The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the ...The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma.In this paper,a glass vacuum chamber and a pair of plate electrodes were designed and fabricated,using 13.56 MHz radio frequency(RF)discharge technology to ionize the working gas of Ar.This discharge was mathematically described with equivalent circuit model.The discharge voltage and current of the plasma were measured atdifferent pressures and different powers.Based on the capacitively coupled homogeneous discharge model,the equivalent circuit and the analytical formula were established.The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation.The experimental results show that when RF discharge power is 50–300 W and pressure is 25–250 Pa,the average electron temperature is about 1.7–2.1 e V and the average electron density is about 0.5?×10^17–3.6?×10^17m^-3.Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.展开更多
With the rapid increase of the amount of vehicles in urban areas,the pollution of vehicle emissions is becoming more and more serious.Precise prediction of the spatiotemporal evolution of urban traffic emissions plays...With the rapid increase of the amount of vehicles in urban areas,the pollution of vehicle emissions is becoming more and more serious.Precise prediction of the spatiotemporal evolution of urban traffic emissions plays a great role in urban planning and policy making.Most existing methods usually focus on estimating vehicle emissions at historical or current moments which cannot well meet the demands of future planning.Recent work has started to pay attention to the evolution of vehicle emissions at future moments using multiple attributes related to emissions,however,they are not effective and efficient enough in the combination and utilization of different inputs.To address this issue,we propose a joint framework to predict the future evolution of vehicle emissions based on the GPS trajectories of taxis with a multi-channel spatiotemporal network and the motor vehicle emission simulator(MOVES)model.Specifically,we first estimate the spatial distribution matrices with GPS trajectories through map-matching algorithms.These matrices can reflect the attributes related to the traffic status of road networks such as volume,speed and acceleration.Then,our multi-channel spatiotemporal network is used to efficiently combine three key attributes(volume,speed and acceleration)through the feature sharing mechanism and generate a precise prediction of them in the future period.Finally,we adopt an MOVES model to estimate vehicle emissions by integrating several traffic factors including the predicted traffic states,road networks and the statistical information of urban vehicles.We evaluate our model on the Xi′an taxi GPS trajectories dataset.Experiments show that our proposed network can effectively predict the temporal evolution of vehicle emissions.展开更多
Enhanced photon emission and pair production due to heavy ion mass in the interaction of an ultraintense laser with overdense plasmas is explored by particle-in-cell simulation. It is found that plasmas with heavier i...Enhanced photon emission and pair production due to heavy ion mass in the interaction of an ultraintense laser with overdense plasmas is explored by particle-in-cell simulation. It is found that plasmas with heavier ion mass can excite a higher and broader electrostatic field, which causes the enhancement of backward photon emission. The pair yields are then enhanced due to the increase of backwards photons colliding with the incoming laser pulse. By examining the density evolution and angle distribution of each particle species, the origin of pair yield enhancement is clarified.展开更多
In this paper,a numerical code,RFPA2D(rock failure process analysis),was used to simulate the initiation and propagation of fractures around a pre-existing single cavity and multiple cavities in brittle rocks.Both s...In this paper,a numerical code,RFPA2D(rock failure process analysis),was used to simulate the initiation and propagation of fractures around a pre-existing single cavity and multiple cavities in brittle rocks.Both static and dynamic loads were applied to the rock specimens to investigate the mechanism of fracture evolution around the cavities for different lateral pressure coefficients.In addition,characteristics of acoustic emission(AE) associated with fracture evolution were simulated.Finally,the evolution and interaction of fractures between multiple cavities were investigated with consideration of stress redistribution and transference in compressive and tensile stress fields.The numerically simulated results reproduced primary tensile,remote,and shear crack fractures,which are in agreement with the experimental results.Moreover,numerical results suggested that both compressive and tensile waves could influence the propagation of tensile cracks;in particular,the reflected tensile wave accelerated the propagation of tensile cracks.展开更多
Hollow cathodes serve as electron sources in Hall thrusters,ion thrusters and other electric propulsion systems.One of the vital problems in their application is the cathode erosion.However,the basic erosion mechanism...Hollow cathodes serve as electron sources in Hall thrusters,ion thrusters and other electric propulsion systems.One of the vital problems in their application is the cathode erosion.However,the basic erosion mechanism and the source of high-energy ions cause of erosion are not fully understood.In this paper,both potential measurements and simulation analyses were performed to explain the formation of high-energy ions.A high-speed camera,a single Langmuir probe and a floating emissive probe were used to determine the steady and oscillatory plasma properties in the near-field plume of a hollow cathode.The temporal structure,electron temperature,electron density,and both static and oscillation of plasma potentials of the plume have been obtained by the diagnostics mentioned above.The experimental results show that there exists a potential hill(about 30 V) and also severe potential oscillations in the near-plume region.Moreover,a simple 2 D particle-in-cell model was used to analyze the energy transition between the potential hill and/or its oscillations and the ions.The simulation results show that the energy of ions gained from the static potential background is about 20 e V,but it could reach to 60 e V when the plasma oscillates.展开更多
One of the essential controls on the microwave thermal emissions(MTE) of the lunar regolith is the abundance of Fe O and TiO_2, known as the(Fe O+Ti O_2) abundance(FTA). In this paper, a radiative transfer simulation ...One of the essential controls on the microwave thermal emissions(MTE) of the lunar regolith is the abundance of Fe O and TiO_2, known as the(Fe O+Ti O_2) abundance(FTA). In this paper, a radiative transfer simulation is employed first to study the change in the brightness temperature(T_B) with FTA under a range of frequencies and surface temperatures. Then, we analyze the influence of FTA on the MTE of the lunar regolith using microwave sounder(CELMS) data from the Chang'E-2 lunar orbiter, Clementine UV-VIS data, and lunar samples recovered from the Apollo and Surveyor projects. We conclude that:(1) FTA strongly influences the MTE of the lunar regolith, but it is not the decisive control, and(2) FTA decreases slightly with depth. This research plays an essential role in appropriately inverting CELMS data to obtain lunar regolith parameters.展开更多
基金supported by National Natural Science Foundation of China(Grant No.61378037)the Fundamental Research Funds for the Central Universities(Nos.2013B33614,2017B15214)+1 种基金the Research Funds of Innovation and Entrepreneurship Education Reform for Chinese Universities(No.16CCJG01Z004)the Changzhou Science and Technology Program(No.CJ20160027)
文摘The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma.In this paper,a glass vacuum chamber and a pair of plate electrodes were designed and fabricated,using 13.56 MHz radio frequency(RF)discharge technology to ionize the working gas of Ar.This discharge was mathematically described with equivalent circuit model.The discharge voltage and current of the plasma were measured atdifferent pressures and different powers.Based on the capacitively coupled homogeneous discharge model,the equivalent circuit and the analytical formula were established.The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation.The experimental results show that when RF discharge power is 50–300 W and pressure is 25–250 Pa,the average electron temperature is about 1.7–2.1 e V and the average electron density is about 0.5?×10^17–3.6?×10^17m^-3.Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.
基金This work was supported by National Key R&D Program of China under Grant(Nos.2018AAA0100800,2018YFE0106800)National Natural Science Foundation of China(Nos.61725304,61673361 and 62033012)Major Special Science and Technology Project of Anhui,China(No.912198698036).
文摘With the rapid increase of the amount of vehicles in urban areas,the pollution of vehicle emissions is becoming more and more serious.Precise prediction of the spatiotemporal evolution of urban traffic emissions plays a great role in urban planning and policy making.Most existing methods usually focus on estimating vehicle emissions at historical or current moments which cannot well meet the demands of future planning.Recent work has started to pay attention to the evolution of vehicle emissions at future moments using multiple attributes related to emissions,however,they are not effective and efficient enough in the combination and utilization of different inputs.To address this issue,we propose a joint framework to predict the future evolution of vehicle emissions based on the GPS trajectories of taxis with a multi-channel spatiotemporal network and the motor vehicle emission simulator(MOVES)model.Specifically,we first estimate the spatial distribution matrices with GPS trajectories through map-matching algorithms.These matrices can reflect the attributes related to the traffic status of road networks such as volume,speed and acceleration.Then,our multi-channel spatiotemporal network is used to efficiently combine three key attributes(volume,speed and acceleration)through the feature sharing mechanism and generate a precise prediction of them in the future period.Finally,we adopt an MOVES model to estimate vehicle emissions by integrating several traffic factors including the predicted traffic states,road networks and the statistical information of urban vehicles.We evaluate our model on the Xi′an taxi GPS trajectories dataset.Experiments show that our proposed network can effectively predict the temporal evolution of vehicle emissions.
基金supported by National Natural Science Foundation of China (NSFC) under Grant No. 11475026
文摘Enhanced photon emission and pair production due to heavy ion mass in the interaction of an ultraintense laser with overdense plasmas is explored by particle-in-cell simulation. It is found that plasmas with heavier ion mass can excite a higher and broader electrostatic field, which causes the enhancement of backward photon emission. The pair yields are then enhanced due to the increase of backwards photons colliding with the incoming laser pulse. By examining the density evolution and angle distribution of each particle species, the origin of pair yield enhancement is clarified.
基金granted by the National Science Foundation (NSF) under Grant CMMI-0408390 and NSF CAREER Award CMMI-0644552the American Chemical Society Petroleum Research Foundation under Grant PRF-44468-G9+3 种基金National Natural Science Foundation of China under Grant No.51050110143granted by Huoyingdong Educational Foundation under Grant No.114024Jiangsu Natural Science Foundation under Grant No.SBK200910046granted by Jiangsu Postdoctoral Foundation under Grant No.0901005C
文摘In this paper,a numerical code,RFPA2D(rock failure process analysis),was used to simulate the initiation and propagation of fractures around a pre-existing single cavity and multiple cavities in brittle rocks.Both static and dynamic loads were applied to the rock specimens to investigate the mechanism of fracture evolution around the cavities for different lateral pressure coefficients.In addition,characteristics of acoustic emission(AE) associated with fracture evolution were simulated.Finally,the evolution and interaction of fractures between multiple cavities were investigated with consideration of stress redistribution and transference in compressive and tensile stress fields.The numerically simulated results reproduced primary tensile,remote,and shear crack fractures,which are in agreement with the experimental results.Moreover,numerical results suggested that both compressive and tensile waves could influence the propagation of tensile cracks;in particular,the reflected tensile wave accelerated the propagation of tensile cracks.
基金financial support from National Natural Science Foundation of China under Grant Nos.11402025 and 11475019China Academy of Space Technology under Grant Nos.YJJ0701 and ZWK1608
文摘Hollow cathodes serve as electron sources in Hall thrusters,ion thrusters and other electric propulsion systems.One of the vital problems in their application is the cathode erosion.However,the basic erosion mechanism and the source of high-energy ions cause of erosion are not fully understood.In this paper,both potential measurements and simulation analyses were performed to explain the formation of high-energy ions.A high-speed camera,a single Langmuir probe and a floating emissive probe were used to determine the steady and oscillatory plasma properties in the near-field plume of a hollow cathode.The temporal structure,electron temperature,electron density,and both static and oscillation of plasma potentials of the plume have been obtained by the diagnostics mentioned above.The experimental results show that there exists a potential hill(about 30 V) and also severe potential oscillations in the near-plume region.Moreover,a simple 2 D particle-in-cell model was used to analyze the energy transition between the potential hill and/or its oscillations and the ions.The simulation results show that the energy of ions gained from the static potential background is about 20 e V,but it could reach to 60 e V when the plasma oscillates.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41371332 & 41590851)the Fundamental Research Funds for the Central Universities (Grant No. JCKY-QKJC23)the Science and Technology Development Fund of Macao (Grant No. 110/2014/A3)
文摘One of the essential controls on the microwave thermal emissions(MTE) of the lunar regolith is the abundance of Fe O and TiO_2, known as the(Fe O+Ti O_2) abundance(FTA). In this paper, a radiative transfer simulation is employed first to study the change in the brightness temperature(T_B) with FTA under a range of frequencies and surface temperatures. Then, we analyze the influence of FTA on the MTE of the lunar regolith using microwave sounder(CELMS) data from the Chang'E-2 lunar orbiter, Clementine UV-VIS data, and lunar samples recovered from the Apollo and Surveyor projects. We conclude that:(1) FTA strongly influences the MTE of the lunar regolith, but it is not the decisive control, and(2) FTA decreases slightly with depth. This research plays an essential role in appropriately inverting CELMS data to obtain lunar regolith parameters.