble deep learning has large quantities of training parameters,which results in time and space overheads,it performs much better than traditional ensemble learning.Ensemble deep learning has been successfully used in several areas,such as bioinformatics,finance,and health care.In this paper,we review and investigate recent ensemble deep learning algorithms and techniques in health care domains,medical imaging,health care data analytics,genomics,diagnosis,disease prevention,and drug discovery.We cover several widely used deep learning algorithms along with their architectures,including deep neural networks(DNNs),convolutional neural networks(CNNs),recurrent neural networks(RNNs),and generative adversarial networks(GANs).Common healthcare tasks,such as medical imaging,electronic health records,and genomics,are also demonstrated.Furthermore,in this review,the challenges inherent in reducing the burden on the healthcare system are discussed and explored.Finally,future directions and opportunities for enhancing healthcare model performance are discussed. 展开更多
关键词 Deep learning ensemble learning deep ensemble learning deep learning approaches for health care health care
在线阅读 下载PDF
Ensemble learning-driven multi-objective optimization of the co-pyrolysis process of biomass and coal for high economic and environmental performance
18
作者 Qingchun Yang Dongwen Rong +2 位作者 Qiwen Guo Runjie Bao Dawei Zhang 《Chinese Journal of Chemical Engineering》 2025年第8期23-34,共12页
The biomass and coal co-pyrolysis (BCP) technology combines the advantages of both resources, achieving efficient resource complementarity, reducing reliance on coal, and minimizing pollutant emissions. However, this ... The biomass and coal co-pyrolysis (BCP) technology combines the advantages of both resources, achieving efficient resource complementarity, reducing reliance on coal, and minimizing pollutant emissions. However, this process still encounters numerous challenges in attaining optimal economic and environmental performance. Therefore, an ensemble learning (EL) framework is proposed for the BCP process in this study to optimize the synergistic benefits while minimizing negative environmental impacts. Six different ensemble learning models are developed to investigate the impact of input features, such as biomass characteristics, coal characteristics, and pyrolysis conditions on the product profit and CO_(2) emissions of the BCP processes. The Optuna method is further employed to automatically optimize the hyperparameters of BCP process models for enhancing their predictive accuracy and robustness. The results indicate that the categorical boosting (CAB) model of the BCP process has demonstrated exceptional performance in accurately predicting its product profit and CO_(2) emission (R2>0.92) after undergoing five-fold cross-validation. To enhance the interpretability of this preferred model, the Shapley additive explanations and partial dependence plot analyses are conducted to evaluate the impact and importance of biomass characteristics, coal characteristics, and pyrolysis conditions on the product profitability and CO_(2) emissions of the BCP processes. Finally, the preferred model coupled with a reference vector guided evolutionary algorithm is carried to identify the optimal conditions for maximizing the product profit of BCP process products while minimizing CO_(2) emissions. It indicates the optimal BCP process can achieve high product profits (5290.85 CNY·t−1) and low CO_(2) emissions (7.45 kg·t^(−1)). 展开更多
关键词 BIOMASS PYROLYSIS Optimal design ensemble learning Economic analysis
在线阅读 下载PDF
AI-based Correction of Wave Forecasts Using the Transformer-enhanced UNet Model
19
作者 Yanzhao CAO Shouwen ZHANG +2 位作者 Guannan LV Mengchao YU Bo AI 《Advances in Atmospheric Sciences》 2025年第1期221-231,共11页
Grid forecasting can be used to effectively enhance the spatial and temporal density of forecast products,thereby improving the capability of short-term marine disaster forecasting and warnings in terms of proximity.T... Grid forecasting can be used to effectively enhance the spatial and temporal density of forecast products,thereby improving the capability of short-term marine disaster forecasting and warnings in terms of proximity.The traditional method that relies on forecasters'subjective correction of station observation data for forecasting has been unable to meet the practical needs of refined forecasting.To address this problem,this paper proposes a Transformer-enhanced UNet(TransUNet)model for wave forecast AI correction,which fuses wind and wave information.The Transformer structure is integrated into the encoder of the UNet model,and instead of using the traditional upsampling method,the dual-sampling module is employed in the decoder to enhance the feature extraction capability.This paper compares the TransUNet model with the traditional UNet model using wind speed forecast data,wave height forecast data,and significant wave height reanalysis data provided by ECMWF.The experimental results indicate that the TransUNet model yields smaller root-meansquare errors,mean errors,and standard deviations of the corrected results for the next 24-h forecasts than does the UNet model.Specifically,the root-mean-square error decreased by more than 21.55%compared to its precorrection value.According to the statistical analysis,87.81%of the corrected wave height errors for the next 24-h forecast were within±0.2m,with only 4.56%falling beyond±0.3 m.This model effectively limits the error range and enhances the ability to forecast wave heights. 展开更多
关键词 TransUNet TRANSFORMER wave forecasting bias correction
在线阅读 下载PDF
Understanding the initial conditions contributing to the rapid intensification of typhoons through ensemble sensitivity analysis
20
作者 Yixuan Ren Lili Lei +2 位作者 Jian-Feng Gu Zhe-Min Tan Yi Zhang 《Atmospheric and Oceanic Science Letters》 2025年第2期36-42,共7页
While steady improvements have been achieved for the track forecasts of typhoons,there has been a lack of improvement for intensity forecasts.One challenge for intensity forecasts is to capture the rapid intensificati... While steady improvements have been achieved for the track forecasts of typhoons,there has been a lack of improvement for intensity forecasts.One challenge for intensity forecasts is to capture the rapid intensification(RI),whose nonlinear characteristics impose great difficulties for numerical models.The ensemble sensitivity analysis(ESA)method is used here to analyze the initial conditions that contribute to typhoon intensity forecasts,especially with RI.Six RI processes from five typhoons(Chaba,Haima,Meranti,Sarika,and Songda)in 2016,are applied with ESA,which also gives a composite initial condition that favors subsequent RI.Results from individual cases have generally similar patterns of ESA,but with different magnitudes,when various cumulus parameterization schemes are applied.To draw the initial conditions with statistical significance,sample-mean azimuthal components of ESA are obtained.Results of the composite sensitivity show that typhoons that experience RI in 24 h favor enhanced primary circulation from low to high levels,intensified secondary circulation with increased radial inflow at lower levels and increased radial outflow at upper levels,a prominent warm core at around 300 hPa,and increased humidity at low levels.As the forecast lead time increases,the patterns of ESA are retained,while the sensitivity magnitudes decay.Given the general and quantitative composite sensitivity along with associated uncertainties for different cumulus parameterization schemes,appropriate sampling of the composite sensitivity in numerical models could be beneficial to capturing the RI and improving the forecasting of typhoon intensity. 展开更多
关键词 TYPHOON Rapid intensification ensemble sensitivity analysis Composite sensitivity
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部