期刊文献+
共找到280,468篇文章
< 1 2 250 >
每页显示 20 50 100
Evolution of behaviour of transaction subjects on energy-efficient retrofitting platform under government rewards and punishments
1
作者 GUO Han-ding WANG Ke-fei 《Ecological Economy》 2025年第2期102-116,共15页
Energy-efficient retrofitting(EER)of existing buildings has significant potential for addressing energy and environmental issues.However,the traditional market trading model is characterized by an inefficient dissemin... Energy-efficient retrofitting(EER)of existing buildings has significant potential for addressing energy and environmental issues.However,the traditional market trading model is characterized by an inefficient dissemination of critical information,which leads to insufficient incentives for market participants to trade.To solve these problems,this study constructs a three-party evolutionary game model with energy saving service companies(ESCO),homeowners,and trading information platforms as the main players,analyzes the interaction and evolution of the three parties'strategies under the scenario of government rewards and penalties,and explores the effects of the three parties'initial willingness and changes of model parameters on the evolution of their strategies.There are some findings as follows:first,the positive transactions of homeowners and ESCOs have less influence on the platform side;second,compared with homeowners,the government penalties have more obvious constraints on the platform side and ESCOs;third,government subsidies and EER revenues are the important factors influencing the speed of the evolution of three-party strategies,fourth,platform service compensation,the factors governing cost and benefit sharing are pivotal in determining the alignment of strategic choices among the three parties involved.Based on the research conclusions.This study offers theoretical guidance for the advancement of platform-based market transactions for EER. 展开更多
关键词 energy-efficient retrofitting government regulation platform trading model evolutionary game
原文传递
A Discrete Multi-Objective Squirrel Search Algorithm for Energy-Efficient Distributed Heterogeneous Permutation Flowshop with Variable Processing Speed
2
作者 Liang Zeng Ziyang Ding +1 位作者 Junyang Shi Shanshan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1757-1787,共31页
In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper st... In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable processing speed(DHPFSP-VPS),considering both the minimum makespan and total energy consumption(TEC)as objectives.A discrete multi-objective squirrel search algorithm(DMSSA)is proposed to solve the DHPFSPVPS.DMSSA makes four improvements based on the squirrel search algorithm.Firstly,in terms of the population initialization strategy,four hybrid initialization methods targeting different objectives are proposed to enhance the quality of initial solutions.Secondly,enhancements are made to the population hierarchy system and position updating methods of the squirrel search algorithm,making it more suitable for discrete scheduling problems.Additionally,regarding the search strategy,six local searches are designed based on problem characteristics to enhance search capability.Moreover,a dynamic predator strategy based on Q-learning is devised to effectively balance DMSSA’s capability for global exploration and local exploitation.Finally,two speed control energy-efficient strategies are designed to reduce TEC.Extensive comparative experiments are conducted in this paper to validate the effectiveness of the proposed strategies.The results of comparing DMSSA with other algorithms demonstrate its superior performance and its potential for efficient solving of the DHPFSP-VPS problem. 展开更多
关键词 Distributed heterogeneous permutation flowshop problem squirrel search algorithm muli-objective optimization energy-efficient variable processing speed
在线阅读 下载PDF
An Energy-Efficient Routing Algorithm for UAV Formation Based on Time-Aggregated Graph
3
作者 Wang Gaifang Li Bo +1 位作者 Yang Hongjuan Jiang Xu 《China Communications》 SCIE CSCD 2024年第11期28-39,共12页
The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and mai... The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and maintenance,greatly increasing network delay and control overhead.A energyefficient routing method based on the discrete timeaggregated graph(TAG)theory is proposed since UAV formation is a defined time-varying network.The network is characterized using the TAG,which utilizes the prior knowledge in UAV formation.An energyefficient routing algorithm is designed based on TAG,considering the link delay,relative mobility,and residual energy of UAVs.The routing path is determined with global network information before requesting communication.Simulation results demonstrate that the routing method can improve the end-to-end delay,packet delivery ratio,routing control overhead,and residual energy.Consequently,introducing timevarying graphs to design routing algorithms is more effective for UAV formation. 展开更多
关键词 energy-efficient route time-aggregated graph UAV formation
在线阅读 下载PDF
Energy-Efficient and Cost-Effective Approaches through Energy Modeling for Hotel Building 被引量:1
4
作者 Alya Penta Agharid Indra Permana +2 位作者 Nitesh Singh Fujen Wang Susan Gustiyana 《Energy Engineering》 EI 2024年第12期3549-3571,共23页
Hotel buildings are currently among the largest energy consumers in the world.Heating,ventilation,and air conditioning are the most energy-intensive building systems,accounting for more than half of total energy consu... Hotel buildings are currently among the largest energy consumers in the world.Heating,ventilation,and air conditioning are the most energy-intensive building systems,accounting for more than half of total energy consumption.An energy audit is used to predict the weak points of a building’s energy use system.Various factors influence building energy consumption,which can be modified to achieve more energy-efficient strategies.In this study,an existing hotel building in Central Taiwan is evaluated by simulating several scenarios using energy modeling over a year.Energy modeling is conducted by using Autodesk Revit 2025.It was discovered from the results that arranging the lighting schedule based on the ASHRAE Standard 90.1 could save up to 8.22%of energy consumption.And then the results also revealed that changing the glazing of the building into double-layer lowemissivity glass could reduce energy consumption by 14.58%.While the energy consumption of the building could also be decreased to 7.20%by changing the building orientation to the north.Meanwhile,moving the building location to Northern Taiwan could also minimize the energy consumption of the building by 3.23%.The results revealed that the double layer offers better thermal insulation,and low-emissivity glass can lower energy consumption,electricity costs,and CO_(2)emissions by up to 15.27%annually.While adjusting orientation and location can enhance energy performance,this approach is impractical for existing buildings,but this could be considered for designing new buildings.The results showed the relevancy of energy performance to CO_(2)emission production and electricity expenses. 展开更多
关键词 energy-efficient energy modeling field measurement energy saving hotel building
在线阅读 下载PDF
Energy-efficient virtual machine consolidation algorithm in cloud data centers 被引量:3
5
作者 ZHOU Zhou HU Zhi-gang YU Jun-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2331-2341,共11页
Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-... Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations. 展开更多
关键词 cloud computing energy consumption linear weighted method VIRTUAL MACHINE CONSOLIDATION VIRTUAL MACHINE selection algorithm
在线阅读 下载PDF
Ferroelectric polarization and conductance filament coupling for large window and high-reliability resistive memory and energy-efficient synaptic devices
6
作者 Ming Li Zhengmiao Zou +7 位作者 Zihao Xu Junfeng Zheng Yushan Li Ruiqiang Tao Zhen Fan Guofu Zhou Xubing Lu Junming Liu 《Journal of Materials Science & Technology》 CSCD 2024年第31期36-43,共8页
Ferroelectric capacitors hold great promise for non-volatile memory applications.However,the challenge lies in fabricating resistive switching devices with a high on/off ratio,excellent non-volatility,and a simple man... Ferroelectric capacitors hold great promise for non-volatile memory applications.However,the challenge lies in fabricating resistive switching devices with a high on/off ratio,excellent non-volatility,and a simple manufacturing process.Here,a novel approach is introduced by demonstrating the efficacy of the coupling effect between ferroelectric polarization and oxygen vacancy-based conductive filaments in Hf_(0.5)Zr_(0.5)O_(2)(HZO)films for the creation of non-volatile resistive switching memory devices,achieving an impressive on/off ratio of 6.8×10^(3) at+1.8 V.An in-depth exploration of the resistive switching mechanism is provided and subsequently the outstanding durability and retention characteristics of these devices for resistive switching is validated.Furthermore,the device's capacity to emulate non-volatile synaptic functionalities is assessed.Our results reveal that under pulsed conditions of 1 V/-2 V with 1µs pulses spaced 50 ms apart,the device can robustly achieve potentiation/depression synaptic plasticity,while exhibiting energy consumption(0.16 fJ for potentiation,0.12 fJ for depression)reduced by 1-2 orders of magnitude compared to biological synapses.This work holds significant value as a reference for the fabrication of energy-efficient,non-volatile memory and synaptic devices. 展开更多
关键词 FERROELECTRIC Conductance filament Resistive memory energy-efficient Synaptic devices
原文传递
Increasing realism in modelling energy losses in railway vehicles and their impact to energy-efficient train control
7
作者 Michael Nold Francesco Corman 《Railway Engineering Science》 EI 2024年第3期257-285,共29页
The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruisi... The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases. 展开更多
关键词 Train trajectory optimization energy-efficient train control(EETC) Dynamic efficiency Power losses in railway vehicles
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
8
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
9
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Energy-Efficient Low-Complexity Algorithm in 5G Massive MIMO Systems 被引量:4
10
作者 Adeeb Salh Lukman Audah +4 位作者 Qazwan Abdullah Nor Shahida M.Shah Shipun A.Hamzah Shahilah Nordin Nabil Farah 《Computers, Materials & Continua》 SCIE EI 2021年第6期3189-3214,共26页
Energy efficiency(EE)is a critical design when taking into account circuit power consumption(CPC)in fifth-generation cellular networks.These problems arise because of the increasing number of antennas in massive multi... Energy efficiency(EE)is a critical design when taking into account circuit power consumption(CPC)in fifth-generation cellular networks.These problems arise because of the increasing number of antennas in massive multiple-input multiple-output(MIMO)systems,attributable to inter-cell interference for channel state information.Apart from that,a higher number of radio frequency(RF)chains at the base station and active users consume more power due to the processing activities in digital-to-analogue converters and power amplifiers.Therefore,antenna selection,user selection,optimal transmission power,and pilot reuse power are important aspects in improving energy efficiency in massive MIMO systems.This work aims to investigate joint antenna selection,optimal transmit power and joint user selection based on deriving the closed-form of the maximal EE,with complete knowledge of large-scale fading with maximum ratio transmission.It also accounts for channel estimation and eliminating pilot contamination as antennas M→∞.This formulates the optimization problem of joint optimal antenna selection,transmits power allocation and joint user selection to mitigate inter-cellinterference in downlink multi-cell massive MIMO systems under minimized reuse of pilot sequences based on a novel iterative low-complexity algorithm(LCA)for Newton’s methods and Lagrange multipliers.To analyze the precise power consumption,a novel power consumption scheme is proposed for each individual antenna,based on the transmit power amplifier and CPC.Simulation results demonstrate that the maximal EE was achieved using the iterative LCA based on reasonable maximum transmit power,in the case the noise power is less than the received power pilot.The maximum EE was achieved with the desired maximum transmit power threshold by minimizing pilot reuse,in the case the transmit power allocationρd=40 dBm,and the optimal EE=71.232 Mb/j. 展开更多
关键词 Massive MIMO energy efficiency base station active users pilot contamination low-complexity algorithm radio frequency
在线阅读 下载PDF
EA-DFPSO:An intelligent energy-efficient scheduling algorithm for mobile edge networks 被引量:2
11
作者 Yao Lu Lu Liu +2 位作者 Jiayan Gu John Panneerselvam Bo Yuan 《Digital Communications and Networks》 SCIE CSCD 2022年第3期237-246,共10页
Cloud data centers have become overwhelmed with data-intensive applications due to the limited computational capabilities of mobile terminals.Mobile edge computing is emerging as a potential paradigm to host applicati... Cloud data centers have become overwhelmed with data-intensive applications due to the limited computational capabilities of mobile terminals.Mobile edge computing is emerging as a potential paradigm to host application execution at the edge of networks to reduce transmission delays.Compute nodes are usually distributed in edge environments,enabling crucially efficient task scheduling among those nodes to achieve reduced processing time.Moreover,it is imperative to conserve edge server energy,enhancing their lifetimes.To this end,this paper proposes a novel task scheduling algorithm named Energy-aware Double-fitness Particle Swarm Optimization(EA-DFPSO)that is based on an improved particle swarm optimization algorithm for achieving energy efficiency in an edge computing environment along with minimal task execution time.The proposed EA-DFPSO algorithm applies a dual fitness function to search for an optimal tasks-scheduling scheme for saving edge server energy while maintaining service quality for tasks.Extensive experimentation demonstrates that our proposed EA-DFPSO algorithm outperforms the existing traditional scheduling algorithms to achieve reduced task completion time and conserve energy in an edge computing environment. 展开更多
关键词 Mobile edge computing Energy-aware systems Task scheduling Heuristic algorithms
在线阅读 下载PDF
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
12
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
Bio-Inspired Intelligent Routing in WSN: Integrating Mayfly Optimization and Enhanced Ant Colony Optimization for Energy-Efficient Cluster Formation and Maintenance
13
作者 V.G.Saranya S.Karthik 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期127-150,共24页
Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the node... Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE). 展开更多
关键词 Enhanced ant colony optimization mayfly optimization algorithm wireless sensor networks cluster head base station(BS)
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
14
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
15
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
16
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
17
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Dynamic Multi-Objective Gannet Optimization(DMGO):An Adaptive Algorithm for Efficient Data Replication in Cloud Systems
18
作者 P.William Ved Prakash Mishra +3 位作者 Osamah Ibrahim Khalaf Arvind Mukundan Yogeesh N Riya Karmakar 《Computers, Materials & Continua》 2025年第9期5133-5156,共24页
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat... Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance. 展开更多
关键词 Cloud computing data replication dynamic optimization multi-objective optimization gannet optimization algorithm adaptive algorithms resource efficiency SCALABILITY latency reduction energy-efficient computing
在线阅读 下载PDF
Energy-Efficient Process Planning Using Improved Genetic Algorithm
19
作者 Dai Min Tang Dunbing +1 位作者 Huang Zhiqing Yang Jun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第5期602-609,共8页
Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development o... Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development of process planning methods that take energy consumption into account.An energy-efficient process planning model that incorporates manufacturing time and energy consumption is proposed.For solving the problem,an improved genetic algorithm method is employed to explore the optimal solution.Finally,a case study for process planning is given.The experimental result generates interesting effort,and therefore allows improving the energy efficiency of manufacturing processes in process planning. 展开更多
关键词 energy consumption process planning improved genetic algorithm energy efficiency
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
20
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部