This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method u...This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks.展开更多
Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the st...Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the study is a stacked ensemble of encoder-enhanced auctions that can be used to improve intrusion detection in healthcare networks.TheWUSTL-EHMS 2020 dataset trains and evaluates themodel,constituting an imbalanced class distribution(87.46% normal traffic and 12.53% intrusion attacks).To address this imbalance,the study balances the effect of training Bias through Stratified K-fold cross-validation(K=5),so that each class is represented similarly on training and validation splits.Second,the Auto-Stack ID method combines many base classifiers such as TabNet,LightGBM,Gaussian Naive Bayes,Histogram-Based Gradient Boosting(HGB),and Logistic Regression.We apply a two-stage training process based on the first stage,where we have base classifiers that predict out-of-fold(OOF)predictions,which we use as inputs for the second-stage meta-learner XGBoost.The meta-learner learns to refine predictions to capture complicated interactions between base models,thus improving detection accuracy without introducing bias,overfitting,or requiring domain knowledge of the meta-data.In addition,the auto-stack ID model got 98.41% accuracy and 93.45%F1 score,better than individual classifiers.It can identify intrusions due to its 90.55% recall and 96.53% precision with minimal false positives.These findings identify its suitability in ensuring healthcare networks’security through ensemble learning.Ongoing efforts will be deployed in real time to improve response to evolving threats.展开更多
In response to the shortcomings of the common encoders in the industry,of which the photoelectric encoders have a poor anti-interference ability in harsh industrial environments with water,oil,dust,or strong vibration...In response to the shortcomings of the common encoders in the industry,of which the photoelectric encoders have a poor anti-interference ability in harsh industrial environments with water,oil,dust,or strong vibrations and the magnetic encoders are too sensitive to magnetic field density,this paper designs a new differential encoder based on the grating eddy-current measurement principle,abbreviated as differential grating eddy-current encoder(DGECE).The grating eddy-current of DGECE consists of a circular array of trapezoidal reflection conductors and 16 trapezoidal coils with a special structure to form a differential relationship,which are respectively located on the code plate and the readout plate designed by a printed circuit board.The differential structure of DGECE corrects the common mode interference and the amplitude distortion due to the assembly to some extent,possesses a certain anti-interference capability,and greatly simplifies the regularization algorithm of the original data.By means of the corresponding readout circuit and demodulation algorithm,the DGECE can convert the periodic impedance variation of 16 coils into an angular output within the 360°cycle.Due to its simple manufacturing process and certain interference immunity,DGECE is easy to be integrated and mass-produced as well as applicable in the industrial spindles,especially in robot joints.This paper presents the measurement principle,implementation methods,and results of the experiment of the DGECE.The experimental results show that the accuracy of the DGECE can reach 0.237%and the measurement standard deviation can reach±0.14°within360°cycle.展开更多
In this paper,the sentiment classification method of multimodal adversarial autoencoder is studied.This paper includes the introduction of the multimodal adversarial autoencoder emotion classification method and the e...In this paper,the sentiment classification method of multimodal adversarial autoencoder is studied.This paper includes the introduction of the multimodal adversarial autoencoder emotion classification method and the experiment of the emotion classification method based on the encoder.The experimental analysis shows that the encoder has higher precision than other encoders in emotion classification.It is hoped that this analysis can provide some reference for the emotion classification under the current intelligent algorithm mode.展开更多
Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi...Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi-category,and multi-scale target segmentation tasks.To address these challenges,this paper proposes Pyramid-MixNet,an intelligent segmentation model for high-speed rail surface damage,leveraging dataset construction and expansion alongside a feature pyramid-based encoder-decoder network with multi-attention mechanisms.The encoding net-work integrates Spatial Reduction Masked Multi-Head Attention(SRMMHA)to enhance global feature extraction while reducing trainable parameters.The decoding network incorporates Mix-Attention(MA),enabling multi-scale structural understanding and cross-scale token group correlation learning.Experimental results demonstrate that the proposed method achieves 62.17%average segmentation accuracy,80.28%Damage Dice Coefficient,and 56.83 FPS,meeting real-time detection requirements.The model’s high accuracy and scene adaptability significantly improve the detection of small-scale and complex multi-scale rail damage,offering practical value for real-time monitoring in high-speed railway maintenance systems.展开更多
Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding ...Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis.展开更多
Dynamic DNA nanotechnology plays a significant role in nanomedicine and information science due to its high programmability based on Watson-Crick base pairing and nanoscale dimensions.Intelligent DNA machines and netw...Dynamic DNA nanotechnology plays a significant role in nanomedicine and information science due to its high programmability based on Watson-Crick base pairing and nanoscale dimensions.Intelligent DNA machines and networks have been widely used in various fields,including molecular imaging,biosensors,drug delivery,information processing,and logic operations.Encoders serve as crucial components for information compilation and transfer,allowing the conversion of information from diverse application scenarios into a format recognized and applied by DNA circuits.However,there are only a few encoder designs with DNA outputs.Moreover,the molecular priority encoder is hardly designed.In this study,we introduce allosteric DNAzyme-based encoders for information transfer.The design of the allosteric domain and the recognition arm allows the input and output to be independent of each other and freely programmable.The pre-packaged mode design achieves uniformity of baseline dynamics and dynamics controllability.We also integrated non-nucleic acid molecules into the encoder through the aptamer design of the allosteric domain.Furthermore,we developed the 2^(n)-n encoder and the EndoⅣ-assisted priority encoder inspired by immunoglobulin's molecular structure and effector patterns.To our knowledge,the proposed encoder is the first enzyme-free DNA encoder with DNA output,and the priority encoder is the first molecular priority encoder in the DNA reaction network.Our encoders avoid complex operations on a single molecule,and their simple structure facilitates their application in complex DNA circuits and biological scenarios.展开更多
Mitochondrial membrane potential(MMP)plays a crucial role in the function of cells and organelles,involving various cellular physiological processes,including energy production,formation of reactive oxygen species(ROS...Mitochondrial membrane potential(MMP)plays a crucial role in the function of cells and organelles,involving various cellular physiological processes,including energy production,formation of reactive oxygen species(ROS),unfolded protein stress,and cell survival.Currently,there is a lack of genetically encoded fluorescence indicators(GEVIs)for MMP.In our screening of various GEVIs for their potential monitoring MMP,the Accelerated Sensor of Action Potentials(ASAP)demonstrated optimal performance in targeting mitochondria and sensitivity to depolarization in multiple cell types.However,mitochondrial ASAPs also displayed sensitivity to ROS in cardiomyocytes.Therefore,two ASAP mutants resistant to ROS were generated.A double mutant ASAP3-ST exhibited the highest voltage sensitivity but weaker fluorescence.Overall,four GEVIs capable of targeting mitochondria were obtained and named mitochondrial potential indicators 1-4(MPI-1-4).In vivo,fiber photometry experiments utilizing MPI-2 revealed a mitochondrial depolarization during isoflurane-induced narcosis in the M2 cortex.展开更多
Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of cr...Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of crack detection in cement pavement improves,the depth and width of the network structure are significantly increased,which necessitates more computing power and storage space.This limitation hampers the practical implementation of crack detection models on various platforms,particularly portable devices like small mobile devices.To solve these problems,we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention mechanisms formore efficient feature fusion.Firstly,we use small channel convolution to construct shallow feature extractionmodule(SFEM)to extract low-level feature information of cracks in cement pavement images,in order to obtainmore information about cracks in the shallowfeatures of images.In addition,we construct large kernel atrous convolution(LKAC)to enhance crack information,which incorporates coordination attention mechanism for non-crack information filtering,and large kernel atrous convolution with different cores,using different receptive fields to extract more detailed edge and context information.Finally,the three-stage feature map outputs from the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel atrous convolution module,and the shallow feature and detailed edge feature are fully fused to obtain the final crack prediction map.We evaluate our method on three public crack datasets:DeepCrack,CFD,and Crack500.Experimental results on theDeepCrack dataset demonstrate the effectiveness of our proposed method compared to state-of-the-art crack detection methods,which achieves Precision(P)87.2%,Recall(R)87.7%,and F-score(F1)87.4%.Thanks to our lightweight crack detectionmodel,the parameter count of the model in real-world detection scenarios has been significantly reduced to less than 2M.This advancement also facilitates technical support for portable scene detection.展开更多
In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is di...In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set.展开更多
人类基因组计划完成以来,科学家们一直在努力阐释基因组信息所代表的生物学意义。自2003年开始,美国国家人类基因组研究所(National Human Genome Research Institute,NHGRI)投资近3亿美元启动"DNA元件百科全书(Encyclopedia of DN...人类基因组计划完成以来,科学家们一直在努力阐释基因组信息所代表的生物学意义。自2003年开始,美国国家人类基因组研究所(National Human Genome Research Institute,NHGRI)投资近3亿美元启动"DNA元件百科全书(Encyclopedia of DNA Elements,ENCODE)"计划,集结了来自美国、中国、英国、日本、西班牙和新加坡等国家的32个实验室的440余名科学家,共同鉴定并分析人类基因组中所有的功能调控元件。高通量测序技术等实验手段的发展和生物信息学技术的不断完善使得ENCODE计划取得了丰硕的成果:确定了甲基化和组蛋白修饰等表观修饰区域及其对染色质结构的作用,进而确定染色质结构的改变影响基因表达;确定了转录因子及其结合位点的信息,并构建了转录因子调控网络;进一步修订更新了假基因和非编码RNA数据库;并确定了调控序列的单核苷酸多态性(Single nucleotide polymorphism,SNP)并与疾病相关联。这些发现一方面有助于系统解析基因和基因组信息、调控元件的调控作用以及非编码区转录调控等分子机制;同时也将为转化医学等生命科学研究领域提供丰富的数据来源。文章综述了高通量测序技术等实验手段的发展和生物信息学技术的不断完善对ENCODE计划的贡献、表观遗传学研究与ENCODE计划的关联性、ENCODE计划的主要科学成果等,同时展望了ENCODE计划对基础医学、临床医学和转化医学等生命科学研究领域的巨大推动作用。展开更多
The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)...The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)images.These techniques involve training neural networks on large datasets of MRI images,allowing the networks to learn patterns and features indicative of different brain diseases.However,several challenges and limitations still need to be addressed further to improve the accuracy and effectiveness of these techniques.This paper implements a Feature Enhanced Stacked Auto Encoder(FESAE)model to detect brain diseases.The standard stack auto encoder’s results are trivial and not robust enough to boost the system’s accuracy.Therefore,the standard Stack Auto Encoder(SAE)is replaced with a Stacked Feature Enhanced Auto Encoder with a feature enhancement function to efficiently and effectively get non-trivial features with less activation energy froman image.The proposed model consists of four stages.First,pre-processing is performed to remove noise,and the greyscale image is converted to Red,Green,and Blue(RGB)to enhance feature details for discriminative feature extraction.Second,feature Extraction is performed to extract significant features for classification using DiscreteWavelet Transform(DWT)and Channelization.Third,classification is performed to classify MRI images into four major classes:Normal,Tumor,Brain Stroke,and Alzheimer’s.Finally,the FESAE model outperforms the state-of-theart,machine learning,and deep learning methods such as Artificial Neural Network(ANN),SAE,Random Forest(RF),and Logistic Regression(LR)by achieving a high accuracy of 98.61% on a dataset of 2000 MRI images.The proposed model has significant potential for assisting radiologists in diagnosing brain diseases more accurately and improving patient outcomes.展开更多
在flash cs6的默认情况下,Flash cs6只支持flv和f4v格式的视频.如果不是这种格式的视频,我们可以使用Flash cs6自带的视频转换组件Adobe Media Encoder将其他视频格式转换成FLV和F4V格式.本文主要讲解如何使用flash自带的Adobe Media En...在flash cs6的默认情况下,Flash cs6只支持flv和f4v格式的视频.如果不是这种格式的视频,我们可以使用Flash cs6自带的视频转换组件Adobe Media Encoder将其他视频格式转换成FLV和F4V格式.本文主要讲解如何使用flash自带的Adobe Media Encoder组件进行视频文件的转换,导入和使用.展开更多
The brain has very high energy requirements and consumes 20% of the oxygen and 25% of the glucose in the human body. Therefore, the molecular mechanism under- lying how the brain metabolizes substances to support neur...The brain has very high energy requirements and consumes 20% of the oxygen and 25% of the glucose in the human body. Therefore, the molecular mechanism under- lying how the brain metabolizes substances to support neural activity is a fundamental issue for neuroscience studies. A well-known model in the brain, the astrocyte- neuron lactate shuttle, postulates that glucose uptake and glycolytic activity are enhanced in astrocytes upon neu- ronal activation and that astrocytes transport lactate into neurons to fulfill their energy requirements. Current evidence for this hypothesis has yet to reach a clear consensus, and new concepts beyond the shuttle hypothesis are emerging. The discrepancy is largely attributed to the lack of a critical method for real-time monitoring of metabolic dynamics at cellular resolution. Recent advances in fluorescent protein-based sensors allow the generation of a sensitive, specific, real-time readout of subcellular metabolites and fill the current technological gap. Here,we summarize the development of genetically encoded metabolite sensors and their applications in assessing cell metabolism in living cells and in vivo, and we believe that these tools will help to address the issue of elucidating neural energy metabolism.展开更多
Considerable studies have been carried out on fault diagnosis of gears, with most of them concentrated on conventional vibration analysis. However, besides the complexity of gear dynamics, the diagnosis results in ter...Considerable studies have been carried out on fault diagnosis of gears, with most of them concentrated on conventional vibration analysis. However, besides the complexity of gear dynamics, the diagnosis results in terms of vibration signal are easily misjudged owing to the interference of sensor position or other components. In this paper, an alternative gearbox fault detection method based on the instantaneous rotational speed is proposed because of its advantages over vibration analysis. Depending on the timer/counter-based method for the pulse signal of the optical encoder, the varying rotational speed can be obtained e ectively. Owing to the coupling and meshing of gears in transmission, the excitations are the same for the instantaneous rotational speed of the input and output shafts. Thus, the di erential signal of instantaneous rotational speeds can be adopted to eliminate the e ect of the interference excitations and extract the associated feature of the localized fault e ectively. With the experiments on multistage gearbox test system, the di erential signal of instantaneous speeds is compared with other signals. It is proved that localized faults in the gearbox generate small angular speed fluctuations, which are measurable with an optical encoder. Using the di erential signal of instantaneous speeds, the fault characteristics are extracted in the spectrum where the deterministic frequency component and its harmonics corresponding to crack fault characteristics are displayed clearly.展开更多
The goal of street-to-aerial cross-view image geo-localization is to determine the location of the query street-view image by retrieving the aerial-view image from the same place.The drastic viewpoint and appearance g...The goal of street-to-aerial cross-view image geo-localization is to determine the location of the query street-view image by retrieving the aerial-view image from the same place.The drastic viewpoint and appearance gap between the aerial-view and the street-view images brings a huge challenge against this task.In this paper,we propose a novel multiscale attention encoder to capture the multiscale contextual information of the aerial/street-view images.To bridge the domain gap between these two view images,we first use an inverse polar transform to make the street-view images approximately aligned with the aerial-view images.Then,the explored multiscale attention encoder is applied to convert the image into feature representation with the guidance of the learnt multiscale information.Finally,we propose a novel global mining strategy to enable the network to pay more attention to hard negative exemplars.Experiments on standard benchmark datasets show that our approach obtains 81.39%top-1 recall rate on the CVUSA dataset and 71.52%on the CVACT dataset,achieving the state-of-the-art performance and outperforming most of the existing methods significantly.展开更多
基金supported by an Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(RS-2024-00438156,Development of Security Resilience Technology Based on Network Slicing Services in a 5G Specialized Network).
文摘This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R319),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia and Prince Sultan University for covering the article processing charges(APC)associated with this publicationResearchers Supporting Project Number(RSPD2025R1107),King Saud University,Riyadh,Saudi Arabia.
文摘Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the study is a stacked ensemble of encoder-enhanced auctions that can be used to improve intrusion detection in healthcare networks.TheWUSTL-EHMS 2020 dataset trains and evaluates themodel,constituting an imbalanced class distribution(87.46% normal traffic and 12.53% intrusion attacks).To address this imbalance,the study balances the effect of training Bias through Stratified K-fold cross-validation(K=5),so that each class is represented similarly on training and validation splits.Second,the Auto-Stack ID method combines many base classifiers such as TabNet,LightGBM,Gaussian Naive Bayes,Histogram-Based Gradient Boosting(HGB),and Logistic Regression.We apply a two-stage training process based on the first stage,where we have base classifiers that predict out-of-fold(OOF)predictions,which we use as inputs for the second-stage meta-learner XGBoost.The meta-learner learns to refine predictions to capture complicated interactions between base models,thus improving detection accuracy without introducing bias,overfitting,or requiring domain knowledge of the meta-data.In addition,the auto-stack ID model got 98.41% accuracy and 93.45%F1 score,better than individual classifiers.It can identify intrusions due to its 90.55% recall and 96.53% precision with minimal false positives.These findings identify its suitability in ensuring healthcare networks’security through ensemble learning.Ongoing efforts will be deployed in real time to improve response to evolving threats.
基金the Biomedical Science and Technology Support Special Project of Shanghai Science and Technology Committee(No.20S31908300)。
文摘In response to the shortcomings of the common encoders in the industry,of which the photoelectric encoders have a poor anti-interference ability in harsh industrial environments with water,oil,dust,or strong vibrations and the magnetic encoders are too sensitive to magnetic field density,this paper designs a new differential encoder based on the grating eddy-current measurement principle,abbreviated as differential grating eddy-current encoder(DGECE).The grating eddy-current of DGECE consists of a circular array of trapezoidal reflection conductors and 16 trapezoidal coils with a special structure to form a differential relationship,which are respectively located on the code plate and the readout plate designed by a printed circuit board.The differential structure of DGECE corrects the common mode interference and the amplitude distortion due to the assembly to some extent,possesses a certain anti-interference capability,and greatly simplifies the regularization algorithm of the original data.By means of the corresponding readout circuit and demodulation algorithm,the DGECE can convert the periodic impedance variation of 16 coils into an angular output within the 360°cycle.Due to its simple manufacturing process and certain interference immunity,DGECE is easy to be integrated and mass-produced as well as applicable in the industrial spindles,especially in robot joints.This paper presents the measurement principle,implementation methods,and results of the experiment of the DGECE.The experimental results show that the accuracy of the DGECE can reach 0.237%and the measurement standard deviation can reach±0.14°within360°cycle.
文摘In this paper,the sentiment classification method of multimodal adversarial autoencoder is studied.This paper includes the introduction of the multimodal adversarial autoencoder emotion classification method and the experiment of the emotion classification method based on the encoder.The experimental analysis shows that the encoder has higher precision than other encoders in emotion classification.It is hoped that this analysis can provide some reference for the emotion classification under the current intelligent algorithm mode.
基金supported in part by the National Natural Science Foundation of China under Grant 6226070954Jiangxi Provincial Key R&D Programme under Grant 20244BBG73002.
文摘Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi-category,and multi-scale target segmentation tasks.To address these challenges,this paper proposes Pyramid-MixNet,an intelligent segmentation model for high-speed rail surface damage,leveraging dataset construction and expansion alongside a feature pyramid-based encoder-decoder network with multi-attention mechanisms.The encoding net-work integrates Spatial Reduction Masked Multi-Head Attention(SRMMHA)to enhance global feature extraction while reducing trainable parameters.The decoding network incorporates Mix-Attention(MA),enabling multi-scale structural understanding and cross-scale token group correlation learning.Experimental results demonstrate that the proposed method achieves 62.17%average segmentation accuracy,80.28%Damage Dice Coefficient,and 56.83 FPS,meeting real-time detection requirements.The model’s high accuracy and scene adaptability significantly improve the detection of small-scale and complex multi-scale rail damage,offering practical value for real-time monitoring in high-speed railway maintenance systems.
基金supported by Natural Science Foundation Programme of Gansu Province(No.24JRRA231)National Natural Science Foundation of China(No.62061023)Gansu Provincial Science and Technology Plan Key Research and Development Program Project(No.24YFFA024).
文摘Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis.
基金financially supported by the National Natural Science Foundation of China(No.82172372)the Opening Research Fund of State Key Laboratory of Digital Medical Engineering(No.2023-M04)。
文摘Dynamic DNA nanotechnology plays a significant role in nanomedicine and information science due to its high programmability based on Watson-Crick base pairing and nanoscale dimensions.Intelligent DNA machines and networks have been widely used in various fields,including molecular imaging,biosensors,drug delivery,information processing,and logic operations.Encoders serve as crucial components for information compilation and transfer,allowing the conversion of information from diverse application scenarios into a format recognized and applied by DNA circuits.However,there are only a few encoder designs with DNA outputs.Moreover,the molecular priority encoder is hardly designed.In this study,we introduce allosteric DNAzyme-based encoders for information transfer.The design of the allosteric domain and the recognition arm allows the input and output to be independent of each other and freely programmable.The pre-packaged mode design achieves uniformity of baseline dynamics and dynamics controllability.We also integrated non-nucleic acid molecules into the encoder through the aptamer design of the allosteric domain.Furthermore,we developed the 2^(n)-n encoder and the EndoⅣ-assisted priority encoder inspired by immunoglobulin's molecular structure and effector patterns.To our knowledge,the proposed encoder is the first enzyme-free DNA encoder with DNA output,and the priority encoder is the first molecular priority encoder in the DNA reaction network.Our encoders avoid complex operations on a single molecule,and their simple structure facilitates their application in complex DNA circuits and biological scenarios.
基金supported by the National Natural Science Foundation (NSF)of China:JSK (32071137 and 92054103)Funding for Scientific Research and Innovation Team of The First Affliated Hospital of Zhengzhou University:JSK (ZYCXTD2023014)。
文摘Mitochondrial membrane potential(MMP)plays a crucial role in the function of cells and organelles,involving various cellular physiological processes,including energy production,formation of reactive oxygen species(ROS),unfolded protein stress,and cell survival.Currently,there is a lack of genetically encoded fluorescence indicators(GEVIs)for MMP.In our screening of various GEVIs for their potential monitoring MMP,the Accelerated Sensor of Action Potentials(ASAP)demonstrated optimal performance in targeting mitochondria and sensitivity to depolarization in multiple cell types.However,mitochondrial ASAPs also displayed sensitivity to ROS in cardiomyocytes.Therefore,two ASAP mutants resistant to ROS were generated.A double mutant ASAP3-ST exhibited the highest voltage sensitivity but weaker fluorescence.Overall,four GEVIs capable of targeting mitochondria were obtained and named mitochondrial potential indicators 1-4(MPI-1-4).In vivo,fiber photometry experiments utilizing MPI-2 revealed a mitochondrial depolarization during isoflurane-induced narcosis in the M2 cortex.
基金supported by the National Natural Science Foundation of China(No.62176034)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-M202300604)the Natural Science Foundation of Chongqing(Nos.cstc2021jcyj-msxmX0518,2023NSCQ-MSX1781).
文摘Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of crack detection in cement pavement improves,the depth and width of the network structure are significantly increased,which necessitates more computing power and storage space.This limitation hampers the practical implementation of crack detection models on various platforms,particularly portable devices like small mobile devices.To solve these problems,we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention mechanisms formore efficient feature fusion.Firstly,we use small channel convolution to construct shallow feature extractionmodule(SFEM)to extract low-level feature information of cracks in cement pavement images,in order to obtainmore information about cracks in the shallowfeatures of images.In addition,we construct large kernel atrous convolution(LKAC)to enhance crack information,which incorporates coordination attention mechanism for non-crack information filtering,and large kernel atrous convolution with different cores,using different receptive fields to extract more detailed edge and context information.Finally,the three-stage feature map outputs from the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel atrous convolution module,and the shallow feature and detailed edge feature are fully fused to obtain the final crack prediction map.We evaluate our method on three public crack datasets:DeepCrack,CFD,and Crack500.Experimental results on theDeepCrack dataset demonstrate the effectiveness of our proposed method compared to state-of-the-art crack detection methods,which achieves Precision(P)87.2%,Recall(R)87.7%,and F-score(F1)87.4%.Thanks to our lightweight crack detectionmodel,the parameter count of the model in real-world detection scenarios has been significantly reduced to less than 2M.This advancement also facilitates technical support for portable scene detection.
文摘In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set.
文摘人类基因组计划完成以来,科学家们一直在努力阐释基因组信息所代表的生物学意义。自2003年开始,美国国家人类基因组研究所(National Human Genome Research Institute,NHGRI)投资近3亿美元启动"DNA元件百科全书(Encyclopedia of DNA Elements,ENCODE)"计划,集结了来自美国、中国、英国、日本、西班牙和新加坡等国家的32个实验室的440余名科学家,共同鉴定并分析人类基因组中所有的功能调控元件。高通量测序技术等实验手段的发展和生物信息学技术的不断完善使得ENCODE计划取得了丰硕的成果:确定了甲基化和组蛋白修饰等表观修饰区域及其对染色质结构的作用,进而确定染色质结构的改变影响基因表达;确定了转录因子及其结合位点的信息,并构建了转录因子调控网络;进一步修订更新了假基因和非编码RNA数据库;并确定了调控序列的单核苷酸多态性(Single nucleotide polymorphism,SNP)并与疾病相关联。这些发现一方面有助于系统解析基因和基因组信息、调控元件的调控作用以及非编码区转录调控等分子机制;同时也将为转化医学等生命科学研究领域提供丰富的数据来源。文章综述了高通量测序技术等实验手段的发展和生物信息学技术的不断完善对ENCODE计划的贡献、表观遗传学研究与ENCODE计划的关联性、ENCODE计划的主要科学成果等,同时展望了ENCODE计划对基础医学、临床医学和转化医学等生命科学研究领域的巨大推动作用。
基金supported by financial support from Universiti Sains Malaysia(USM)under FRGS Grant Number FRGS/1/2020/TK03/USM/02/1the School of Computer Sciences USM for their support.
文摘The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)images.These techniques involve training neural networks on large datasets of MRI images,allowing the networks to learn patterns and features indicative of different brain diseases.However,several challenges and limitations still need to be addressed further to improve the accuracy and effectiveness of these techniques.This paper implements a Feature Enhanced Stacked Auto Encoder(FESAE)model to detect brain diseases.The standard stack auto encoder’s results are trivial and not robust enough to boost the system’s accuracy.Therefore,the standard Stack Auto Encoder(SAE)is replaced with a Stacked Feature Enhanced Auto Encoder with a feature enhancement function to efficiently and effectively get non-trivial features with less activation energy froman image.The proposed model consists of four stages.First,pre-processing is performed to remove noise,and the greyscale image is converted to Red,Green,and Blue(RGB)to enhance feature details for discriminative feature extraction.Second,feature Extraction is performed to extract significant features for classification using DiscreteWavelet Transform(DWT)and Channelization.Third,classification is performed to classify MRI images into four major classes:Normal,Tumor,Brain Stroke,and Alzheimer’s.Finally,the FESAE model outperforms the state-of-theart,machine learning,and deep learning methods such as Artificial Neural Network(ANN),SAE,Random Forest(RF),and Logistic Regression(LR)by achieving a high accuracy of 98.61% on a dataset of 2000 MRI images.The proposed model has significant potential for assisting radiologists in diagnosing brain diseases more accurately and improving patient outcomes.
文摘在flash cs6的默认情况下,Flash cs6只支持flv和f4v格式的视频.如果不是这种格式的视频,我们可以使用Flash cs6自带的视频转换组件Adobe Media Encoder将其他视频格式转换成FLV和F4V格式.本文主要讲解如何使用flash自带的Adobe Media Encoder组件进行视频文件的转换,导入和使用.
基金supported by the National Key Research and Development Program of China(2017YFA050400 and2017YFC0906900)the National Natural Science Foundation of China(31722033,91649123,31671484,31225008,and 31470833)+4 种基金the Shanghai Science and Technology Commission(14XD1401400,16430723100,and 15YF1402600)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(to YZ)Shanghai Young Top-notch Talent(to YZ)the State Key Laboratory of Bioreactor Engineering(to YY)Fundamental Research Funds for the Central Universities(to YY and YZ)
文摘The brain has very high energy requirements and consumes 20% of the oxygen and 25% of the glucose in the human body. Therefore, the molecular mechanism under- lying how the brain metabolizes substances to support neural activity is a fundamental issue for neuroscience studies. A well-known model in the brain, the astrocyte- neuron lactate shuttle, postulates that glucose uptake and glycolytic activity are enhanced in astrocytes upon neu- ronal activation and that astrocytes transport lactate into neurons to fulfill their energy requirements. Current evidence for this hypothesis has yet to reach a clear consensus, and new concepts beyond the shuttle hypothesis are emerging. The discrepancy is largely attributed to the lack of a critical method for real-time monitoring of metabolic dynamics at cellular resolution. Recent advances in fluorescent protein-based sensors allow the generation of a sensitive, specific, real-time readout of subcellular metabolites and fill the current technological gap. Here,we summarize the development of genetically encoded metabolite sensors and their applications in assessing cell metabolism in living cells and in vivo, and we believe that these tools will help to address the issue of elucidating neural energy metabolism.
基金Supported by National Natural Science Foundation of China(Grant No.51575438)China Postdoctoral Science Foundation(Grant Nos.2017M623159,2018T111046)Shaanxi Provincial Postdoctoral Science Foundation of China(Grant No.2017BSHEDZZ68)
文摘Considerable studies have been carried out on fault diagnosis of gears, with most of them concentrated on conventional vibration analysis. However, besides the complexity of gear dynamics, the diagnosis results in terms of vibration signal are easily misjudged owing to the interference of sensor position or other components. In this paper, an alternative gearbox fault detection method based on the instantaneous rotational speed is proposed because of its advantages over vibration analysis. Depending on the timer/counter-based method for the pulse signal of the optical encoder, the varying rotational speed can be obtained e ectively. Owing to the coupling and meshing of gears in transmission, the excitations are the same for the instantaneous rotational speed of the input and output shafts. Thus, the di erential signal of instantaneous rotational speeds can be adopted to eliminate the e ect of the interference excitations and extract the associated feature of the localized fault e ectively. With the experiments on multistage gearbox test system, the di erential signal of instantaneous speeds is compared with other signals. It is proved that localized faults in the gearbox generate small angular speed fluctuations, which are measurable with an optical encoder. Using the di erential signal of instantaneous speeds, the fault characteristics are extracted in the spectrum where the deterministic frequency component and its harmonics corresponding to crack fault characteristics are displayed clearly.
基金National Natural Science Foundation of China,Grant/Award Number:62106177supported by the Central University Basic Research Fund of China(No.2042020KF0016)supported by the supercomputing system in the Supercomputing Center of Wuhan University.
文摘The goal of street-to-aerial cross-view image geo-localization is to determine the location of the query street-view image by retrieving the aerial-view image from the same place.The drastic viewpoint and appearance gap between the aerial-view and the street-view images brings a huge challenge against this task.In this paper,we propose a novel multiscale attention encoder to capture the multiscale contextual information of the aerial/street-view images.To bridge the domain gap between these two view images,we first use an inverse polar transform to make the street-view images approximately aligned with the aerial-view images.Then,the explored multiscale attention encoder is applied to convert the image into feature representation with the guidance of the learnt multiscale information.Finally,we propose a novel global mining strategy to enable the network to pay more attention to hard negative exemplars.Experiments on standard benchmark datasets show that our approach obtains 81.39%top-1 recall rate on the CVUSA dataset and 71.52%on the CVACT dataset,achieving the state-of-the-art performance and outperforming most of the existing methods significantly.