The large-scale acquisition and widespread application of remote sensing image data have led to increasingly severe challenges in information security and privacy protection during transmission and storage.Urban remot...The large-scale acquisition and widespread application of remote sensing image data have led to increasingly severe challenges in information security and privacy protection during transmission and storage.Urban remote sensing image,characterized by complex content and well-defined structures,are particularly vulnerable to malicious attacks and information leakage.To address this issue,the author proposes an encryption method based on the enhanced single-neuron dynamical system(ESNDS).ESNDS generates highquality pseudo-random sequences with complex dynamics and intense sensitivity to initial conditions,which drive a structure of multi-stage cipher comprising permutation,ring-wise diffusion,and mask perturbation.Using representative GF-2 Panchromatic and Multispectral Scanner(PMS)urban scenes,the author conducts systematic evaluations in terms of inter-pixel correlation,information entropy,histogram uniformity,and number of pixel change rate(NPCR)/unified average changing intensity(UACI).The results demonstrate that the proposed scheme effectively resists statistical analysis,differential attacks,and known-plaintext attacks while maintaining competitive computational efficiency for high-resolution urban image.In addition,the cipher is lightweight and hardware-friendly,integrates readily with on-board and ground processing,and thus offers tangible engineering utility for real-time,large-volume remote-sensing data protection.展开更多
A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,whic...A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,which is used for the scrambling,substitution and diffusion processes.The three-dimensional Fisher-Yates scrambling,S-box substitution and diffusion are employed for the first round of encryption.The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round.Then,three-dimensional filter is applied to diffusion for further useful information hiding.The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters.It improves resisting ability of plaintext attacks.The security analysis shows that the algorithm is effective and efficient.It can resist common attacks.In addition,the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research.展开更多
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based...With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.展开更多
Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intellig...Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intelligent processing on edge servers(ES).However,securely distributing encrypted data stored in the cloud to terminals that meet decryption requirements has become a prominent research topic.Additionally,managing attributes,including addition,deletion,and modification,is a crucial issue in the access control scheme for RES.To address these security concerns,a trust-based ciphertext-policy attribute-based encryption(CP-ABE)device access control scheme is proposed for RES(TB-CP-ABE).This scheme effectivelymanages the distribution and control of encrypted data on the cloud through robust attribute key management.By introducing trust management mechanisms and outsourced decryption technology,the ES system can effectively assess and manage the trust worthiness of terminal devices,ensuring that only trusted devices can participate in data exchange and access sensitive information.Besides,the ES system dynamically evaluates trust scores to set decryption trust thresholds,thereby regulating device data access permissions and enhancing the system’s security.To validate the security of the proposed TB-CP-ABE against chosen plaintext attacks,a comprehensive formal security analysis is conducted using the widely accepted random oraclemodel under the decisional q-Bilinear Diffie-Hellman Exponent(q-BDHE)assumption.Finally,comparative analysis with other schemes demonstrates that the TB-CP-ABE scheme cuts energy/communication costs by 43%,and scaleswell with rising terminals,maintaining average latency below 50ms,ensuring real-time service feasibility.The proposed scheme not only provides newinsights for the secure management of RES but also lays a foundation for future secure energy solutions.展开更多
This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals noth...This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals nothing about the predicate f,as long as f is drawn from an evasive distribution with sufficient entropy.The proposed scheme extends the group-based public-key function-private predicate encryption(FP-PE)for“small superset predicates”proposed by Bartusek et al.(Asiacrypt 19),to the setting of inner-product predicates.This is the first construction of public-key FP-PE with enhanced function privacy security beyond the equality predicates,which is previously proposed by Boneh et al.(CRYPTO 13).The proposed construction relies on bilinear groups,and the security is proved in the generic bilinear group model.展开更多
Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematica...Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.展开更多
A basic procedure for transforming readable data into encoded forms is encryption, which ensures security when the right decryption keys are used. Hadoop is susceptible to possible cyber-attacks because it lacks built...A basic procedure for transforming readable data into encoded forms is encryption, which ensures security when the right decryption keys are used. Hadoop is susceptible to possible cyber-attacks because it lacks built-in security measures, even though it can effectively handle and store enormous datasets using the Hadoop Distributed File System (HDFS). The increasing number of data breaches emphasizes how urgently creative encryption techniques are needed in cloud-based big data settings. This paper presents Adaptive Attribute-Based Honey Encryption (AABHE), a state-of-the-art technique that combines honey encryption with Ciphertext-Policy Attribute-Based Encryption (CP-ABE) to provide improved data security. Even if intercepted, AABHE makes sure that sensitive data cannot be accessed by unauthorized parties. With a focus on protecting huge files in HDFS, the suggested approach achieves 98% security robustness and 95% encryption efficiency, outperforming other encryption methods including Ciphertext-Policy Attribute-Based Encryption (CP-ABE), Key-Policy Attribute-Based Encryption (KB-ABE), and Advanced Encryption Standard combined with Attribute-Based Encryption (AES+ABE). By fixing Hadoop’s security flaws, AABHE fortifies its protections against data breaches and enhances Hadoop’s dependability as a platform for processing and storing massive amounts of data.展开更多
As data analysis often incurs significant communication and computational costs,these tasks are increasingly outsourced to cloud computing platforms.However,this introduces privacy concerns,as sensitive data must be t...As data analysis often incurs significant communication and computational costs,these tasks are increasingly outsourced to cloud computing platforms.However,this introduces privacy concerns,as sensitive data must be transmitted to and processed by untrusted parties.To address this,fully homomorphic encryption(FHE)has emerged as a promising solution for privacy-preserving Machine-Learning-as-a-Service(MLaaS),enabling computation on encrypted data without revealing the plaintext.Nevertheless,FHE remains computationally expensive.As a result,approximate homomorphic encryption(AHE)schemes,such as CKKS,have attracted attention due to their efficiency.In our previous work,we proposed RP-OKC,a CKKS-based clustering scheme implemented via TenSEAL.However,errors inherent to CKKS operations—termed CKKS-errors—can affect the accuracy of the result after decryption.Since these errors can be mitigated through post-decryption rounding,we propose a data pre-scaling technique to increase the number of significant digits and reduce CKKS-errors.Furthermore,we introduce an Operation-Error-Estimation(OEE)table that quantifies upper-bound error estimates for various CKKS operations.This table enables error-aware decryption correction,ensuring alignment between encrypted and plaintext results.We validate our method on K-means clustering using the Kaggle Customer Segmentation dataset.Experimental results confirm that the proposed scheme enhances the accuracy and reliability of privacy-preserving data analysis in cloud environments.展开更多
This paper introduces a novel lightweight colour image encryption algorithm,specifically designed for resource-constrained environments such as Internet of Things(IoT)devices.As IoT systems become increasingly prevale...This paper introduces a novel lightweight colour image encryption algorithm,specifically designed for resource-constrained environments such as Internet of Things(IoT)devices.As IoT systems become increasingly prevalent,secure and efficient data transmission becomes crucial.The proposed algorithm addresses this need by offering a robust yet resource-efficient solution for image encryption.Traditional image encryption relies on confusion and diffusion steps.These stages are generally implemented linearly,but this work introduces a new RSP(Random Strip Peeling)algorithm for the confusion step,which disrupts linearity in the lightweight category by using two different sequences generated by the 1D Tent Map with varying initial conditions.The diffusion stage then employs an XOR matrix generated by the Logistic Map.Different evaluation metrics,such as entropy analysis,key sensitivity,statistical and differential attacks resistance,and robustness analysis demonstrate the proposed algorithm's lightweight,robust,and efficient.The proposed encryption scheme achieved average metric values of 99.6056 for NPCR,33.4397 for UACI,and 7.9914 for information entropy in the SIPI image dataset.It also exhibits a time complexity of O(2×M×N)for an image of size M×N.展开更多
With the rapid development of information technology,data security issues have received increasing attention.Data encryption and decryption technology,as a key means of ensuring data security,plays an important role i...With the rapid development of information technology,data security issues have received increasing attention.Data encryption and decryption technology,as a key means of ensuring data security,plays an important role in multiple fields such as communication security,data storage,and data recovery.This article explores the fundamental principles and interrelationships of data encryption and decryption,examines the strengths,weaknesses,and applicability of symmetric,asymmetric,and hybrid encryption algorithms,and introduces key application scenarios for data encryption and decryption technology.It examines the challenges and corresponding countermeasures related to encryption algorithm security,key management,and encryption-decryption performance.Finally,it analyzes the development trends and future prospects of data encryption and decryption technology.This article provides a systematic understanding of data encryption and decryption techniques,which has good reference value for software designers.展开更多
Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive da...Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive data vulnerable to unauthorized access and misuse.With the exponential growth of digital data,robust security measures are essential.Data encryption,a widely used approach,ensures data confidentiality by making it unreadable and unalterable through secret key control.Despite their individual benefits,both require significant computational resources.Additionally,performing them separately for the same data increases complexity and processing time.Recognizing the need for integrated approaches that balance compression ratios and security levels,this research proposes an integrated data compression and encryption algorithm,named IDCE,for enhanced security and efficiency.Thealgorithmoperates on 128-bit block sizes and a 256-bit secret key length.It combines Huffman coding for compression and a Tent map for encryption.Additionally,an iterative Arnold cat map further enhances cryptographic confusion properties.Experimental analysis validates the effectiveness of the proposed algorithm,showcasing competitive performance in terms of compression ratio,security,and overall efficiency when compared to prior algorithms in the field.展开更多
Federated Learning(FL)has emerged as a promising distributed machine learning paradigm that enables multi-party collaborative training while eliminating the need for raw data sharing.However,its reliance on a server i...Federated Learning(FL)has emerged as a promising distributed machine learning paradigm that enables multi-party collaborative training while eliminating the need for raw data sharing.However,its reliance on a server introduces critical security vulnerabilities:malicious servers can infer private information from received local model updates or deliberately manipulate aggregation results.Consequently,achieving verifiable aggregation without compromising client privacy remains a critical challenge.To address these problem,we propose a reversible data hiding in encrypted domains(RDHED)scheme,which designs joint secret message embedding and extraction mechanism.This approach enables clients to embed secret messages into ciphertext redundancy spaces generated during model encryption.During the server aggregation process,the embedded messages from all clients fuse within the ciphertext space to form a joint embedding message.Subsequently,clients can decrypt the aggregated results and extract this joint embedding message for verification purposes.Building upon this foundation,we integrate the proposed RDHED scheme with linear homomorphic hash and digital signatures to design a verifiable privacy-preserving aggregation protocol for single-server architectures(VPAFL).Theoretical proofs and experimental analyses show that VPAFL can effectively protect user privacy,achieve lightweight computational and communication overhead of users for verification,and present significant advantages with increasing model dimension.展开更多
Ln-containing polyoxoniobates(PONbs)have appealing applications in luminescence,information encryption and magnetic fields,but the synthesis of PONbs containing high-nuclearity Ln-O clusters is challenging due to the ...Ln-containing polyoxoniobates(PONbs)have appealing applications in luminescence,information encryption and magnetic fields,but the synthesis of PONbs containing high-nuclearity Ln-O clusters is challenging due to the easy hydrolysis of Ln^(3+)ions in alkaline environments.In this paper,we are able to integrate CO_(3)^(2-)and high-nuclearity Ln-O clusters into PONb to construct an inorganic giant Eu_(19)-embedded PONb H_(49)K_(16)Na_(13)(H_(2)O)_(63)[Eu_(21)O_(2)(OH)_(7)(H_(2)O)_(5)(Nb_(7)O_(22))_(10)(Nb_(2)O_(6))_(2)(CO_(3))_(18)]·91H_(2)O(1),which contains the highest nuclearity Eu-O clusters and the largest number of Eu^(3+)ions among PONbs.In addition,the film that was prepared by mixing 1 with gelatin and glycerol,exhibits reversible luminescence switching behavior under acid/alkali stimulation and has been used to create a fluorescence-encoded information approach.This work paves a feasible strategy for the construction of high-nuclearity Ln-O cluster-containing PONbs and the expansion of the application of Ln-containing PONbs in information encryption.展开更多
With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasu...With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasurfaces are severely limited by their lack of reconfigurability,hindering the realization of versatile holographic applications.Origami,an art form that mechanically induces spatial deformations,serves as a platform for multifunctional devices and has garnered significant attention in optics,physics,and materials science.The Miura-ori folding paradigm,characterized by its continuous reconfigurability in folded states,remains unexplored in the context of holographic imaging.Herein,we integrate the principles of Rosenfeld with L-and D-metal chiral enantiomers on a Miura-ori surface to tailor the aperture distribution.Leveraging the continuously tunable nature of the Miura-ori's folded states,the chiral response of the metallic structures varies across different folding configurations,enabling distinct EM holographic imaging functionalities.In the planar state,holographic encryption is achieved.Under specific folding conditions and driven by spin circularly polarized(CP)waves at a particular frequency,multiplexed holographic images can be reconstructed on designated focal planes with CP selectivity.Notably,the fabricated origami metasurface exhibits a large negative Poisson ratio,facilitating portability and deployment and offering novel avenues for spin-selective systems,camouflage,and information encryption.展开更多
Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blo...Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blockchain technology,aiming to improve the security and privacy of transmitted data.The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps:The logistic Map,the Tent Map,and the Henon Map used to generate three encryption keys.The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.Furthermore,the integration of a Blockchain-based solution for securing data transmission and communication between nodes and authenticating the encrypted medical image’s authenticity adds a layer of security to our proposed method.Our proposed cryptosystem is divided into two principal modules presented as a pseudo-random number generator(PRNG)used for key generation and an encryption and decryption system based on the properties of confusion and diffusion.The security analysis and experimental tests for the proposed algorithm show that the average value of the information entropy of the encrypted images is 7.9993,the Number of Pixels Change Rate(NPCR)values are over 99.5%and the Unified Average Changing Intensity(UACI)values are greater than 33%.These results prove the strength of our proposed approach,demonstrating that it can significantly enhance the security of encrypted images.展开更多
The multi-keyword sorted searchable encryption is a practical and secure data processing technique.However,most of the existing schemes require each data owner to calculate and store the Inverse Document Frequency(IDF...The multi-keyword sorted searchable encryption is a practical and secure data processing technique.However,most of the existing schemes require each data owner to calculate and store the Inverse Document Frequency(IDF)value,and then dynamically summarize them into a global IDF value.This not only hinders efficient sharing of massive data but also may cause privacy disclosure.Additionally,using a cloud server as storage and computing center can compromise file integrity and create a single point of failure.To address these challenges,our proposal leverages the complex interactive environment and massive data scenarios of the supply chain to introduce a fast and accurate multi-keyword search scheme based on blockchain technology.Specifically,encrypted files are first stored in an Interplanetary File System(IPFS),while secure indexes are stored in a blockchain to eliminate single points of failure.Moreover,we employ homomorphic encryption algorithms to design a blockchain-based index tree that enables dynamic adaptive calculation of IDF values,dynamic update of indexes,and multi-keyword sorting search capabilities.Notably,we have specifically designed a two-round sorting search mode called“Match Sort+Score Sort”for achieving fast and accurate searching performance.Furthermore,fair payment contracts have been implemented on the blockchain to incentivize data sharing activities.Through rigorous safety analysis and comprehensive performance evaluation tests,our scheme has been proven effective as well as practical.展开更多
Due to the rapid advancement of information technology,data has emerged as the core resource driving decision-making and innovation across all industries.As the foundation of artificial intelligence,machine learning(M...Due to the rapid advancement of information technology,data has emerged as the core resource driving decision-making and innovation across all industries.As the foundation of artificial intelligence,machine learning(ML)has expanded its applications into intelligent recommendation systems,autonomous driving,medical diagnosis,and financial risk assessment.However,it relies on massive datasets,which contain sensitive personal information.Consequently,Privacy-Preserving Machine Learning(PPML)has become a critical research direction.To address the challenges of efficiency and accuracy in encrypted data computation within PPML,Homomorphic Encryption(HE)technology is a crucial solution,owing to its capability to facilitate computations on encrypted data.However,the integration of machine learning and homomorphic encryption technologies faces multiple challenges.Against this backdrop,this paper reviews homomorphic encryption technologies,with a focus on the advantages of the Cheon-Kim-Kim-Song(CKKS)algorithm in supporting approximate floating-point computations.This paper reviews the development of three machine learning techniques:K-nearest neighbors(KNN),K-means clustering,and face recognition-in integration with homomorphic encryption.It proposes feasible schemes for typical scenarios,summarizes limitations and future optimization directions.Additionally,it presents a systematic exploration of the integration of homomorphic encryption and machine learning from the essence of the technology,application implementation,performance trade-offs,technological convergence and future pathways to advance technological development.展开更多
With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multi...With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework.展开更多
Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature...Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.展开更多
Perovskites showcased potential promise for innovative circularly polarized luminescence (CPL)-active multi-channelinformation encryption, owing to the exceptional luminescence brightness. It was still a formidablecha...Perovskites showcased potential promise for innovative circularly polarized luminescence (CPL)-active multi-channelinformation encryption, owing to the exceptional luminescence brightness. It was still a formidablechallenge to fabricate CPL-active perovskites with significant luminescent asymmetry factor (glum) and full-colour-tailorableCPL properties. Indeed, compared to isotropic perovskites, anisotropic perovskite nanowires (NWs)were conducive to carrier separation and transport for polarization enhancement. Herein, three types of CsPb(Br/I)3 NWs with green, orange, red fluorescence (FL) were respectively synthesized and assembled into chiral NWfilms. The right-handed/left-handed chiral NW films constructed by 4+4 layers and 45° inter-angles exhibitshighly symmetric and mirror-like chiral signals. The strongest chiral intensity is more than 3000 medg. CPLsignals with wide colour gamut produce ranging from 480 nm to 800 nm, and tailorable CPL wavelengths aremanipulated by the emission wavelength of perovskite NWs. A giant CPL signal with a maximum glum of up to 10^(-1) is achieved. The polarization imaging of chiral NW films produces brilliant differential circularly polarizedstructural colours, making it more widely used in multilevel anti-counterfeiting systems. A significant break-throughlies in the development of advanced chiral perovskite materials with remarkable glum and tailorable CPLproperties, which sheds new light on optical anti-counterfeiting and intelligent information encryption.展开更多
文摘The large-scale acquisition and widespread application of remote sensing image data have led to increasingly severe challenges in information security and privacy protection during transmission and storage.Urban remote sensing image,characterized by complex content and well-defined structures,are particularly vulnerable to malicious attacks and information leakage.To address this issue,the author proposes an encryption method based on the enhanced single-neuron dynamical system(ESNDS).ESNDS generates highquality pseudo-random sequences with complex dynamics and intense sensitivity to initial conditions,which drive a structure of multi-stage cipher comprising permutation,ring-wise diffusion,and mask perturbation.Using representative GF-2 Panchromatic and Multispectral Scanner(PMS)urban scenes,the author conducts systematic evaluations in terms of inter-pixel correlation,information entropy,histogram uniformity,and number of pixel change rate(NPCR)/unified average changing intensity(UACI).The results demonstrate that the proposed scheme effectively resists statistical analysis,differential attacks,and known-plaintext attacks while maintaining competitive computational efficiency for high-resolution urban image.In addition,the cipher is lightweight and hardware-friendly,integrates readily with on-board and ground processing,and thus offers tangible engineering utility for real-time,large-volume remote-sensing data protection.
文摘A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,which is used for the scrambling,substitution and diffusion processes.The three-dimensional Fisher-Yates scrambling,S-box substitution and diffusion are employed for the first round of encryption.The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round.Then,three-dimensional filter is applied to diffusion for further useful information hiding.The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters.It improves resisting ability of plaintext attacks.The security analysis shows that the algorithm is effective and efficient.It can resist common attacks.In addition,the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research.
基金supported by the National Key Research and Development Program of China No.2023YFA1009500.
文摘With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.
基金supported by the Science and Technology Project of the State Grid Corporation of China,Grant number 5700-202223189A-1-1-ZN.
文摘Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intelligent processing on edge servers(ES).However,securely distributing encrypted data stored in the cloud to terminals that meet decryption requirements has become a prominent research topic.Additionally,managing attributes,including addition,deletion,and modification,is a crucial issue in the access control scheme for RES.To address these security concerns,a trust-based ciphertext-policy attribute-based encryption(CP-ABE)device access control scheme is proposed for RES(TB-CP-ABE).This scheme effectivelymanages the distribution and control of encrypted data on the cloud through robust attribute key management.By introducing trust management mechanisms and outsourced decryption technology,the ES system can effectively assess and manage the trust worthiness of terminal devices,ensuring that only trusted devices can participate in data exchange and access sensitive information.Besides,the ES system dynamically evaluates trust scores to set decryption trust thresholds,thereby regulating device data access permissions and enhancing the system’s security.To validate the security of the proposed TB-CP-ABE against chosen plaintext attacks,a comprehensive formal security analysis is conducted using the widely accepted random oraclemodel under the decisional q-Bilinear Diffie-Hellman Exponent(q-BDHE)assumption.Finally,comparative analysis with other schemes demonstrates that the TB-CP-ABE scheme cuts energy/communication costs by 43%,and scaleswell with rising terminals,maintaining average latency below 50ms,ensuring real-time service feasibility.The proposed scheme not only provides newinsights for the secure management of RES but also lays a foundation for future secure energy solutions.
基金National Key Research and Development Program of China(2021YFB3101402)National Natural Science Foundation of China(62202294)。
文摘This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals nothing about the predicate f,as long as f is drawn from an evasive distribution with sufficient entropy.The proposed scheme extends the group-based public-key function-private predicate encryption(FP-PE)for“small superset predicates”proposed by Bartusek et al.(Asiacrypt 19),to the setting of inner-product predicates.This is the first construction of public-key FP-PE with enhanced function privacy security beyond the equality predicates,which is previously proposed by Boneh et al.(CRYPTO 13).The proposed construction relies on bilinear groups,and the security is proved in the generic bilinear group model.
基金funded by Deanship of Research and Graduate Studies at King Khalid University.The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Group Project under grant number(RGP.2/556/45).
文摘Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.
基金funded by Princess Nourah bint Abdulrahman UniversityResearchers Supporting Project number (PNURSP2024R408), Princess Nourah bint AbdulrahmanUniversity, Riyadh, Saudi Arabia.
文摘A basic procedure for transforming readable data into encoded forms is encryption, which ensures security when the right decryption keys are used. Hadoop is susceptible to possible cyber-attacks because it lacks built-in security measures, even though it can effectively handle and store enormous datasets using the Hadoop Distributed File System (HDFS). The increasing number of data breaches emphasizes how urgently creative encryption techniques are needed in cloud-based big data settings. This paper presents Adaptive Attribute-Based Honey Encryption (AABHE), a state-of-the-art technique that combines honey encryption with Ciphertext-Policy Attribute-Based Encryption (CP-ABE) to provide improved data security. Even if intercepted, AABHE makes sure that sensitive data cannot be accessed by unauthorized parties. With a focus on protecting huge files in HDFS, the suggested approach achieves 98% security robustness and 95% encryption efficiency, outperforming other encryption methods including Ciphertext-Policy Attribute-Based Encryption (CP-ABE), Key-Policy Attribute-Based Encryption (KB-ABE), and Advanced Encryption Standard combined with Attribute-Based Encryption (AES+ABE). By fixing Hadoop’s security flaws, AABHE fortifies its protections against data breaches and enhances Hadoop’s dependability as a platform for processing and storing massive amounts of data.
基金funded by National Science and Technology Council,Taiwan,grant numbers are 110-2401-H-002-094-MY2 and 112-2221-E-130-001.
文摘As data analysis often incurs significant communication and computational costs,these tasks are increasingly outsourced to cloud computing platforms.However,this introduces privacy concerns,as sensitive data must be transmitted to and processed by untrusted parties.To address this,fully homomorphic encryption(FHE)has emerged as a promising solution for privacy-preserving Machine-Learning-as-a-Service(MLaaS),enabling computation on encrypted data without revealing the plaintext.Nevertheless,FHE remains computationally expensive.As a result,approximate homomorphic encryption(AHE)schemes,such as CKKS,have attracted attention due to their efficiency.In our previous work,we proposed RP-OKC,a CKKS-based clustering scheme implemented via TenSEAL.However,errors inherent to CKKS operations—termed CKKS-errors—can affect the accuracy of the result after decryption.Since these errors can be mitigated through post-decryption rounding,we propose a data pre-scaling technique to increase the number of significant digits and reduce CKKS-errors.Furthermore,we introduce an Operation-Error-Estimation(OEE)table that quantifies upper-bound error estimates for various CKKS operations.This table enables error-aware decryption correction,ensuring alignment between encrypted and plaintext results.We validate our method on K-means clustering using the Kaggle Customer Segmentation dataset.Experimental results confirm that the proposed scheme enhances the accuracy and reliability of privacy-preserving data analysis in cloud environments.
基金Türkiye Bilimsel ve Teknolojik Arastırma Kurumu。
文摘This paper introduces a novel lightweight colour image encryption algorithm,specifically designed for resource-constrained environments such as Internet of Things(IoT)devices.As IoT systems become increasingly prevalent,secure and efficient data transmission becomes crucial.The proposed algorithm addresses this need by offering a robust yet resource-efficient solution for image encryption.Traditional image encryption relies on confusion and diffusion steps.These stages are generally implemented linearly,but this work introduces a new RSP(Random Strip Peeling)algorithm for the confusion step,which disrupts linearity in the lightweight category by using two different sequences generated by the 1D Tent Map with varying initial conditions.The diffusion stage then employs an XOR matrix generated by the Logistic Map.Different evaluation metrics,such as entropy analysis,key sensitivity,statistical and differential attacks resistance,and robustness analysis demonstrate the proposed algorithm's lightweight,robust,and efficient.The proposed encryption scheme achieved average metric values of 99.6056 for NPCR,33.4397 for UACI,and 7.9914 for information entropy in the SIPI image dataset.It also exhibits a time complexity of O(2×M×N)for an image of size M×N.
文摘With the rapid development of information technology,data security issues have received increasing attention.Data encryption and decryption technology,as a key means of ensuring data security,plays an important role in multiple fields such as communication security,data storage,and data recovery.This article explores the fundamental principles and interrelationships of data encryption and decryption,examines the strengths,weaknesses,and applicability of symmetric,asymmetric,and hybrid encryption algorithms,and introduces key application scenarios for data encryption and decryption technology.It examines the challenges and corresponding countermeasures related to encryption algorithm security,key management,and encryption-decryption performance.Finally,it analyzes the development trends and future prospects of data encryption and decryption technology.This article provides a systematic understanding of data encryption and decryption techniques,which has good reference value for software designers.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive data vulnerable to unauthorized access and misuse.With the exponential growth of digital data,robust security measures are essential.Data encryption,a widely used approach,ensures data confidentiality by making it unreadable and unalterable through secret key control.Despite their individual benefits,both require significant computational resources.Additionally,performing them separately for the same data increases complexity and processing time.Recognizing the need for integrated approaches that balance compression ratios and security levels,this research proposes an integrated data compression and encryption algorithm,named IDCE,for enhanced security and efficiency.Thealgorithmoperates on 128-bit block sizes and a 256-bit secret key length.It combines Huffman coding for compression and a Tent map for encryption.Additionally,an iterative Arnold cat map further enhances cryptographic confusion properties.Experimental analysis validates the effectiveness of the proposed algorithm,showcasing competitive performance in terms of compression ratio,security,and overall efficiency when compared to prior algorithms in the field.
基金supported in part by the National Natural Science Foundation of China under Grants 62102450,62272478the Independent Research Project of a Certain Unit under Grant ZZKY20243127.
文摘Federated Learning(FL)has emerged as a promising distributed machine learning paradigm that enables multi-party collaborative training while eliminating the need for raw data sharing.However,its reliance on a server introduces critical security vulnerabilities:malicious servers can infer private information from received local model updates or deliberately manipulate aggregation results.Consequently,achieving verifiable aggregation without compromising client privacy remains a critical challenge.To address these problem,we propose a reversible data hiding in encrypted domains(RDHED)scheme,which designs joint secret message embedding and extraction mechanism.This approach enables clients to embed secret messages into ciphertext redundancy spaces generated during model encryption.During the server aggregation process,the embedded messages from all clients fuse within the ciphertext space to form a joint embedding message.Subsequently,clients can decrypt the aggregated results and extract this joint embedding message for verification purposes.Building upon this foundation,we integrate the proposed RDHED scheme with linear homomorphic hash and digital signatures to design a verifiable privacy-preserving aggregation protocol for single-server architectures(VPAFL).Theoretical proofs and experimental analyses show that VPAFL can effectively protect user privacy,achieve lightweight computational and communication overhead of users for verification,and present significant advantages with increasing model dimension.
基金the financial support from the National Natural Science Foundation of China(Nos.21971040,22171045,and 22371046)。
文摘Ln-containing polyoxoniobates(PONbs)have appealing applications in luminescence,information encryption and magnetic fields,but the synthesis of PONbs containing high-nuclearity Ln-O clusters is challenging due to the easy hydrolysis of Ln^(3+)ions in alkaline environments.In this paper,we are able to integrate CO_(3)^(2-)and high-nuclearity Ln-O clusters into PONb to construct an inorganic giant Eu_(19)-embedded PONb H_(49)K_(16)Na_(13)(H_(2)O)_(63)[Eu_(21)O_(2)(OH)_(7)(H_(2)O)_(5)(Nb_(7)O_(22))_(10)(Nb_(2)O_(6))_(2)(CO_(3))_(18)]·91H_(2)O(1),which contains the highest nuclearity Eu-O clusters and the largest number of Eu^(3+)ions among PONbs.In addition,the film that was prepared by mixing 1 with gelatin and glycerol,exhibits reversible luminescence switching behavior under acid/alkali stimulation and has been used to create a fluorescence-encoded information approach.This work paves a feasible strategy for the construction of high-nuclearity Ln-O cluster-containing PONbs and the expansion of the application of Ln-containing PONbs in information encryption.
基金financial supports from National Key Research and Development Program of China(No.2022YFB3806200)。
文摘With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasurfaces are severely limited by their lack of reconfigurability,hindering the realization of versatile holographic applications.Origami,an art form that mechanically induces spatial deformations,serves as a platform for multifunctional devices and has garnered significant attention in optics,physics,and materials science.The Miura-ori folding paradigm,characterized by its continuous reconfigurability in folded states,remains unexplored in the context of holographic imaging.Herein,we integrate the principles of Rosenfeld with L-and D-metal chiral enantiomers on a Miura-ori surface to tailor the aperture distribution.Leveraging the continuously tunable nature of the Miura-ori's folded states,the chiral response of the metallic structures varies across different folding configurations,enabling distinct EM holographic imaging functionalities.In the planar state,holographic encryption is achieved.Under specific folding conditions and driven by spin circularly polarized(CP)waves at a particular frequency,multiplexed holographic images can be reconstructed on designated focal planes with CP selectivity.Notably,the fabricated origami metasurface exhibits a large negative Poisson ratio,facilitating portability and deployment and offering novel avenues for spin-selective systems,camouflage,and information encryption.
基金supported by the Large Group Project under grant number(RGP2/473/46).
文摘Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blockchain technology,aiming to improve the security and privacy of transmitted data.The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps:The logistic Map,the Tent Map,and the Henon Map used to generate three encryption keys.The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.Furthermore,the integration of a Blockchain-based solution for securing data transmission and communication between nodes and authenticating the encrypted medical image’s authenticity adds a layer of security to our proposed method.Our proposed cryptosystem is divided into two principal modules presented as a pseudo-random number generator(PRNG)used for key generation and an encryption and decryption system based on the properties of confusion and diffusion.The security analysis and experimental tests for the proposed algorithm show that the average value of the information entropy of the encrypted images is 7.9993,the Number of Pixels Change Rate(NPCR)values are over 99.5%and the Unified Average Changing Intensity(UACI)values are greater than 33%.These results prove the strength of our proposed approach,demonstrating that it can significantly enhance the security of encrypted images.
文摘The multi-keyword sorted searchable encryption is a practical and secure data processing technique.However,most of the existing schemes require each data owner to calculate and store the Inverse Document Frequency(IDF)value,and then dynamically summarize them into a global IDF value.This not only hinders efficient sharing of massive data but also may cause privacy disclosure.Additionally,using a cloud server as storage and computing center can compromise file integrity and create a single point of failure.To address these challenges,our proposal leverages the complex interactive environment and massive data scenarios of the supply chain to introduce a fast and accurate multi-keyword search scheme based on blockchain technology.Specifically,encrypted files are first stored in an Interplanetary File System(IPFS),while secure indexes are stored in a blockchain to eliminate single points of failure.Moreover,we employ homomorphic encryption algorithms to design a blockchain-based index tree that enables dynamic adaptive calculation of IDF values,dynamic update of indexes,and multi-keyword sorting search capabilities.Notably,we have specifically designed a two-round sorting search mode called“Match Sort+Score Sort”for achieving fast and accurate searching performance.Furthermore,fair payment contracts have been implemented on the blockchain to incentivize data sharing activities.Through rigorous safety analysis and comprehensive performance evaluation tests,our scheme has been proven effective as well as practical.
基金supported by the fllowing projects:Natural Science Foundation of China under Grant 62172436Self-Initiated Scientific Research Project of the Chinese People's Armed Police Force under Grant ZZKY20243129Basic Frontier Innovation Project of the Engineering University of the Chinese People's Armed Police Force under Grant WJY202421.
文摘Due to the rapid advancement of information technology,data has emerged as the core resource driving decision-making and innovation across all industries.As the foundation of artificial intelligence,machine learning(ML)has expanded its applications into intelligent recommendation systems,autonomous driving,medical diagnosis,and financial risk assessment.However,it relies on massive datasets,which contain sensitive personal information.Consequently,Privacy-Preserving Machine Learning(PPML)has become a critical research direction.To address the challenges of efficiency and accuracy in encrypted data computation within PPML,Homomorphic Encryption(HE)technology is a crucial solution,owing to its capability to facilitate computations on encrypted data.However,the integration of machine learning and homomorphic encryption technologies faces multiple challenges.Against this backdrop,this paper reviews homomorphic encryption technologies,with a focus on the advantages of the Cheon-Kim-Kim-Song(CKKS)algorithm in supporting approximate floating-point computations.This paper reviews the development of three machine learning techniques:K-nearest neighbors(KNN),K-means clustering,and face recognition-in integration with homomorphic encryption.It proposes feasible schemes for typical scenarios,summarizes limitations and future optimization directions.Additionally,it presents a systematic exploration of the integration of homomorphic encryption and machine learning from the essence of the technology,application implementation,performance trade-offs,technological convergence and future pathways to advance technological development.
基金funded by theNational Science and Technology Council of Taiwan under the grant number NSTC 113-2221-E-035-058.
文摘With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework.
基金supported by the National Natural Science Foundation of China(No.22288101)the 111 Project(No.B17020)。
文摘Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.
基金supported by the National Natural Science Foundation of China(22278184,22272065)the Natural Science Foundation of Jiangsu Province(BK20211530)+1 种基金the Fundamental Research Funds for the Central Universities(JUSRP622018,JUSRP202404022)the Key Research and Development Special Project of Yichun City,Jiangxi Province,China(2023ZDYFZX06).
文摘Perovskites showcased potential promise for innovative circularly polarized luminescence (CPL)-active multi-channelinformation encryption, owing to the exceptional luminescence brightness. It was still a formidablechallenge to fabricate CPL-active perovskites with significant luminescent asymmetry factor (glum) and full-colour-tailorableCPL properties. Indeed, compared to isotropic perovskites, anisotropic perovskite nanowires (NWs)were conducive to carrier separation and transport for polarization enhancement. Herein, three types of CsPb(Br/I)3 NWs with green, orange, red fluorescence (FL) were respectively synthesized and assembled into chiral NWfilms. The right-handed/left-handed chiral NW films constructed by 4+4 layers and 45° inter-angles exhibitshighly symmetric and mirror-like chiral signals. The strongest chiral intensity is more than 3000 medg. CPLsignals with wide colour gamut produce ranging from 480 nm to 800 nm, and tailorable CPL wavelengths aremanipulated by the emission wavelength of perovskite NWs. A giant CPL signal with a maximum glum of up to 10^(-1) is achieved. The polarization imaging of chiral NW films produces brilliant differential circularly polarizedstructural colours, making it more widely used in multilevel anti-counterfeiting systems. A significant break-throughlies in the development of advanced chiral perovskite materials with remarkable glum and tailorable CPLproperties, which sheds new light on optical anti-counterfeiting and intelligent information encryption.