期刊文献+
共找到20,578篇文章
< 1 2 250 >
每页显示 20 50 100
A highly reliable encoding and decoding communication framework based on semantic information
1
作者 Yichi Zhang Haitao Zhao +4 位作者 Kuo Cao Li Zhou Zhe Wang Yueling Liu Jibo Wei 《Digital Communications and Networks》 SCIE CSCD 2024年第3期509-518,共10页
Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding ... Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding and decoding semantic communication framework,which adopts the semantic information and the contextual correlations between items to optimize the performance of a communication system over various channels.On the sender side,the average semantic loss caused by the wrong detection is defined,and a semantic source encoding strategy is developed to minimize the average semantic loss.To further improve communication reliability,a decoding strategy that utilizes the semantic and the context information to recover messages is proposed in the receiver.Extensive simulation results validate the superior performance of our strategies over state-of-the-art semantic coding and decoding policies on different communication channels. 展开更多
关键词 Semantic information Semantic encoding method Context-based decoding method
在线阅读 下载PDF
Joint Feature Encoding and Task Alignment Mechanism for Emotion-Cause Pair Extraction
2
作者 Shi Li Didi Sun 《Computers, Materials & Continua》 SCIE EI 2025年第1期1069-1086,共18页
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions... With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings. 展开更多
关键词 Emotion-cause pair extraction interactive information enhancement joint feature encoding label consistency task alignment mechanisms
在线阅读 下载PDF
Dual encoding feature filtering generalized attention UNET for retinal vessel segmentation
3
作者 ISLAM Md Tauhidul WU Da-Wen +6 位作者 TANG Qing-Qing ZHAO Kai-Yang YIN Teng LI Yan-Fei SHANG Wen-Yi LIU Jing-Yu ZHANG Hai-Xian 《四川大学学报(自然科学版)》 北大核心 2025年第1期79-95,共17页
Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited t... Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization. 展开更多
关键词 Vessel segmentation Data balancing Data augmentation Dual encoder Attention Mechanism Model generalization
在线阅读 下载PDF
Pyramid–MixNet: Integrate Attention into Encoder-Decoder Transformer Framework for Automatic Railway Surface Damage Segmentation
4
作者 Hui Luo Wenqing Li Wei Zeng 《Computers, Materials & Continua》 2025年第7期1567-1580,共14页
Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi... Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi-category,and multi-scale target segmentation tasks.To address these challenges,this paper proposes Pyramid-MixNet,an intelligent segmentation model for high-speed rail surface damage,leveraging dataset construction and expansion alongside a feature pyramid-based encoder-decoder network with multi-attention mechanisms.The encoding net-work integrates Spatial Reduction Masked Multi-Head Attention(SRMMHA)to enhance global feature extraction while reducing trainable parameters.The decoding network incorporates Mix-Attention(MA),enabling multi-scale structural understanding and cross-scale token group correlation learning.Experimental results demonstrate that the proposed method achieves 62.17%average segmentation accuracy,80.28%Damage Dice Coefficient,and 56.83 FPS,meeting real-time detection requirements.The model’s high accuracy and scene adaptability significantly improve the detection of small-scale and complex multi-scale rail damage,offering practical value for real-time monitoring in high-speed railway maintenance systems. 展开更多
关键词 Pyramid vision transformer encoder–decoder architecture railway damage segmentation masked multi-head attention mix-attention
在线阅读 下载PDF
Encoding converters for quantum communication networks
5
作者 Hua-Xing Xu Shao-Hua Wang +2 位作者 Ya-Qi Song Ping Zhang Chang-Lei Wang 《Chinese Physics B》 2025年第5期64-69,共6页
Quantum communication networks,such as quantum key distribution(QKD)networks,typically employ the measurement-resend mechanism between two users using quantum communication devices based on different quantum encoding ... Quantum communication networks,such as quantum key distribution(QKD)networks,typically employ the measurement-resend mechanism between two users using quantum communication devices based on different quantum encoding types.To achieve direct communication between the devices with different quantum encoding types,in this paper,we propose encoding conversion schemes between the polarization bases(rectilinear,diagonal and circular bases)and the time-bin phase bases(two phase bases and time-bin basis)and design the quantum encoding converters.The theoretical analysis of the encoding conversion schemes is given in detail,and the basis correspondence of encoding conversion and the property of bit flip are revealed.The conversion relationship between polarization bases and time-bin phase bases can be easily selected by controlling a phase shifter.Since no optical switches are used in our scheme,the converter can be operated with high speed.The converters can also be modularized,which may be utilized to realize miniaturization in the future. 展开更多
关键词 quantum communication networks encoding conversion polarization encoding time-bin phase encoding
原文传递
On the Manipulation of the Selectivity of Encoding and Decoding overthe Translator's Subjectivity
6
作者 蒋知洋 《海外英语》 2014年第9X期177-178,共2页
The translation activity is a process of the interlinguistic transmission of information realized by the information encoding and decoding.Encoding and decoding,cognitive practices operated in objective contexts,are i... The translation activity is a process of the interlinguistic transmission of information realized by the information encoding and decoding.Encoding and decoding,cognitive practices operated in objective contexts,are inevitably of selectivity ascribing to the restriction of contextual reasons.The translator as the intermediary agent connects the original author(encoder)and the target readers(decoder),shouldering the dual duties of the decoder and the encoder,for which his subjectivity is irrevocably manipulated by the selectivity of encoding and decoding. 展开更多
关键词 encoding and decoding SELECTIVITY COGNITION the TR
在线阅读 下载PDF
Research on deep learning decoding method for polar codes in ACO-OFDM spatial optical communication system
7
作者 LIU Kangrui LI Ming +2 位作者 CHEN Sizhe QU Jiashun ZHOU Ming’ou 《Optoelectronics Letters》 2025年第7期427-433,共7页
Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbule... Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder. 展开更多
关键词 frequency conduction polar codes deep learning signal demodulation deep learning technique decoding ACO OFDM polarization code decoding
原文传递
Low Complexity Successive Cancellation List Decoding of U-UV Codes
8
作者 Chen Wenhao Chen Li +1 位作者 Lin Jingyu Zhang Huazi 《China Communications》 2025年第1期41-60,共20页
Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-med... Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity. 展开更多
关键词 ordered statistics decoding successive cancellation list decoding U-UV codes
在线阅读 下载PDF
A Blockchain-Based Covert Communication Model Based on Dynamic Base-K Encoding
9
作者 Wang Zhujun Zhang Lejun +7 位作者 Li Xueqing Tian Zhihong Su Shen Qiu Jing Chen Huiling Qiu Tie Sergey Gataullin Guo Ran 《China Communications》 2025年第6期319-333,共15页
Blockchain,as a distributed ledger,inherently possesses tamper-resistant capabilities,creating a natural channel for covert communication.However,the immutable nature of data storage might introduce challenges to comm... Blockchain,as a distributed ledger,inherently possesses tamper-resistant capabilities,creating a natural channel for covert communication.However,the immutable nature of data storage might introduce challenges to communication security.This study introduces a blockchain-based covert communication model utilizing dynamic Base-K encoding.The proposed encoding scheme utilizes the input address sequence to determine K to encode the secret message and determines the order of transactions based on K,thus ensuring effective concealment of the message.The dynamic encoding parameters enhance flexibility and address issues related to identical transaction amounts for the same secret message.Experimental results demonstrate that the proposed method maintains smooth communication and low susceptibility to tampering,achieving commendable concealment and embedding rates. 展开更多
关键词 base-K encoding blockchain CONCEALMENT covert communication
在线阅读 下载PDF
Large Language Models With Contrastive Decoding Algorithm for Hallucination Mitigation in Low-Resource Languages
10
作者 Zan Hongying Arifa Javed +2 位作者 Muhammad Abdullah Javed Rashid Muhammad Faheem 《CAAI Transactions on Intelligence Technology》 2025年第4期1104-1117,共14页
Neural machine translation(NMT)has advanced with deep learning and large-scale multilingual models,yet translating lowresource languages often lacks sufficient training data and leads to hallucinations.This often resu... Neural machine translation(NMT)has advanced with deep learning and large-scale multilingual models,yet translating lowresource languages often lacks sufficient training data and leads to hallucinations.This often results in translated content that diverges significantly from the source text.This research proposes a refined Contrastive Decoding(CD)algorithm that dynamically adjusts weights of log probabilities from strong expert and weak amateur models to mitigate hallucinations in lowresource NMT and improve translation quality.Advanced large language NMT models,including ChatGLM and LLaMA,are fine-tuned and implemented for their superior contextual understanding and cross-lingual capabilities.The refined CD algorithm evaluates multiple candidate translations using BLEU score,semantic similarity,and Named Entity Recognition accuracy.Extensive experimental results show substantial improvements in translation quality and a significant reduction in hallucination rates.Fine-tuned models achieve higher evaluation metrics compared to baseline models and state-of-the-art models.An ablation study confirms the contributions of each methodological component and highlights the effectiveness of the refined CD algorithm and advanced models in mitigating hallucinations.Notably,the refined methodology increased the BLEU score by approximately 30%compared to baseline models. 展开更多
关键词 ChatGLM contrastive decoding HALLUCINATION LLAMA LLM low resource NMT
在线阅读 下载PDF
Decoding of Surface Meteorological Observation Data Files and Application Research on Climatic Data
11
作者 Hui LIANG Xianqiang SU Qingyun ZHU 《Meteorological and Environmental Research》 2025年第2期16-21,25,共7页
In this paper,Wuzhou City of Guangxi was taken as the research object.Through the design of a climatic data warehousing system,the decoding methods of surface meteorological data and their application in the managemen... In this paper,Wuzhou City of Guangxi was taken as the research object.Through the design of a climatic data warehousing system,the decoding methods of surface meteorological data and their application in the management of climatic data were explored.Based on the parsing technology of the monthly report of surface meteorological records(A-file),the design of Wuzhou climatic data warehousing system was realized,completing the precise extraction and database construction of observational elements such as regional temperature,wind direction,and weather phenomena.Based on this system,the meteorological data in 2024 were analyzed,and the probabilistic characteristics of dominant wind direction in Wuzhou(northeast wind accounting for the largest proportion),the spatiotemporal distribution patterns of extreme temperatures(annual extreme high temperature of 37.1℃in August and extreme low temperature of 1.9℃in January),and the general climatic overview of Wuzhou City(annual precipitation 3.2%higher than the standard value)were revealed.The research shows that climate change has a significant impact on agricultural production and economic development in Wuzhou City,and the construction of a reasonable climatic data database is of great significance for enhancing professional meteorological service capabilities in the context of climate change.This study not only provides a scientific basis for the economic development of Wuzhou region,but also offers reference ideas for other regions to cope with regional climate adaptation planning. 展开更多
关键词 Surface meteorological observation A-file decoding Climatic database Climate change
在线阅读 下载PDF
Modulation of tRNA^(Cln)decoding efficacy by metal ion binding and glutamine supply
12
作者 Yuxuan Shen Tianchang Wang +3 位作者 Hua Qiao Qing Liang Jingru Lv Qing Xia 《Journal of Chinese Pharmaceutical Sciences》 2025年第1期28-40,共13页
Transfer RNAs(tRNAs)adopt a stable L-shaped tertiary structure crucial for their involvement in protein translation.Among various divalent metal ions,magnesium ions play a pivotal role in preserving the tertiary struc... Transfer RNAs(tRNAs)adopt a stable L-shaped tertiary structure crucial for their involvement in protein translation.Among various divalent metal ions,magnesium ions play a pivotal role in preserving the tertiary structure of tRNA.However,the precise location of the Mg^(2+)binding pocket in human tRNA remains elusive.In this investigation,we identified the Mg^(2+)binding site within human tRNAGln using suppressor tRNA^(Gln).This variant of tRNA recognizes premature stop codons(specificlly UAG)and facilitates the expression of fll-length proteis.By mutating sites 8 and C72 in supprssr tRNAcl,we assessed the decoding efficiency of the resulting mutant suppressor tRNAs,which serves as a measure of tRNA's ability to decode genetic information.Our analysis revealed that the U8C mutant suppressor tRNA exhibited a significantly lower Mg^(2+)content compared to the C72U mutant.Furthermore,we observed a notable reduction in decoding efficiency in the U8-mutated suppressor tRNA,as evidenced by GFP fluorescence and Western blotting analysis.Conversely,mutations at the C72 site had a comparatively minor impact on decoding efficiency.These findings underscored the tight binding of Mg^(2+)to the U8 site of human tRNAGln,crucial for maintaining the stability of tRNA tertiary structure and translation efficacy.Additionally,our investigation delved into the influence of glutamine availability on tRNA decoding efficiency at the cellular level.The results indicated that both the concentration of amino acids and the codon context of TAG could modulate tRNA decoding efficiency.This study provided valuable insights into the structure and function of tRNA,laying the groundwork for further exploration in this field. 展开更多
关键词 Metal ions tRNA tertiary structure Glutamine supply decoding efficacy
原文传递
An Efficient Temporal Decoding Module for Action Recognition
13
作者 HUANG Qiubo MEI Jianmin +3 位作者 ZHAO Wupeng LU Yiru WANG Mei CHEN Dehua 《Journal of Donghua University(English Edition)》 2025年第2期187-196,共10页
Action recognition,a fundamental task in the field of video understanding,has been extensively researched and applied.In contrast to an image,a video introduces an extra temporal dimension.However,many existing action... Action recognition,a fundamental task in the field of video understanding,has been extensively researched and applied.In contrast to an image,a video introduces an extra temporal dimension.However,many existing action recognition networks either perform simple temporal fusion through averaging or rely on pre-trained models from image recognition,resulting in limited temporal information extraction capabilities.This work proposes a highly efficient temporal decoding module that can be seamlessly integrated into any action recognition backbone network to enhance the focus on temporal relationships between video frames.Firstly,the decoder initializes a set of learnable queries,termed video-level action category prediction queries.Then,they are combined with the video frame features extracted by the backbone network after self-attention learning to extract video context information.Finally,these prediction queries with rich temporal features are used for category prediction.Experimental results on HMDB51,MSRDailyAct3D,Diving48 and Breakfast datasets show that using TokShift-Transformer and VideoMAE as encoders results in a significant improvement in Top-1 accuracy compared to the original models(TokShift-Transformer and VideoMAE),after introducing the proposed temporal decoder.The introduction of the temporal decoder results in an average performance increase exceeding 11%for TokShift-Transformer and nearly 5%for VideoMAE across the four datasets.Furthermore,the work explores the combination of the decoder with various action recognition networks,including Timesformer,as encoders.This results in an average accuracy improvement of more than 3.5%on the HMDB51 dataset.The code is available at https://github.com/huangturbo/TempDecoder. 展开更多
关键词 action recognition video understanding temporal relationship temporal decoder TRANSFORMER
在线阅读 下载PDF
An Optimization of Weak Key Attacks Based on the BGF Decoding Algorithm
14
作者 Bing Liu Ting Nie +1 位作者 Yansong Liu Weibo Hu 《Computers, Materials & Continua》 2025年第9期4583-4599,共17页
Among the four candidate algorithms in the fourth round of NIST standardization,the BIKE(Bit Flipping Key Encapsulation)scheme has a small key size and high efficiency,showing good prospects for application.However,th... Among the four candidate algorithms in the fourth round of NIST standardization,the BIKE(Bit Flipping Key Encapsulation)scheme has a small key size and high efficiency,showing good prospects for application.However,the BIKE scheme based on QC-MDPC(Quasi Cyclic Medium Density Parity Check)codes still faces challenges such as the GJS attack and weak key attacks targeting the decoding failure rate(DFR).This paper analyzes the BGF decoding algorithm of the BIKE scheme,revealing two deep factors that lead to DFR,and proposes a weak key optimization attack method for the BGF decoding algorithm based on these two factors.The proposed method constructs a new weak key set,and experiment results eventually indicate that,considering BIKE’s parameter set targeting 128-bit security,the average decryption failure rate is lowerly bounded by.This result not only highlights a significant vulnerability in the BIKE scheme but also provides valuable insights for future improvements in its design.By addressing these weaknesses,the robustness of QC-MDPC code-based cryptographic systems can be enhanced,paving the way for more secure post-quantum cryptographic solutions. 展开更多
关键词 BIKE BGF decoding algorithm weak key attack GJS attack
在线阅读 下载PDF
Image encoding-based bearing fault diagnosis:Review and challenges for high-speed trains
15
作者 Huimin Li Lingfeng Li +1 位作者 Bin Liu Ge Xin 《High-Speed Railway》 2025年第3期251-259,共9页
High-Speed Trains (HSTs) have emerged as a mainstream mode of transportation in China, owing to their exceptional safety and efficiency. Ensuring the reliable operation of HSTs is of paramount economic and societal im... High-Speed Trains (HSTs) have emerged as a mainstream mode of transportation in China, owing to their exceptional safety and efficiency. Ensuring the reliable operation of HSTs is of paramount economic and societal importance. As critical rotating mechanical components of the transmission system, bearings make their fault diagnosis a topic of extensive attention. This paper provides a systematic review of image encoding-based bearing fault diagnosis methods tailored to the condition monitoring of HSTs. First, it categorizes the image encoding techniques applied in the field of bearing fault diagnosis. Then, a review of state-of-the-art studies has been presented, encompassing both monomodal image conversion and multimodal image fusion approaches. Finally, it highlights current challenges and proposes future research directions to advance intelligent fault diagnosis in HSTs, aiming to provide a valuable reference for researchers and engineers in the field of intelligent operation and maintenance. 展开更多
关键词 High-speed trains Image encoding Fault diagnosis Rotating machinery Condition monitoring
在线阅读 下载PDF
Validity of the Gaussian phase distribution approximation for analysis of isotropic diffusion encoding applied to restricted diffusion in a cylinder
16
作者 Daniel Topgaard 《Magnetic Resonance Letters》 2025年第4期20-27,共8页
The Gaussian phase distribution approximation enables analysis of restricted diffusion encoded by general gradient waveforms but fails to account for the diffraction-like features that may occur for simple pore geomet... The Gaussian phase distribution approximation enables analysis of restricted diffusion encoded by general gradient waveforms but fails to account for the diffraction-like features that may occur for simple pore geometries.We investigate the range of validity of the approximation by random walk simulations of restricted diffusion in a cylinder using isotropic diffusion encoding sequences as well as conventional single gradient pulse pairs and oscillating gradient waveforms.The results show that clear deviations from the approximation may be observed at relative signal attenuations below 0.1 for onedimensional sequences with few oscillation periods.Increasing the encoding dimensionality and/or number of oscillations while extending the total duration of the waveform diminishes the non-Gaussian effects while preserving the low apparent diffusivities characteristic of restriction. 展开更多
关键词 NMR DIFFUSION Porous media Pulsed gradient spin echo Tensor-valued encoding
在线阅读 下载PDF
Multi-protocol quantum key distribution decoding chip
17
作者 Chun-Xue Zhang Jian-Guang Li +3 位作者 Yue Wang Wei Chen Jia-Shun Zhang Jun-Ming An 《Chinese Physics B》 2025年第5期34-41,共8页
Quantum key distribution(QKD)is a method for secure communication that utilizes quantum mechanics principles to distribute cryptographic keys between parties.Integrated photonics offer benefits such as compactness,sca... Quantum key distribution(QKD)is a method for secure communication that utilizes quantum mechanics principles to distribute cryptographic keys between parties.Integrated photonics offer benefits such as compactness,scalability,energy efficiency and the potential for extensive integration.We have achieved BB84 phase encoding and decoding,time-bin phase QKD,and the coherent one-way(COW)protocol on a planar lightwave circuit(PLC)platform.At the optimal temperature,our chip successfully prepared quantum states,performed decoding and calculated the secure key rate of the time-bin phasedecoding QKD to be 80.46 kbps over a 20 km transmission with a quantum bit error rate(QBER)of 4.23%.The secure key rate of the COW protocol was 18.18 kbps,with a phase error rate of 3.627%and a time error rate of 0.377%.The uniqueness of this technology lies in its combination of high integration and protocol flexibility,providing an innovative solution for the development of future quantum communication networks. 展开更多
关键词 quantum key distribution(QKD) secure key rate decoding chip quantum bit error rate
原文传递
Autonomous inverse encoding guides 4D nanoprinting for highly programmable shape morphing
18
作者 Shuaiqi Ren Zhiang Zhang +6 位作者 Ruokun He Jiahao Fan Guangming Wang Hesheng Wang Bing Han Yong-Lai Zhang Zhuo-Chen Ma 《International Journal of Extreme Manufacturing》 2025年第3期467-482,共16页
Highly programmable shape morphing of 4D-printed micro/nanostructures is urgently desired for applications in robotics and intelligent systems.However,due to the lack of autonomous holistic strategies throughout the t... Highly programmable shape morphing of 4D-printed micro/nanostructures is urgently desired for applications in robotics and intelligent systems.However,due to the lack of autonomous holistic strategies throughout the target shape input,optimal material distribution generation,and fabrication program output,4D nanoprinting that permits arbitrary shape morphing remains a challenging task for manual design.In this study,we report an autonomous inverse encoding strategy to decipher the genetic code for material property distributions that can guide the encoded modeling toward arbitrarily pre-programmed 4D shape morphing.By tuning the laser power of each voxel at the nanoscale,the genetic code can be spatially programmed and controllable shape morphing can be realized through the inverse encoding process.Using this strategy,the 4D-printed structures can be designed and accurately shift to the target morphing of arbitrarily hand-drawn lines under stimulation.Furthermore,as a proof-of-concept,a flexible fiber micromanipulator that can approach the target region through pre-programmed shape morphing is autonomously inversely encoded according to the localized spatial environment.This strategy may contribute to the modeling and arbitrary shape morphing of micro/nanostructures fabricated via 4D nanoprinting,leading to cutting-edge applications in microfluidics,micro-robotics,minimally invasive robotic surgery,and tissue engineering. 展开更多
关键词 femtosecond laser fabrication 4D printing two-photon polymerization autonomous inverse encoding stimuli-responsive materials
在线阅读 下载PDF
Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models
19
作者 Zishuai Wang Wangchang Li Zhonglin Tang 《Journal of Integrative Agriculture》 2025年第9期3574-3582,共9页
Deep learning(DL)methods like multilayer perceptrons(MLPs)and convolutional neural networks(CNNs)have been applied to predict the complex traits in animal and plant breeding.However,improving the genomic prediction ac... Deep learning(DL)methods like multilayer perceptrons(MLPs)and convolutional neural networks(CNNs)have been applied to predict the complex traits in animal and plant breeding.However,improving the genomic prediction accuracy still presents signifcant challenges.In this study,we applied CNNs to predict swine traits using previously published data.Specifcally,we extensively evaluated the CNN model's performance by employing various sets of single nucleotide polymorphisms(SNPs)and concluded that the CNN model achieved optimal performance when utilizing SNP sets comprising 1,000 SNPs.Furthermore,we adopted a novel approach using the one-hot encoding method that transforms the 16 different genotypes into sets of eight binary variables.This innovative encoding method signifcantly enhanced the CNN's prediction accuracy for swine traits,outperforming the traditional one-hot encoding techniques.Our fndings suggest that the expanded one-hot encoding method can improve the accuracy of DL methods in the genomic prediction of swine agricultural economic traits.This discovery has significant implications for swine breeding programs,where genomic prediction is pivotal in improving breeding strategies.Furthermore,future research endeavors can explore additional enhancements to DL methods by incorporating advanced data pre-processing techniques. 展开更多
关键词 SWINE agricultural economic traits genomic prediction deep learning one-hot encoding convolutional neural networks(CNNs)
在线阅读 下载PDF
DDFNet:real-time salient object detection with dual-branch decoding fusion for steel plate surface defects
20
作者 Tao Wang Wang-zhe Du +5 位作者 Xu-wei Li Hua-xin Liu Yuan-ming Liu Xiao-miao Niu Ya-xing Liu Tao Wang 《Journal of Iron and Steel Research International》 2025年第8期2421-2433,共13页
A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decod... A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decoder architecture.DDFNet integrates three key innovations:first,we introduce a novel,lightweight multi-scale progressive aggregation residual network that effectively suppresses background interference and refines defect details,enabling efficient salient feature extraction.Then,we propose an innovative dual-branch decoding fusion structure,comprising the refined defect representation branch and the enhanced defect representation branch,which enhance accuracy in defect region identification and feature representation.Additionally,to further improve the detection of small and complex defects,we incorporate a multi-scale attention fusion module.Experimental results on the public ESDIs-SOD dataset show that DDFNet,with only 3.69 million parameters,achieves detection performance comparable to current state-of-the-art models,demonstrating its potential for real-time industrial applications.Furthermore,our DDFNet-L variant consistently outperforms leading methods in detection performance.The code is available at https://github.com/13140W/DDFNet. 展开更多
关键词 Steel plate surface defect Real-time detection Salient object detection Dual-branch decoder Multi-scale attention fusion Multi-scale residual fusion
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部