期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
Research on the Construction and Function of a Chlorophyll Degradation Recombinant Engineering Strain
1
作者 Zongcan YANG Zhan ZHANG +3 位作者 Jianbin YE Yufu PENG Xiangzhen LIU Hongxia WANG 《Agricultural Science & Technology》 CAS 2017年第10期1788-1794,共7页
In order to effectively reduce the chlorophyll content in flue-cured tobacco, improve the overall quality of tobacco leaves, chlorophyllase gene was cloned from Arabidopsis thaliana. After the expression of the expres... In order to effectively reduce the chlorophyll content in flue-cured tobacco, improve the overall quality of tobacco leaves, chlorophyllase gene was cloned from Arabidopsis thaliana. After the expression of the expression vector in E. coil, the recombinant engineering strain was obtained. Afterwards, IPTG (isopropy-β-D-thiogalactopyranoside)was used to induce the goal protein, and the chlorophyllase activity of the recombinant engineering strain was measured, so as to investigate its degradation effect on the chlorophyll in the extracts of tobacco leaves. The results were as follows: (1) the amplified chlorophyllase gene At- CLH1 constructed the expression vector pET28a-AtCLH1 successfully, obtaining the recombinant engineering strain; (2) induced under 30 ℃ for 22 h, the strain could well express the recombinant protein AtCLH1 with 0.5 mmol/L IPTG, and the molecular weight was about 35 kDa; (3) the strain showed good chlorophyllase producing capability, and the activity of the produced chlorophyllase could reach up to 24.9 U/mL, which could degrade the chlorophyll in tobacco extract and had a good application prospect in improving the quality of low quality tobacco; (4) based on the results of orthogonal test, the enzyme extract from the strain was added to the tobacco leaf surface, which could make the degradation rate of chlorophyll in the tobacco leaf reach 17.06% under the temperature of 37 ℃ at the humidity of 75% for 48 h; (5) after treated by the enzyme liquid, the test tobacco showed increase in the content of aromatic substances, enhancement of tobacco fragrance quality and amount, significant decrease of offensive odor and irritation, significant improvement of agreeable aftertaste, making the overall sensory quality of the tobacco leaf significantly improved. 展开更多
关键词 Tobacco leaf Degradation of chlorophyll Recombinant engineering strain Protein expression Activity of chlorophyllase Orthogonal test Aroma substances Sensory quality
在线阅读 下载PDF
Synergistic strain engineering of the perovskite films for improving flexible inverted perovskite solar cells under convex bending
2
作者 Yong Gang Lu Xu +5 位作者 Silong Tu Shusen Jiang Yan Zhang Hao Wang Cheng Li Xin Li 《Journal of Energy Chemistry》 2025年第3期271-281,共11页
Flexible perovskite solar cells(fPSCs)have demonstrated commercial viability because of their promising lightness,flexibility,and low-cost advantages.However,in most applications,the fPSCs suffer from constant externa... Flexible perovskite solar cells(fPSCs)have demonstrated commercial viability because of their promising lightness,flexibility,and low-cost advantages.However,in most applications,the fPSCs suffer from constant external stress,such as being kept at a convex bending state,imposing external stress on the brittle perovskite films and causing the fPSCs long-term stability problems.Overcoming these issues is vital.Herein,we propose an effective way to enhance the stability of the fPSCs under convex bending by modulating the residual stress of perovskite film for the first time.Specifically,we have carefully designed a synergistic strain engineering to toughen the perovskite films by introducing 1-butyl-3-methylimidazolium tetrafluoroborate,citric acid,and a novel cross-linker,5-(1,2-dithiolan-3-yl)pentanoate into perovskite films simultaneously.Besides passivating the perovskite films,the multiple additives effectively convert the residual stress within the perovskite films from tensile to compressive type to alleviate the detrimental impact of bending on the flexible perovskite films.As a result,the optimal efficiencies of triple-additive modified fPSCs have achieved 22.19%(0.06 cm^(2))and 19.44%(1.02 cm^(2)).More importantly,the strategy could significantly improve the stability of the perovskite films and fPSCs at a convex bending state.Our approach is inductive for the future practical field applications of high-performance fPSCs. 展开更多
关键词 Inverted flexible perovskite solar cells Synergistic strain engineering Stability
在线阅读 下载PDF
Clamping-Layer-Mediated Strain Engineering of Electrical Transport in Freestanding Nickelates Membranes
3
作者 Huan Ye Fang Xu +6 位作者 Ao Wang Yueming Huang Jingdi Lu Feng Jin Wenbin Wu Jinfeng Zhang Lingfei Wang 《Chinese Physics Letters》 2025年第11期330-340,共11页
Strain engineering serves as an effective approach for tuning the properties of transition metal oxides and their heterostructures. However, conventional epitaxial approaches are fundamentally constrained by the limit... Strain engineering serves as an effective approach for tuning the properties of transition metal oxides and their heterostructures. However, conventional epitaxial approaches are fundamentally constrained by the limited choice of substrates, which restricts the ability to achieve continuous strain modulation. The emergence of freestanding oxide thin films has significantly expanded the scope of strain manipulation, allowing the application of larger tensile strains and the induction of novel functionalities. Nevertheless, current freestanding film technologies face a critical limitation: strain modulation has so far been confined to tensile strain, while the application of compressive strain remains inaccessible. To overcome this challenge, we designed a symmetric tri-layer structure composed of clamping layer/nickelate/clamping layer, which enables modulation of the metal-insulator transition in freestanding Nd NiO_(3) and La NiO_(3) thin films under both tensile and compressive strain. This clamping-layermediated strain engineering approach can be readily generalized to other freestanding oxide systems, providing a versatile platform for manipulating the physical properties of freestanding thin films. 展开更多
关键词 strain modulation strain manipulation strain engineering transition metal oxides oxide thin films application larger tensile strains epitaxial approaches tuning properties
原文传递
Thermal strain engineering in cobalt-coordinated Mo_(2)N for efficient ampere-level current density alkaline fresh/seawater hydrogen evolution electrocatalysis
4
作者 Yuwen Hu Meilian Tu +7 位作者 Tuzhi Xiong Yanxiang He Muhammad Mushtaq Hao Yang Zeba Khanam Yongchao Huang Jianqiu Deng M.-Sadeeq Balogun 《Journal of Energy Chemistry》 2025年第4期282-293,共12页
Lattice-strain engineering has demonstrated its capability to influence the electronic structure and catalytic performance of electrocatalysts.Herein,we present a facile method for inducing thermal strain in cobalt/mo... Lattice-strain engineering has demonstrated its capability to influence the electronic structure and catalytic performance of electrocatalysts.Herein,we present a facile method for inducing thermal strain in cobalt/molybdenum nitride rod-shaped structures(denoted Co/Mo_(2)N)via ammonia-assisted reduction,which effectively modulating the HER performance.The optimized Co/Mo_(2)N-500,characterized by 3%tensile lattice strain,demonstrates exceptional HER activity with lower overpotentials of140 mV and 184 mV at high current density of 1000 mA cm^(-2)in alkaline freshwater and seawater electrolytes,respectively.Co/Mo_(2)N also exhibits excellent long-term durability even at a high current density of 300 mA cm^(-2),surpassing its counterparts and benchmark Pt/C catalyst.Density functional theory calculations validate that the tensile strain optimizes the d-band states,water dissociation,and hydrogen adsorption kinetics of the strained Mo_(2)N in Co/Mo_(2)N,thereby improving its catalytic efficacy.This work provides valuable insights into controlling lattice strain to develop highly efficient electrocatalysts towards advanced electrocatalytic applications. 展开更多
关键词 Co/Mo_(2)N Thermal strain engineering Hydrogen evolution reaction Ampere-level current density Seawater splitting
在线阅读 下载PDF
Diamond semiconductor and elastic strain engineering 被引量:4
5
作者 Chaoqun Dang Anliang Lu +2 位作者 Heyi Wang Hongti Zhang Yang Lu 《Journal of Semiconductors》 EI CAS CSCD 2022年第2期35-46,共12页
Diamond,as an ultra-wide bandgap semiconductor,has become a promising candidate for next-generation microelec-tronics and optoelectronics due to its numerous advantages over conventional semiconductors,including ultra... Diamond,as an ultra-wide bandgap semiconductor,has become a promising candidate for next-generation microelec-tronics and optoelectronics due to its numerous advantages over conventional semiconductors,including ultrahigh carrier mo-bility and thermal conductivity,low thermal expansion coefficient,and ultra-high breakdown voltage,etc.Despite these ex-traordinary properties,diamond also faces various challenges before being practically used in the semiconductor industry.This review begins with a brief summary of previous efforts to model and construct diamond-based high-voltage switching diodes,high-power/high-frequency field-effect transistors,MEMS/NEMS,and devices operating at high temperatures.Following that,we will discuss recent developments to address scalable diamond device applications,emphasizing the synthesis of large-area,high-quality CVD diamond films and difficulties in diamond doping.Lastly,we show potential solutions to modulate diamond’s electronic properties by the“elastic strain engineering”strategy,which sheds light on the future development of diamond-based electronics,photonics and quantum systems. 展开更多
关键词 DIAMOND OPTOELECTRONICS power electronics nanomechanics elastic strain engineering
在线阅读 下载PDF
Strain Engineering for Germanium-on-Insulator Mobility Enhancement with Phase Change Liner Stressors 被引量:1
6
作者 Yan-Yan Zhang Ran Cheng +4 位作者 Shuang Xie Shun Xu Xiao Yu aui Zhang Yi Zhao 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期88-91,共4页
We investigate the strain in various Ge-on-insulator (GeOI) micro-structures induced by three phase-change maferials (PCMs) (Ge2Sb2Te5, Sb2Te3, GeTe) deposited. The PCMs could change the phase from amorphous sta... We investigate the strain in various Ge-on-insulator (GeOI) micro-structures induced by three phase-change maferials (PCMs) (Ge2Sb2Te5, Sb2Te3, GeTe) deposited. The PCMs could change the phase from amorphous state to polycrystalline state with a low temperature thermal annealing, resulting in an intrinsic contraction in the PCM films. Raman spectroscopy analysis is performed to compare the strain induced in the GeOI micro- structures by various PCMs. By comparison, Sb2 Tea could induce the largest amount of tensile strain in the GeOI micro-structures after the low temperature annealing. Based on the strain calculated from the Raman peak shifts, finite element numerical simulation is performed to calculate the strain-induced electron mobility enhancement for Ge n-MOSFETs with PCM liner stressors. With the adoption of Sb2 Te3 liner stressor, 22% electron mobility enhancement at Xinv=1×10^13cm^-2 could be achieved, suggesting that PCM especially Sb2 Te3 liner stressor is a promising technique for the performance enhancement of Ge MOSFETs. 展开更多
关键词 strain engineering for Germanium-on-Insulator Mobility Enhancement with Phase Change Liner Stressors PCM MOSFET
原文传递
Control of surface wettability via strain engineering 被引量:1
7
作者 Wei Xiong Jefferson Zhe Liu +1 位作者 Zhi-Liang Zhang Quan-Shui Zheng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第4期543-549,共7页
Reversible control of surface wettability has wide applications in lab-on-chip systems, tunable optical lenses, and microfluidic tools. Using a graphene sheet as a sam- ple material and molecular dynamic simulations, ... Reversible control of surface wettability has wide applications in lab-on-chip systems, tunable optical lenses, and microfluidic tools. Using a graphene sheet as a sam- ple material and molecular dynamic simulations, we demon- strate that strain engineering can serve as an effective way to control the surface wettability. The contact angles 0 of water droplets on a graphene vary from 72.5° to 106° under biaxial strains ranging from -10% to 10% that are applied on the graphene layer. For an intrinsic hydrophilic surface (at zero strain), the variation of 0 upon the applied strains is more sensitive, i.e., from 0° to 74.8°. Overall the cosines of the contact angles exhibit a linear relation with respect to the strains. In light of the inherent dependence of the contact an- gle on liquid-solid interfacial energy, we develop an analytic model to show the cos 0 as a linear function of the adsorption energy Eads of a single water molecule over the substrate sur- face. This model agrees with our molecular dynamic results very well. Together with the linear dependence of Eads on bi- axial strains, we can thus understand the effect of strains on the surface wettability. Thanks to the ease of reversibly ap- plying mechanical strains in micro/nano-electromechanical systems, we believe that strain engineering can be a promis- ing means to achieve the reversibly control of surface wetta- bility. 展开更多
关键词 Wettability ~ strain engineering ~ Molecular dy-namics simulation
在线阅读 下载PDF
Interface strain engineering of Ir clusters on ultrathin NiO nanosheets for electrochemical water splitting over 1800 hours
8
作者 Binyu Zhang Weiwei Li +9 位作者 Kexi Zhanga Jingtao Gao Yang Cao Yuqian Cheng Delun Chen Qiang Wu Lei Ding Jinchun Tu Xiaolin Zhang Chenghua Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第10期214-223,共10页
Strain engineering of two-dimensional(2D)material interfaces represents a powerful strategy for enhanc-ing the electrocatalytic activity of water splitting.However,maintaining catalytic stability under various harsh c... Strain engineering of two-dimensional(2D)material interfaces represents a powerful strategy for enhanc-ing the electrocatalytic activity of water splitting.However,maintaining catalytic stability under various harsh conditions by introducing interface strain remains a great challenge.The catalyst developed and evaluated herein comprised Ir clusters dispersed on 2D NiO nanosheets(NSs)derived from metal organic frameworks(lr@NiO/C_(BDc)),which displays a high activity and stability under all pH conditions,and even a change of only 1%in the applied voltage is observed after continuous electrocatalytic operation for over 1800 h under alkaline conditions.Through combined experimental and computational studies,we found that the introduced interfacial strain contributes to the outstanding structural stability of the Ir@NiO/CBDC catalyst,arising from its increased Ir and Ni vacancy formation energies,and hence suppressing its leach-ing.Moreover,strain also enhances the kinetically sluggish electrocatalytic water splitting reaction by op-timizing its electronic structure and coordination environment.This work highlights the effects of strain on catalyst stability and provides new insights for designing widely applicable electrocatalysts. 展开更多
关键词 strain engineering Stability ELECTROCATALYSTS Two-dimensional material Water splitting
原文传递
Raman Scattering Modification in Monolayer ReS_2 Controlled by Strain Engineering
9
作者 李廷会 周子恒 +1 位作者 郭俊宏 胡芳仁 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第4期89-92,共4页
Regulation of optical properties and electronic structure of two-dimensionM layered ReS2 materials has attracted much attention due to their potential in electronic devices. However, the identification of structure tr... Regulation of optical properties and electronic structure of two-dimensionM layered ReS2 materials has attracted much attention due to their potential in electronic devices. However, the identification of structure transformation of monolayer ReS2 induced by strain is greatly lacking. In this work, the Raman spectra of monolayer ReS2 with external strain are determined theoretically based on the density function theory. Due to the lower structural symmetry, deformation induced by external strain can only regulate the Raman mode intensity but cannot lead to Raman mode shifts. Our calculations suggest that structural deformation induced by external strain can be identified by Raman scattering. 展开更多
关键词 by on IS MODE Raman Scattering Modification in Monolayer ReS2 Controlled by strain engineering in of
原文传递
Valley-dependent transport in strain engineering graphene heterojunctions
10
作者 Fei Wan X R Wang +6 位作者 L H Liao J Y Zhang M N Chen G H Zhou Z B Siu Mansoor B.A.Jalil Yuan Li 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期509-515,共7页
We study the effect of strain on band structure and valley-dependent transport properties of graphene heterojunctions.It is found that valley-dependent separation of electrons can be achieved by utilizing strain and o... We study the effect of strain on band structure and valley-dependent transport properties of graphene heterojunctions.It is found that valley-dependent separation of electrons can be achieved by utilizing strain and on-site energies.In the presence of strain,the values of transmission can be effectively adjusted by changing the strengths of the strain,while the transport angle basically keeps unchanged.When an extra on-site energy is simultaneously applied to the central scattering region,not only are the electrons of valleys K and K'separated into two distinct transmission lobes in opposite transverse directions,but the transport angles of two valleys can be significantly changed.Therefore,one can realize an effective modulation of valley-dependent transport by changing the strength and stretch angle of the strain and on-site energies,which can be exploited for graphene-based valleytronics devices. 展开更多
关键词 strain engineering valley-dependent separation GRAPHENE on-site energy
原文传递
Strain of 2D materials via substrate engineering
11
作者 Yangwu Wu Lu Wang +2 位作者 Huimin Li Qizhi Dong Song Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第1期153-162,共10页
Two-dimensional(2D)materials have received extensive attention in the fields of electronics,optoelectronics,and magnetic devices attributed to their unique electronic structures and physical properties.The application... Two-dimensional(2D)materials have received extensive attention in the fields of electronics,optoelectronics,and magnetic devices attributed to their unique electronic structures and physical properties.The application of strain is a simple and effective strategy to change the lattice structure of 2D materials thus modulating their physical properties,which further facilitate their applications in carrier mobility transistor,magnetic sensor,single-photon emitter etc.In this short review,we focus on the strain applied via substrate engineering.Firstly,the relationship between the strain and physical properties has been summarized.Secondly,the methods for achieving substrate engineering-induced strain have been demonstrated.Finally,the latest applications of strained 2D materials have been introduced.In addition,the future challenges and development prospects of strain-modulated 2D materials have also been proposed. 展开更多
关键词 2D materials strain engineering Substrate engineering Substrate structures Substrate functions
原文传递
Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-Ⅳmonochalcogenides MX(M=Sn,Ge;X=Se,Te,S)
12
作者 Maurice Franck Kenmogne Ndjoko 郭必诞 +1 位作者 彭银辉 赵宇军 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期396-401,共6页
Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of... Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of monolayer group-IV monochalcogenides MX(M=Sn,Ge;X=Se,Te,S)via strain engineering,and their effects with contaminated hydrogen are also discussed.GeSe,GeTe,and GeS do not go through transition up to the compressive strain of-5%,and consequently have good ferroelectric parameters for device applications that can be further improved by applying strain.According to the calculated ferroelectric properties and the band gaps of these materials,we find that their band gap can be adjusted by strain for excellent photovoltaic applications.In addition,we have determined the most stable hydrogen occupancy location in the monolayer SnS and SnTe.It reveals that H prefers to absorb on SnS and SnTe monolayers as molecules rather than atomic H.As a result,hydrogen molecules have little effect on the polarization and electronic structure of monolayer SnTe and SnS. 展开更多
关键词 two-dimensional material strain engineering ferroelectric photovoltaic materials hydrogen effect
原文传递
Improved multiferroic in EuTiO_(3) films by interphase strain engineering
13
作者 Yiyan Fan Shiqing Q.Deng +10 位作者 Tianyu Li Qinghua Zhang Shuai Xu Hao Li Chuanrui Huo jiaou Wang Lin Gu Kuijuan Jin Oswaldo Dieguez Er-jia Guo Jun Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期379-383,共5页
Interphase strain engineering provides a unique methodology to significantly modify the lattice structure across a single film,enabling the emergence and manipulation of novel functionalities that are inaccessible in ... Interphase strain engineering provides a unique methodology to significantly modify the lattice structure across a single film,enabling the emergence and manipulation of novel functionalities that are inaccessible in the context of traditional strain engineering methods.In this work,by using the interphase strain,we achieve a ferromagnetic state with enhanced Curie temperature and a room-temperature polar state in EuO secondary phase-tunned EuTiO_(3) thin films.A combination of atomic-scale electron microscopy and synchrotron X-ray spectroscopy unravels the underlying mechanisms of the ferroelectric and ferromagnetic properties enhancement.Wherein,the EuO secondary phase is found to be able to dramatically distort the TiO_6 octahedra,which favors the non-centrosymmetric polar state,weakens antiferromagnetic Eu-Ti-Eu interactions,and enhances ferromagnetic Eu-O-Eu interactions.Our work demonstrates the feasibility and effectiveness of interphase strain engineering in simultaneously promoting ferroelectric and ferromagnetic performance,which would provide new thinking on the property regulation of numerous strongly correlated functional materials. 展开更多
关键词 EuTiO_(3) Magnetic phase transition Polar state Interphase strain engineering
原文传递
New Janus structure photocatalyst having widely tunable electronic and optical properties with strain engineering
14
作者 Sri Kasi Matta Ting Liao Salvy P Russo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第24期142-147,共6页
Photoelectrochemical water splitting using solar energy,generating oxygen and hydrogen is one of the clean fuel production processes.Inspired by surface-dependent characteristics of Janus structures,a newly designed J... Photoelectrochemical water splitting using solar energy,generating oxygen and hydrogen is one of the clean fuel production processes.Inspired by surface-dependent characteristics of Janus structures,a newly designed Janus monolayer Silicon Phosphorous Arsenide(SiPAs)was analyzed with Density Functional Theory(DFT)methods.Hybrid exchange-correlation functional(HSE06)combined with Wannier90-based analysis for electronic and optical properties of SiPAs reveals that it can act as a photocatalyst.SiPAs show an indirect bandgap of 1.88 eV,absorbing visible light range is 350 to 500 nm.The phonon spectrum confirms dynamic stability.The exciton binding energy is computed with GW/BSE methods.The electronic band edge positions are at-5.75 and-4.43 eV,perfectly straddling the water redox potentials.Interestingly the strain application modifies the bandgap and also non-homogenously widens the absorption band.A novel range of photocatalyst designs with Group IV-V elements with great promise for water-splitting,photovoltaic,and narrow bandgap semiconductor(optoelectronics)applications may be feasible. 展开更多
关键词 Solar water-splitting Janus structure Density functional theory strain engineering Optical and electronic property tuning OPTOELECTRONIC
原文传递
Enhancing room-temperature thermoelectricity of SrTiO_(3)based superlattices via epitaxial strain
15
作者 Yi Zhu Hao Liu +4 位作者 Huilin Lai Zhenghua An Yinyan Zhu Lifeng Yin Jian Shen 《Chinese Physics B》 2025年第9期535-540,共6页
Epitaxial strain is an effective way to control thermoelectricity of a thin film system.In this work,we investigate strain-dependent thermoelectricity of[(SrTiO_(3))_(3)/(SrTi_(0.8)Nb_(0.2)O_(3))_(3)]_(10)superlattice... Epitaxial strain is an effective way to control thermoelectricity of a thin film system.In this work,we investigate strain-dependent thermoelectricity of[(SrTiO_(3))_(3)/(SrTi_(0.8)Nb_(0.2)O_(3))_(3)]_(10)superlattices grown on different substrates,including-0.96%on(LaAlO_(3))_(0.3)(SrAl_(0.5)Ta_(0.5)O_(3))_(0.7)(001)(LSAT),0%on SrTiO_(3)(001)(STO),+0.99%on DyScO_(3)(110)(DSO)and+1.64%on GdScO_(3)(110)(GSO),respectively.Our results show that the highest room-temperature thermoelectricity is achieved when the STO-based superlattice is grown on the DSO substrate with+0.99%tensile strain.This is attributed to the high permittivity and low dielectric loss arising from the ferroelectric domain and electron-phonon coupling,which boost the power factor(PF)to 10.5 mW·m^(-1)·K^(-2)at 300 K. 展开更多
关键词 strain engineering thermoelectric superlattices FERROELECTRICITY
原文传递
Tuning the Charge Density Wave and Low-Energy Magnetic States with Nanoscale Strains in GdTe_(3)
16
作者 Zhong-Yi Cao Hui Chen +5 位作者 Guo-Jian Qian Yan-Hao Shi Qi Qi Xiang-He Han Hai-Tao Yang Hong-Jun Gao 《Chinese Physics Letters》 2025年第10期166-185,共20页
Recent advances in strain engineering have enabled unprecedented control over quantum states in strongly correlated magnetic systems.However,nanoscale strain modulation of charge density waves(CDWs)and magnetically ex... Recent advances in strain engineering have enabled unprecedented control over quantum states in strongly correlated magnetic systems.However,nanoscale strain modulation of charge density waves(CDWs)and magnetically excited states,which is crucial for atomically precise strain engineering and practical spintronic applications,remains unexplored.Here,we report the nanoscale strain effects on CDWs and low-energy electronic states in the van der Waals antiferromagnetic metal GdTe_(3),utilizing scanning tunneling microscopy/spectroscopy.Lowtemperature cleavage introduces local strains,resulting in the formation of nanoscale wrinkles on the GdTe_(3)surface.Atomic displacement analysis reveals two distinct types of wrinkles:Wrinkle-I,originating from unidirectional strain,and Wrinkle-II,dominated by shear strain.In Wrinkle-I,the tensile strain enhances the CDW gap,while the compressive strain induces a single low-energy magnetic state.Wrinkle-II switches the orientation of CDW,leading to the formation of an associated CDW domain wall.In addition,three low-energy magnetic states that exhibit magnetic field-dependent shifts and intensity variations emerge within the CDW gap around Wrinkle-II,indicative of a strain-tuned coupling between CDW order and localized 4f-electron magnetism.These findings establish nanoscale strain as a powerful tuning knob for manipulating intertwined electronic and magnetic excitations in correlated magnetic systems. 展开更多
关键词 nanoscale strain effects strain modulation charge density waves cdws control quantum states strain engineering practical spintronic applicationsremains scanning tunneling van der waals antiferromagnetic metal
原文传递
Monodispersed ultrathin twisty PdBi alloys nanowires assemblies with tensile strain enhance C_(2+)alcohols electrooxidation 被引量:2
17
作者 Xianzhuo Lao Ze Li +4 位作者 Likang Yang Ben Zhang Wanneng Ye Aiping Fu Peizhi Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期279-290,共12页
Direct alcohol fuel cells(DAFCs)are powered by the alcohol electro-oxidation reaction(AOR),where an electrocatalyst with an optimal electronic structure can accelerate the sluggish AOR.Interestingly,strain engineering... Direct alcohol fuel cells(DAFCs)are powered by the alcohol electro-oxidation reaction(AOR),where an electrocatalyst with an optimal electronic structure can accelerate the sluggish AOR.Interestingly,strain engineering in hetero-catalysis offers a promising route to boost their catalytic activity.Herein,we report on a class of monodispersed ultrathin twisty PdBi alloy nanowires(TNWs)assemblies with face-centered structures that drive AORs.These thin nanowire structures expose a large number of reactive sites.Strikingly,Pd_(6)Bi_(1)TNWs show an excellent current density of 2066,3047,and 1231 mA mg_(Pd)^(-1)for oxidation of ethanol,ethylene glycol,and glycerol,respectively.The“volcano-like”behaviors observed on PdBi TNWs for AORs indicate that the maximum catalytic mass activity is a well balance between active intermediates and blocking species at the interface.This study offers an effective and universal method to build novel nanocatalysts in various applications by rationally designing highly efficient catalysts with specific strain. 展开更多
关键词 PdBi NANOWIRES strain engineering Ligand exchange Synergetic effect Fuel cells
在线阅读 下载PDF
Lipopeptide Antibiotics Produced by the Engineered Strain Bacillus subtilis GEB3 and Detection of Its Bioactivity 被引量:1
18
作者 GAOXue-wen YAOShi-yi +2 位作者 HuongPham JoachimVater WANGJin-sheng 《Agricultural Sciences in China》 CAS CSCD 2004年第3期192-197,共6页
MALDI-TOF-MS technology was used for identification of lipopeptide antibiotics producedby GEB3 strain, a derivative of Bacillus subtilis 168 which was transformed by lpaB3gene. The result showed GEB3 only produced lip... MALDI-TOF-MS technology was used for identification of lipopeptide antibiotics producedby GEB3 strain, a derivative of Bacillus subtilis 168 which was transformed by lpaB3gene. The result showed GEB3 only produced lipopeptide antibiotic surfactin. The analysisby LC-MS demonstrated that GEB3 produced standard surfactin isoforms with side chainlengths of 13,14 and 15 carbon atoms. The bioactivity detection of surfactin indicatedthat the surfactin produced by GEB3 had inhibition effect on plant pathogens Rhizoctoniasolani and Pyricularia oryzae. 展开更多
关键词 Engineered strain GEB3 Matrix-assisted laser desorption/ionization time-of- flight mass spectrometry (MALDI-TOF-MS) LC-MS Lipopeptide antibiotics Surfactin Plant pathogenic fungi Inhibition effect
在线阅读 下载PDF
Parallel Nanoimprint Forming of One-Dimensional Chiral Semiconductor for Strain-Engineered Optical Properties 被引量:1
19
作者 Yixiu Wang Shengyu Jin +6 位作者 Qingxiao Wang Min Wu Shukai Yao Peilin Liao Moon JKim Gary JCheng Wenzhuo Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期242-254,共13页
The low-dimensional,highly anisotropic geometries,and superior mechanical properties of one-dimensional(1D) nanomaterials allow the exquisite strain engineering with a broad tunability inaccessible to bulk or thin-fil... The low-dimensional,highly anisotropic geometries,and superior mechanical properties of one-dimensional(1D) nanomaterials allow the exquisite strain engineering with a broad tunability inaccessible to bulk or thin-film materials.Such capability enables unprecedented possibilities for probing intriguing physics and materials science in the 1-D limit.Among the techniques for introducing controlled strains in 1D materials,nanoimprinting with embossed substrates attracts increased attention due to its capability to parallelly form nanomaterials into wrinkled structures with controlled periodicities,amplitudes,orientations at large scale with nanoscale resolutions.Here,we systematically investigated the strain-engineered anisotropic optical properties in Te nanowires through introducing a controlled strain field using a resist-free thermally assisted nanoimprinting process.The magnitude of induced strains can be tuned by adjusting the imprinting pressure,the nanowire diameter,and the patterns on the substrates.The observed Raman spectra from the chiral-chain lattice of 1D Te reveal the strong lattice vibration response under the strain.Our results suggest the potential of 1D Te as a promising candidate for flexible electronics,deformable optoelectronics,and wearable sensors.The experimental platform can also enable the exquisite mechanical control in other nanomaterials using substrate-induced,on-demand,and controlled strains. 展开更多
关键词 Chiral semiconductor Nanowires NANOIMPRINTING strain engineering Optical property
在线阅读 下载PDF
Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y_(3)Fe_(5)O_(12)(111) films
20
作者 贾云鹏 梁正国 +7 位作者 潘昊霖 王庆 吕崎鸣 严轶非 金锋 侯达之 王凌飞 吴文彬 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期27-33,共7页
Y_(3)Fe_(5)O_(12)(YIG) and Bi Y_(3)Fe_(5)O_(12)(Bi:YIG) films were epitaxially grown on a series of(111)-oriented garnet substrates using pulsed laser deposition. Structural and ferromagnetic resonance characterizatio... Y_(3)Fe_(5)O_(12)(YIG) and Bi Y_(3)Fe_(5)O_(12)(Bi:YIG) films were epitaxially grown on a series of(111)-oriented garnet substrates using pulsed laser deposition. Structural and ferromagnetic resonance characterizations demonstrated the high epitaxial quality, extremely low magnetic loss and coherent strain state in these films. Using these epitaxial films as model systems, we systematically investigated the evolution of magnetic anisotropy(MA) with epitaxial strain and chemical doping. For both the YIG and Bi:YIG films, the compressive strain tends to align the magnetic moment in the film plane while the tensile strain can compete with the demagnetization effect and stabilize perpendicular MA. We found that the strain-induced lattice elongation/compression along the out-of-plane [111] axis is the key parameter that determines the MA. More importantly, the strain-induced tunability of MA can be enhanced significantly by Bi doping;meanwhile, the ultralow damping feature persists. We clarified that the cooperation between strain and chemical doping could realize an effective control of MA in garnet-type ferrites, which is essential for spintronic applications. 展开更多
关键词 yttrium iron garnet strain engineering DOPING magnetic anisotropy
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部