Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decode...Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) network to predict the action and locate the object efficiently. In the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder (ACSF ST-Encoder), the Asymptotic Cross-scale Feature-fusion Module (ACCFM) is designed to address the issue of information degradation caused by the propagation of high-level semantic information, thereby extracting high-quality multi-scale features to provide superior features for subsequent spatio-temporal information modeling. Within the Shared-Head Decoder structure, a shared classification and regression detection head is constructed. A multi-constraint loss function composed of one-to-one, one-to-many, and contrastive denoising losses is designed to address the problem of insufficient constraint force in predicting results with traditional methods. This loss function enhances the accuracy of model classification predictions and improves the proximity of regression position predictions to ground truth objects. The proposed method model is evaluated on the popular dataset UCF101-24 and JHMDB-21. Experimental results demonstrate that the proposed method achieves an accuracy of 81.52% on the Frame-mAP metric, surpassing current existing methods.展开更多
After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the tim...After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions.展开更多
Epilepsy,a common neurological disorder,is characterized by recurrent seizures that can lead to cognitive,psychological,and neurobiological consequences.The pathogenesis of epilepsy involves neuronal dysfunction at th...Epilepsy,a common neurological disorder,is characterized by recurrent seizures that can lead to cognitive,psychological,and neurobiological consequences.The pathogenesis of epilepsy involves neuronal dysfunction at the molecular,cellular,and neural circuit levels.Abnormal molecular signaling pathways or dysfunction of specific cell types can lead to epilepsy by disrupting the normal functioning of neural circuits.The continuous emergence of new technologies and the rapid advancement of existing ones have facilitated the discovery and comprehensive understanding of the neural circuit mechanisms underlying epilepsy.Therefore,this review aims to investigate the current understanding of the neural circuit mechanisms in epilepsy based on various technologies,including electroencephalography,magnetic resonance imaging,optogenetics,chemogenetics,deep brain stimulation,and brain-computer interfaces.Additionally,this review discusses these mechanisms from three perspectives:structural,synaptic,and transmitter circuits.The findings reveal that the neural circuit mechanisms of epilepsy encompass information transmission among different structures,interactions within the same structure,and the maintenance of homeostasis at the cellular,synaptic,and neurotransmitter levels.These findings offer new insights for investigating the pathophysiological mechanisms of epilepsy and enhancing its clinical diagnosis and treatment.展开更多
Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after inju...Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after injury,which limits the ability to observe long-term behavioral recovery.Here,we used a severe stroke rat model with 150 minutes of ischemia,which produced severe behavioral deficiencies that persisted at 12 weeks,to study the therapeutic effect of neural stem cells on neural restoration in chronic stroke.Our study showed that stroke model rats treated with human neural stem cells had long-term sustained recovery of motor function,reduced infarction volume,long-term human neural stem cell survival,and improved local inflammatory environment and angiogenesis.We also demonstrated that transplanted human neural stem cells differentiated into mature neurons in vivo,formed stable functional synaptic connections with host neurons,and exhibited the electrophysiological properties of functional mature neurons,indicating that they replaced the damaged host neurons.The findings showed that human fetal-derived neural stem cells had long-term effects for neurological recovery in a model of severe stroke,which suggests that human neural stem cells-based therapy may be effective for repairing damaged neural circuits in stroke patients.展开更多
Medical image segmentation has witnessed rapid advancements with the emergence of encoder-decoder based methods.In the encoder-decoder structure,the primary goal of the decoding phase is not only to restore feature ma...Medical image segmentation has witnessed rapid advancements with the emergence of encoder-decoder based methods.In the encoder-decoder structure,the primary goal of the decoding phase is not only to restore feature map resolution,but also to mitigate the loss of feature information incurred during the encoding phase.However,this approach gives rise to a challenge:multiple up-sampling operations in the decoder segment result in the loss of feature information.To address this challenge,we propose a novel network that removes the decoding structure to reduce feature information loss(CBL-Net).In particular,we introduce a Parallel Pooling Module(PPM)to counteract the feature information loss stemming from conventional and pooling operations during the encoding stage.Furthermore,we incorporate a Multiplexed Dilation Convolution(MDC)module to expand the network's receptive field.Also,although we have removed the decoding stage,we still need to recover the feature map resolution.Therefore,we introduced the Global Feature Recovery(GFR)module.It uses attention mechanism for the image feature map resolution recovery,which can effectively reduce the loss of feature information.We conduct extensive experimental evaluations on three publicly available medical image segmentation datasets:DRIVE,CHASEDB and MoNuSeg datasets.Experimental results show that our proposed network outperforms state-of-the-art methods in medical image segmentation.In addition,it achieves higher efficiency than the current network of coding and decoding structures by eliminating the decoding component.展开更多
According to the characteristics of the road features,an Encoder-Decoder deep semantic segmentation network is designed for the road extraction of remote sensing images.Firstly,as the features of the road target are r...According to the characteristics of the road features,an Encoder-Decoder deep semantic segmentation network is designed for the road extraction of remote sensing images.Firstly,as the features of the road target are rich in local details and simple in semantic features,an Encoder-Decoder network with shallow layers and high resolution is designed to improve the ability to represent detail information.Secondly,as the road area is a small proportion in remote sensing images,the cross-entropy loss function is improved,which solves the imbalance between positive and negative samples in the training process.Experiments on large road extraction datasets show that the proposed method gets the recall rate 83.9%,precision 82.5%and F1-score 82.9%,which can extract the road targets in remote sensing images completely and accurately.The Encoder-Decoder network designed in this paper performs well in the road extraction task and needs less artificial participation,so it has a good application prospect.展开更多
The development of multimedia content has resulted in a massiveincrease in network traffic for video streaming. It demands such types ofsolutions that can be addressed to obtain the user’s Quality-of-Experience(QoE)....The development of multimedia content has resulted in a massiveincrease in network traffic for video streaming. It demands such types ofsolutions that can be addressed to obtain the user’s Quality-of-Experience(QoE). 360-degree videos have already taken up the user’s behavior by storm.However, the users only focus on the part of 360-degree videos, known as aviewport. Despite the immense hype, 360-degree videos convey a loathsomeside effect about viewport prediction, making viewers feel uncomfortablebecause user viewport needs to be pre-fetched in advance. Ideally, we canminimize the bandwidth consumption if we know what the user motionin advance. Looking into the problem definition, we propose an EncoderDecoder based Long-Short Term Memory (LSTM) model to more accuratelycapture the non-linear relationship between past and future viewport positions. This model takes the transforming data instead of taking the direct inputto predict the future user movement. Then, this prediction model is combinedwith a rate adaptation approach that assigns the bitrates to various tiles for360-degree video frames under a given network capacity. Hence, our proposedwork aims to facilitate improved system performance when QoE parametersare jointly optimized. Some experiments were carried out and compared withexisting work to prove the performance of the proposed model. Last but notleast, the experiments implementation of our proposed work provides highuser’s QoE than its competitors.展开更多
As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical...As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases.Therefore,the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases.In this paper,we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network(CNN)and Encoder-Decoder model.The model uses Long Short-Term Memory(LSTM)to consider the influence of time series features on classification results.Simultaneously,it is trained and tested by the MIT-BIH arrhythmia database.Besides,Generative Adversarial Networks(GAN)is adopted as a method of data equalization for solving data imbalance problem.The simulation results show that for the inter-patient arrhythmia classification,the hybrid model combining CNN and Encoder-Decoder model has the best classification accuracy,of which the accuracy can reach 94.05%.Especially,it has a better advantage for the classification effect of supraventricular ectopic beats(class S)and fusion beats(class F).展开更多
Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological an...Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological and natural noise in the marine environ-ment.The feature extraction method combining time-frequency spectrograms and deep learning can effectively achieve the separation of noise and target signals.A fully convolutional encoder-decoder neural network(FCEDN)is proposed to address the issue of noise reduc-tion in underwater acoustic signals.The time-domain waveform map of underwater acoustic signals is converted into a wavelet low-frequency analysis recording spectrogram during the denoising process to preserve as many underwater acoustic signal characteristics as possible.The FCEDN is built to learn the spectrogram mapping between noise and target signals that can be learned at each time level.The transposed convolution transforms are introduced,which can transform the spectrogram features of the signals into listenable audio files.After evaluating the systems on the ShipsEar Dataset,the proposed method can increase SNR and SI-SNR by 10.02 and 9.5dB,re-spectively.展开更多
Accurate pedestrian trajectory predictions are critical in self-driving systems,as they are fundamental to the response-and decision-making of ego vehicles.In this study,we focus on the problem of predicting the futur...Accurate pedestrian trajectory predictions are critical in self-driving systems,as they are fundamental to the response-and decision-making of ego vehicles.In this study,we focus on the problem of predicting the future trajectory of pedestrians from a first-person perspective.Most existing trajectory prediction methods from the first-person view copy the bird’s-eye view,neglecting the differences between the two.To this end,we clarify the differences between the two views and highlight the importance of action-aware trajectory prediction in the first-person view.We propose a new action-aware network based on an encoder-decoder framework with an action prediction and a goal estimation branch at the end of the encoder.In the decoder part,bidirectional long short-term memory(Bi-LSTM)blocks are adopted to generate the ultimate prediction of pedestrians’future trajectories.Our method was evaluated on a public dataset and achieved a competitive performance,compared with other approaches.An ablation study demonstrates the effectiveness of the action prediction branch.展开更多
Cultivated land extraction is essential for sustainable development and agriculture.In this paper,the network we propose is based on the encoder-decoder structure,which extracts the semantic segmentation neural networ...Cultivated land extraction is essential for sustainable development and agriculture.In this paper,the network we propose is based on the encoder-decoder structure,which extracts the semantic segmentation neural network of cultivated land from satellite images and uses it for agricultural automation solutions.The encoder consists of two part:the first is the modified Xception,it can used as the feature extraction network,and the second is the atrous convolution,it can used to expand the receptive field and the context information to extract richer feature information.The decoder part uses the conventional upsampling operation to restore the original resolution.In addition,we use the combination of BCE and Loves-hinge as a loss function to optimize the Intersection over Union(IoU).Experimental results show that the proposed network structure can solve the problem of cultivated land extraction in Yinchuan City.展开更多
Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experienci...Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experiencing a significant annual increase.Despite its prevalence and considerable impact on people,little is known about its pathogenesis.One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression.Furthermore,the neural circuit mechanism of depression induced by various factors is particularly complex.Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression,a comparison between the neural circuits of depression induced by various factors is essential for its treatment.In this review,we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression,aiming to provide a theoretical basis for depression prevention.展开更多
Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse functi...Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.展开更多
基金support for this work was supported by Key Lab of Intelligent and Green Flexographic Printing under Grant ZBKT202301.
文摘Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) network to predict the action and locate the object efficiently. In the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder (ACSF ST-Encoder), the Asymptotic Cross-scale Feature-fusion Module (ACCFM) is designed to address the issue of information degradation caused by the propagation of high-level semantic information, thereby extracting high-quality multi-scale features to provide superior features for subsequent spatio-temporal information modeling. Within the Shared-Head Decoder structure, a shared classification and regression detection head is constructed. A multi-constraint loss function composed of one-to-one, one-to-many, and contrastive denoising losses is designed to address the problem of insufficient constraint force in predicting results with traditional methods. This loss function enhances the accuracy of model classification predictions and improves the proximity of regression position predictions to ground truth objects. The proposed method model is evaluated on the popular dataset UCF101-24 and JHMDB-21. Experimental results demonstrate that the proposed method achieves an accuracy of 81.52% on the Frame-mAP metric, surpassing current existing methods.
基金supported by the National Key Research and Development Program of China,No.2023YFC3603705(to DX)the National Natural Science Foundation of China,No.82302866(to YZ).
文摘After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions.
基金supported by Basic Research Programs of Science and Technology Commission Foundation of Shanxi Province,No.20210302123486(to WJ).
文摘Epilepsy,a common neurological disorder,is characterized by recurrent seizures that can lead to cognitive,psychological,and neurobiological consequences.The pathogenesis of epilepsy involves neuronal dysfunction at the molecular,cellular,and neural circuit levels.Abnormal molecular signaling pathways or dysfunction of specific cell types can lead to epilepsy by disrupting the normal functioning of neural circuits.The continuous emergence of new technologies and the rapid advancement of existing ones have facilitated the discovery and comprehensive understanding of the neural circuit mechanisms underlying epilepsy.Therefore,this review aims to investigate the current understanding of the neural circuit mechanisms in epilepsy based on various technologies,including electroencephalography,magnetic resonance imaging,optogenetics,chemogenetics,deep brain stimulation,and brain-computer interfaces.Additionally,this review discusses these mechanisms from three perspectives:structural,synaptic,and transmitter circuits.The findings reveal that the neural circuit mechanisms of epilepsy encompass information transmission among different structures,interactions within the same structure,and the maintenance of homeostasis at the cellular,synaptic,and neurotransmitter levels.These findings offer new insights for investigating the pathophysiological mechanisms of epilepsy and enhancing its clinical diagnosis and treatment.
文摘Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after injury,which limits the ability to observe long-term behavioral recovery.Here,we used a severe stroke rat model with 150 minutes of ischemia,which produced severe behavioral deficiencies that persisted at 12 weeks,to study the therapeutic effect of neural stem cells on neural restoration in chronic stroke.Our study showed that stroke model rats treated with human neural stem cells had long-term sustained recovery of motor function,reduced infarction volume,long-term human neural stem cell survival,and improved local inflammatory environment and angiogenesis.We also demonstrated that transplanted human neural stem cells differentiated into mature neurons in vivo,formed stable functional synaptic connections with host neurons,and exhibited the electrophysiological properties of functional mature neurons,indicating that they replaced the damaged host neurons.The findings showed that human fetal-derived neural stem cells had long-term effects for neurological recovery in a model of severe stroke,which suggests that human neural stem cells-based therapy may be effective for repairing damaged neural circuits in stroke patients.
基金funded by the National Key Research and Development Program of China(Grant 2020YFB1708900)the Fundamental Research Funds for the Central Universities(Grant No.B220201044).
文摘Medical image segmentation has witnessed rapid advancements with the emergence of encoder-decoder based methods.In the encoder-decoder structure,the primary goal of the decoding phase is not only to restore feature map resolution,but also to mitigate the loss of feature information incurred during the encoding phase.However,this approach gives rise to a challenge:multiple up-sampling operations in the decoder segment result in the loss of feature information.To address this challenge,we propose a novel network that removes the decoding structure to reduce feature information loss(CBL-Net).In particular,we introduce a Parallel Pooling Module(PPM)to counteract the feature information loss stemming from conventional and pooling operations during the encoding stage.Furthermore,we incorporate a Multiplexed Dilation Convolution(MDC)module to expand the network's receptive field.Also,although we have removed the decoding stage,we still need to recover the feature map resolution.Therefore,we introduced the Global Feature Recovery(GFR)module.It uses attention mechanism for the image feature map resolution recovery,which can effectively reduce the loss of feature information.We conduct extensive experimental evaluations on three publicly available medical image segmentation datasets:DRIVE,CHASEDB and MoNuSeg datasets.Experimental results show that our proposed network outperforms state-of-the-art methods in medical image segmentation.In addition,it achieves higher efficiency than the current network of coding and decoding structures by eliminating the decoding component.
基金National Natural Science Foundation of China(Nos.61673017,61403398)and Natural Science Foundation of Shaanxi Province(Nos.2017JM6077,2018ZDXM-GY-039)。
文摘According to the characteristics of the road features,an Encoder-Decoder deep semantic segmentation network is designed for the road extraction of remote sensing images.Firstly,as the features of the road target are rich in local details and simple in semantic features,an Encoder-Decoder network with shallow layers and high resolution is designed to improve the ability to represent detail information.Secondly,as the road area is a small proportion in remote sensing images,the cross-entropy loss function is improved,which solves the imbalance between positive and negative samples in the training process.Experiments on large road extraction datasets show that the proposed method gets the recall rate 83.9%,precision 82.5%and F1-score 82.9%,which can extract the road targets in remote sensing images completely and accurately.The Encoder-Decoder network designed in this paper performs well in the road extraction task and needs less artificial participation,so it has a good application prospect.
文摘The development of multimedia content has resulted in a massiveincrease in network traffic for video streaming. It demands such types ofsolutions that can be addressed to obtain the user’s Quality-of-Experience(QoE). 360-degree videos have already taken up the user’s behavior by storm.However, the users only focus on the part of 360-degree videos, known as aviewport. Despite the immense hype, 360-degree videos convey a loathsomeside effect about viewport prediction, making viewers feel uncomfortablebecause user viewport needs to be pre-fetched in advance. Ideally, we canminimize the bandwidth consumption if we know what the user motionin advance. Looking into the problem definition, we propose an EncoderDecoder based Long-Short Term Memory (LSTM) model to more accuratelycapture the non-linear relationship between past and future viewport positions. This model takes the transforming data instead of taking the direct inputto predict the future user movement. Then, this prediction model is combinedwith a rate adaptation approach that assigns the bitrates to various tiles for360-degree video frames under a given network capacity. Hence, our proposedwork aims to facilitate improved system performance when QoE parametersare jointly optimized. Some experiments were carried out and compared withexisting work to prove the performance of the proposed model. Last but notleast, the experiments implementation of our proposed work provides highuser’s QoE than its competitors.
基金Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-19-006A3).
文摘As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases.Therefore,the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases.In this paper,we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network(CNN)and Encoder-Decoder model.The model uses Long Short-Term Memory(LSTM)to consider the influence of time series features on classification results.Simultaneously,it is trained and tested by the MIT-BIH arrhythmia database.Besides,Generative Adversarial Networks(GAN)is adopted as a method of data equalization for solving data imbalance problem.The simulation results show that for the inter-patient arrhythmia classification,the hybrid model combining CNN and Encoder-Decoder model has the best classification accuracy,of which the accuracy can reach 94.05%.Especially,it has a better advantage for the classification effect of supraventricular ectopic beats(class S)and fusion beats(class F).
基金supported by the National Natural Science Foundation of China(No.41906169)the PLA Academy of Military Sciences.
文摘Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological and natural noise in the marine environ-ment.The feature extraction method combining time-frequency spectrograms and deep learning can effectively achieve the separation of noise and target signals.A fully convolutional encoder-decoder neural network(FCEDN)is proposed to address the issue of noise reduc-tion in underwater acoustic signals.The time-domain waveform map of underwater acoustic signals is converted into a wavelet low-frequency analysis recording spectrogram during the denoising process to preserve as many underwater acoustic signal characteristics as possible.The FCEDN is built to learn the spectrogram mapping between noise and target signals that can be learned at each time level.The transposed convolution transforms are introduced,which can transform the spectrogram features of the signals into listenable audio files.After evaluating the systems on the ShipsEar Dataset,the proposed method can increase SNR and SI-SNR by 10.02 and 9.5dB,re-spectively.
文摘Accurate pedestrian trajectory predictions are critical in self-driving systems,as they are fundamental to the response-and decision-making of ego vehicles.In this study,we focus on the problem of predicting the future trajectory of pedestrians from a first-person perspective.Most existing trajectory prediction methods from the first-person view copy the bird’s-eye view,neglecting the differences between the two.To this end,we clarify the differences between the two views and highlight the importance of action-aware trajectory prediction in the first-person view.We propose a new action-aware network based on an encoder-decoder framework with an action prediction and a goal estimation branch at the end of the encoder.In the decoder part,bidirectional long short-term memory(Bi-LSTM)blocks are adopted to generate the ultimate prediction of pedestrians’future trajectories.Our method was evaluated on a public dataset and achieved a competitive performance,compared with other approaches.An ablation study demonstrates the effectiveness of the action prediction branch.
基金support for this work are as follows:Ningxia Hui Autonomous Region Key Research and Development Program Project:Research and demonstration application of key technologies for intelligent monitoring of spatial planning based on high-scoring remote sensing(Project No.2018YBZD1629).
文摘Cultivated land extraction is essential for sustainable development and agriculture.In this paper,the network we propose is based on the encoder-decoder structure,which extracts the semantic segmentation neural network of cultivated land from satellite images and uses it for agricultural automation solutions.The encoder consists of two part:the first is the modified Xception,it can used as the feature extraction network,and the second is the atrous convolution,it can used to expand the receptive field and the context information to extract richer feature information.The decoder part uses the conventional upsampling operation to restore the original resolution.In addition,we use the combination of BCE and Loves-hinge as a loss function to optimize the Intersection over Union(IoU).Experimental results show that the proposed network structure can solve the problem of cultivated land extraction in Yinchuan City.
基金supported by the Brain&Behavior Research Foundation(30233).
文摘Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experiencing a significant annual increase.Despite its prevalence and considerable impact on people,little is known about its pathogenesis.One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression.Furthermore,the neural circuit mechanism of depression induced by various factors is particularly complex.Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression,a comparison between the neural circuits of depression induced by various factors is essential for its treatment.In this review,we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression,aiming to provide a theoretical basis for depression prevention.
基金supported by NIH/NIMH grant R01MH111619(to SQ),R21AG078700(to SQ)Institute of Mental Health Research(IMHR,Level 1 funding,to SQ and DF)institution startup fund from The University of Arizona(to SQ)。
文摘Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.