In previous and this studies it appears that the linear and nonlinear wave theory-can not accurately and easily predict the water particle velocities: Therefore, different from the theoretical considerations, in this ...In previous and this studies it appears that the linear and nonlinear wave theory-can not accurately and easily predict the water particle velocities: Therefore, different from the theoretical considerations, in this study we have attempted to determine the transfer function empirically. Laboratory experiments were performed under various wave conditions. The empirical formulas of the transfer function of the wave height, angular frequency and water particle velocity were obtained on the basis of these test data by dimensional analysis and regression analysis. In intermediate and deep water depth conditions, the transfer function was only a function of a nondimensional parameter which is composed of the angular frequency, the depth of the velocity gauge under the still water level, water depth and the acceleration of gravity. Finally, the empirical formulas were compared with experimental data and observational data form present and Cavaleri's (1978) studies. The empirical formulas were found to be in sufficient correltion with these data.展开更多
The dynamic coupling effects on fusion cross sections for reactions^(32)S + ^(94,96)Zr and ^(40)Ca + ^(94,96)Zr are studied with the universal fusion function formalism and an empirical coupled channel(ECC) model. An ...The dynamic coupling effects on fusion cross sections for reactions^(32)S + ^(94,96)Zr and ^(40)Ca + ^(94,96)Zr are studied with the universal fusion function formalism and an empirical coupled channel(ECC) model. An examination of the reduced fusion functions shows that the total effect of couplings to inelastic excitations and neutron transfer channels on fusion in ^(32)S +^(94)Zr(^(40)Ca +^(94)Zr) is almost the same as that in ^(32)S +^(96)Zr(^(40)Ca +^(96)Zr). The enhancements of the fusion cross section at sub-barrier energies due to inelastic channel coupling and neutron transfer channel coupling are evaluated separately by using the ECC model. The results show that effect of couplings to inelastic excitations channels in the reactions with94 Zr as target should be similar as that in the reactions with ^(96) Zr as target. This implies that the quadrupole deformation parameters β_2of ^(94)Zr and^(96) Zr should be similar to each other.However, β_2 's predicted from the finite-range droplet model, which are used in the ECC model, are quite different. Experiments on^(48) Ca +^(94)Zr or^(36) S +^(94)Zr are suggested to solve the puzzling issue concerning β_2for^(94)Zr.展开更多
文摘In previous and this studies it appears that the linear and nonlinear wave theory-can not accurately and easily predict the water particle velocities: Therefore, different from the theoretical considerations, in this study we have attempted to determine the transfer function empirically. Laboratory experiments were performed under various wave conditions. The empirical formulas of the transfer function of the wave height, angular frequency and water particle velocity were obtained on the basis of these test data by dimensional analysis and regression analysis. In intermediate and deep water depth conditions, the transfer function was only a function of a nondimensional parameter which is composed of the angular frequency, the depth of the velocity gauge under the still water level, water depth and the acceleration of gravity. Finally, the empirical formulas were compared with experimental data and observational data form present and Cavaleri's (1978) studies. The empirical formulas were found to be in sufficient correltion with these data.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB834400)the National Natural Science Foundation of China(Grant Nos.11175252+4 种基金111201010051127524811475115and 11525524)the Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KJCX2-EW-N01)
文摘The dynamic coupling effects on fusion cross sections for reactions^(32)S + ^(94,96)Zr and ^(40)Ca + ^(94,96)Zr are studied with the universal fusion function formalism and an empirical coupled channel(ECC) model. An examination of the reduced fusion functions shows that the total effect of couplings to inelastic excitations and neutron transfer channels on fusion in ^(32)S +^(94)Zr(^(40)Ca +^(94)Zr) is almost the same as that in ^(32)S +^(96)Zr(^(40)Ca +^(96)Zr). The enhancements of the fusion cross section at sub-barrier energies due to inelastic channel coupling and neutron transfer channel coupling are evaluated separately by using the ECC model. The results show that effect of couplings to inelastic excitations channels in the reactions with94 Zr as target should be similar as that in the reactions with ^(96) Zr as target. This implies that the quadrupole deformation parameters β_2of ^(94)Zr and^(96) Zr should be similar to each other.However, β_2 's predicted from the finite-range droplet model, which are used in the ECC model, are quite different. Experiments on^(48) Ca +^(94)Zr or^(36) S +^(94)Zr are suggested to solve the puzzling issue concerning β_2for^(94)Zr.