The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most s...The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2].展开更多
By using the Born-von Kfirmfin theory of lattice dynamics and the modified analytic embedded atom method, we reproduce the experimental results of the phonon dispersion in fcc metal Cu at zero pressure along three hig...By using the Born-von Kfirmfin theory of lattice dynamics and the modified analytic embedded atom method, we reproduce the experimental results of the phonon dispersion in fcc metal Cu at zero pressure along three high symmetry directions and four oft-symmetry directions, and then simulate the phonon dispersion curves of Cu at high pressures of 50, 100, and 150 GPa. The results show that the shapes of dispersion curves at high pressures are very similar to that at zero pressure. All the vibration frequencies of Cu in all vibration branches at high pressures are larger than the results at zero pressure, and increase correspondingly as pressure reaches 50, 100, and 150 GPa sequentially. Moreover, on the basis of phonon dispersion, we calculate the values of specific heat of Cu at different pressures. The prediction of thermodynamic quantities lays a significant foundation for guiding and judging experiments of thermodynamic properties of solids under high pressures.展开更多
The embedded boundary method for solving elliptic and parabolic problems in geometrically complex domains using Cartesian meshes by Johansen and Colella (1998, J. Comput. Phys. 147, 60) has been extended for ellipti...The embedded boundary method for solving elliptic and parabolic problems in geometrically complex domains using Cartesian meshes by Johansen and Colella (1998, J. Comput. Phys. 147, 60) has been extended for elliptic and parabolic problems with interior boundaries or interfaces of discontinuities of material properties or solutions. Second order accuracy is achieved in space and time for both stationary and moving interface problems. The method is conservative for elliptic and parabolic problems with fixed interfaces. Based on this method, a front tracking algorithm for the Stefan problem has been developed. The accuracy of the method is measured through comparison with exact solution to a two-dimensional Stefan problem. The algorithm has been used for the study of melting and solidification problems.展开更多
An example of using ultrasonic method to detect the compactness of complicated concrete-filled steel tube in certain high-rise building was discussed in this study.Because of the particularity of the complicated concr...An example of using ultrasonic method to detect the compactness of complicated concrete-filled steel tube in certain high-rise building was discussed in this study.Because of the particularity of the complicated concrete-filled steel tubular column,the plane detection method and embedded sounding pipe method were adopted in the process of effectively detecting the column.According to the results of the plane detection method and embedded sounding pipe method,the cementing status of steel tube and concrete can be concluded,which cannot be judged by the hammering method in the rectangular steel tube-reinforced concrete.展开更多
Prolog is one of the most important candidates to build expert systems and AI-related programs and has potential applications in embedded systems. However, Prolog is not suitable to develop many kinds of components, s...Prolog is one of the most important candidates to build expert systems and AI-related programs and has potential applications in embedded systems. However, Prolog is not suitable to develop many kinds of components, such as data acquisition and task scheduling, which are also crucial. To make the best use of the advantages and bypass the disadvantages, it is attractive to integrate Prolog with programs developed by other languages. In this paper, an IPC-based method is used to integrate backward chaining inference implemented by Prolog into applications or embedded systems. A Prolog design pattern is derived from the method for reuse, whose principle and definition are provided in detail. Additionally, the design pattern is applied to a target system, which is free software, to verify its feasibility. The detailed implementation of the application is given to clarify the design pattern. The design pattern can be further applied to wide range applications and embedded systems and the method described in this paper can also be adopted for other logic programming languages.展开更多
It is important to reduce data redundancy of stereo video in practical applications. In this paper,first,a data embedding method for stereo video(DEMSV) is investigated by embedding the encoding data into the refere...It is important to reduce data redundancy of stereo video in practical applications. In this paper,first,a data embedding method for stereo video(DEMSV) is investigated by embedding the encoding data into the reference frame to encode stereo video. It can use only one channel to transfer all the video data and the receiver can choose a monocular video decoder or stereo video decoder adaptively. Then,introducing the joint prediction scheme in the coding process of DEMSV,we propose a novel data embedding method for H.264 stereo video codec with joint prediction scheme(DEMSV-JPS) to achieve high coding efficiency. Experimental results show that the proposed method can obtain high peak signal-to-noise ratio(PSNR) and compression ratio(at least 33 dB for the test sequence) . Comparing the testing methods using JPS and without using JPS,we prove that JPS can further improve the objective and visual quality. DEMSV-JPS shows such advantages and will be suitable to applications in real-time environments of stereo-video transmission.展开更多
In this paper. we present a class of' embedding methods for nonsmooth equations. Under suitable conditions, we Prove that there exists a homotopy solution curve, which is Unique and continuous. We also prove that ...In this paper. we present a class of' embedding methods for nonsmooth equations. Under suitable conditions, we Prove that there exists a homotopy solution curve, which is Unique and continuous. We also prove that the solution curve is singlcvalue-d with respect to the homotopy parameter. Then we construct all efficient algorithm for this class of equations and prove its convcrgcnce. Filially, we apply the algorithm to the nonlinear complementarity problem. The numerical results show that tile algorithm is satisfacotry.展开更多
A numerical embedding method was proposed for solving the nonlinear optimization problem. By using the nonsmooth theory, the existence and the continuation of the following path for the corresponding homotopy equation...A numerical embedding method was proposed for solving the nonlinear optimization problem. By using the nonsmooth theory, the existence and the continuation of the following path for the corresponding homotopy equations were proved. Therefore the basic theory for the algorithm of the numerical embedding method for solving the non-linear optimization problem was established. Based on the theoretical results, a numerical embedding algorithm was designed for solving the nonlinear optimization problem, and prove its convergence carefully. Numerical experiments show that the algorithm is effective.展开更多
Using current Embedded Discrete Fracture Models(EDFM) to predict the productivity of fractured wells has some drawbacks, such as not supporting corner grid, low precision in the near wellbore zone, and disregarding th...Using current Embedded Discrete Fracture Models(EDFM) to predict the productivity of fractured wells has some drawbacks, such as not supporting corner grid, low precision in the near wellbore zone, and disregarding the heterogeneity of conductivity brought by non-uniform sand concentration. An EDFM is developed based on the corner grid, which enables high efficient calculation of the transmissibility between the embedded fractures and matrix grids, and calculation of the permeability of each polygon in the embedded fractures by the lattice data of the artificial fracture aperture. On this basis, a coupling method of local grid refinement(LGR) and embedded discrete fracture model is designed, which is verified by comparing the calculation results with the Discrete Fracture Network(DFN) method and fitting the actual production data of the first hydraulically fractured well in Iraq. By using this method and orthogonal experimental design, the optimization of the parameters of the first multi-stage fractured horizontal well in the same block is completed. The results show the proposed method has theoretical and practical significance for improving the adaptability of EDFM and the accuracy of productivity prediction of fractured wells, and enables the coupling of fracture modeling and numerical productivity simulation at reservoir scale.展开更多
The holomorphic embedding method(HEM)stands as a mathematical technique renowned for its favorable convergence properties when resolving algebraic systems involving complex variables.The key idea behind the HEM is to ...The holomorphic embedding method(HEM)stands as a mathematical technique renowned for its favorable convergence properties when resolving algebraic systems involving complex variables.The key idea behind the HEM is to convert the task of solving complex algebraic equations into a series expansion involving one or multiple embedded complex variables.This transformation empowers the utilization of complex analysis tools to tackle the original problem effectively.Since the 2010s,the HEM has been applied to steady-state and dynamic problems in power systems and has shown superior convergence and robustness compared to traditional numerical methods.This paper provides a comprehensive review on the diverse applications of the HEM and its variants reported by the literature in the past decade.The paper discusses both the strengths and limitations of these HEMs and provides guidelines for practical applications.It also outlines the challenges and potential directions for future research in this field.展开更多
Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform...Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform,traditional mechanical models cannot be used.In this study,relying on the seabed soil data of an offshore wind farm,the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters.An approach to determine the equivalent pile length is also proposed accordingly.The results provide evidence for the effectiveness and reliability of the model based on the equivalent embedded method.展开更多
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
To understand the atomistic mechanisms of tension failure of Ni-based superalloy,in this study,the classical molecular dynamics(MD)simulations were used to study the uniaxial tension processes of both the Ni/Ni3 Al in...To understand the atomistic mechanisms of tension failure of Ni-based superalloy,in this study,the classical molecular dynamics(MD)simulations were used to study the uniaxial tension processes of both the Ni/Ni3 Al interface systems and the pure Ni and Ni3 Al systems.To examine the effects of interatomic potentials,we adopted embedded atom method(EAM)and reactive force field(ReaxFF)in the MD simulations.The results of EAM simulations showed that the amorphous structures and voids formed near the interface,facilitating further crack propagation within Ni matrix.The EAM potentials also predicted that dislocations were generated and annihilated alternatively,leading to the oscillation of yielding stress during the tension process.The ReaxFF simulations predicted more amorphous formation and larger tensile strength.The atomistic understanding of the defect initiation and propagation during tension process may help to develop the strengthening strategy for controlling the defect evolution under loading.展开更多
Molecular dynamics simulation was used to simulate the thermodynamic properties of three binary alloys,Pb-Ag (1:1),Pb-Ag (4:1),and Pb-Ag (9:1).The energy functions,such as excess free energy,cohesive energy,a...Molecular dynamics simulation was used to simulate the thermodynamic properties of three binary alloys,Pb-Ag (1:1),Pb-Ag (4:1),and Pb-Ag (9:1).The energy functions,such as excess free energy,cohesive energy,and formation energy,were calculated.The calculated values agree well with the experimental ones.The atomic interactions were analyzed in macroscopic and microcosmic views and both are consistent well.展开更多
The modified embedded atom method (MEAM) is an empirical extension of the embedded atom method (EAM) that includes angular forces. By fitted to the lattice constants, the cohesive energy, the APE (anti-phase boundary)...The modified embedded atom method (MEAM) is an empirical extension of the embedded atom method (EAM) that includes angular forces. By fitted to the lattice constants, the cohesive energy, the APE (anti-phase boundary) energy, and the vacancy formation energy of TiAl, an accurate MEAM potential is obtained for the TiAl system with L10 structure. The calculation results of the properties of TiAl are in good agreement with experiments and the results of first principle (F.P.) calculations.展开更多
基金financial support from the National Key R&D Program of China(2021YFB3500700)the National Natural Science Foundation of China(22473042,22003016,and 92145302).
文摘The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2].
基金supported by the National Natural Science Foundation of China (Grant Nos. 61078057 and 11204227)the Scientific Research Program of Education Department of Shaanxi Province, China (Grant No. 12JK0958)
文摘By using the Born-von Kfirmfin theory of lattice dynamics and the modified analytic embedded atom method, we reproduce the experimental results of the phonon dispersion in fcc metal Cu at zero pressure along three high symmetry directions and four oft-symmetry directions, and then simulate the phonon dispersion curves of Cu at high pressures of 50, 100, and 150 GPa. The results show that the shapes of dispersion curves at high pressures are very similar to that at zero pressure. All the vibration frequencies of Cu in all vibration branches at high pressures are larger than the results at zero pressure, and increase correspondingly as pressure reaches 50, 100, and 150 GPa sequentially. Moreover, on the basis of phonon dispersion, we calculate the values of specific heat of Cu at different pressures. The prediction of thermodynamic quantities lays a significant foundation for guiding and judging experiments of thermodynamic properties of solids under high pressures.
基金supported by the U.S.Department of Energy under Contract No.DE-AC02-98CH10886 and by the State of New York
文摘The embedded boundary method for solving elliptic and parabolic problems in geometrically complex domains using Cartesian meshes by Johansen and Colella (1998, J. Comput. Phys. 147, 60) has been extended for elliptic and parabolic problems with interior boundaries or interfaces of discontinuities of material properties or solutions. Second order accuracy is achieved in space and time for both stationary and moving interface problems. The method is conservative for elliptic and parabolic problems with fixed interfaces. Based on this method, a front tracking algorithm for the Stefan problem has been developed. The accuracy of the method is measured through comparison with exact solution to a two-dimensional Stefan problem. The algorithm has been used for the study of melting and solidification problems.
文摘An example of using ultrasonic method to detect the compactness of complicated concrete-filled steel tube in certain high-rise building was discussed in this study.Because of the particularity of the complicated concrete-filled steel tubular column,the plane detection method and embedded sounding pipe method were adopted in the process of effectively detecting the column.According to the results of the plane detection method and embedded sounding pipe method,the cementing status of steel tube and concrete can be concluded,which cannot be judged by the hammering method in the rectangular steel tube-reinforced concrete.
基金supported by the National Natural Science Foundation of China (No.61304111)National Basic Research Program of China (No. 2014CB744904)Fundamental Research Funds for the Central Universities of China (Nos. YWF-14-KKX-001 and YWF-13-JQCJ)
文摘Prolog is one of the most important candidates to build expert systems and AI-related programs and has potential applications in embedded systems. However, Prolog is not suitable to develop many kinds of components, such as data acquisition and task scheduling, which are also crucial. To make the best use of the advantages and bypass the disadvantages, it is attractive to integrate Prolog with programs developed by other languages. In this paper, an IPC-based method is used to integrate backward chaining inference implemented by Prolog into applications or embedded systems. A Prolog design pattern is derived from the method for reuse, whose principle and definition are provided in detail. Additionally, the design pattern is applied to a target system, which is free software, to verify its feasibility. The detailed implementation of the application is given to clarify the design pattern. The design pattern can be further applied to wide range applications and embedded systems and the method described in this paper can also be adopted for other logic programming languages.
基金Supported by the National Natural Science foundation of China (60832003)
文摘It is important to reduce data redundancy of stereo video in practical applications. In this paper,first,a data embedding method for stereo video(DEMSV) is investigated by embedding the encoding data into the reference frame to encode stereo video. It can use only one channel to transfer all the video data and the receiver can choose a monocular video decoder or stereo video decoder adaptively. Then,introducing the joint prediction scheme in the coding process of DEMSV,we propose a novel data embedding method for H.264 stereo video codec with joint prediction scheme(DEMSV-JPS) to achieve high coding efficiency. Experimental results show that the proposed method can obtain high peak signal-to-noise ratio(PSNR) and compression ratio(at least 33 dB for the test sequence) . Comparing the testing methods using JPS and without using JPS,we prove that JPS can further improve the objective and visual quality. DEMSV-JPS shows such advantages and will be suitable to applications in real-time environments of stereo-video transmission.
文摘In this paper. we present a class of' embedding methods for nonsmooth equations. Under suitable conditions, we Prove that there exists a homotopy solution curve, which is Unique and continuous. We also prove that the solution curve is singlcvalue-d with respect to the homotopy parameter. Then we construct all efficient algorithm for this class of equations and prove its convcrgcnce. Filially, we apply the algorithm to the nonlinear complementarity problem. The numerical results show that tile algorithm is satisfacotry.
文摘A numerical embedding method was proposed for solving the nonlinear optimization problem. By using the nonsmooth theory, the existence and the continuation of the following path for the corresponding homotopy equations were proved. Therefore the basic theory for the algorithm of the numerical embedding method for solving the non-linear optimization problem was established. Based on the theoretical results, a numerical embedding algorithm was designed for solving the nonlinear optimization problem, and prove its convergence carefully. Numerical experiments show that the algorithm is effective.
基金Supported by the China National Science and Technology Major Project (2017ZX05030)
文摘Using current Embedded Discrete Fracture Models(EDFM) to predict the productivity of fractured wells has some drawbacks, such as not supporting corner grid, low precision in the near wellbore zone, and disregarding the heterogeneity of conductivity brought by non-uniform sand concentration. An EDFM is developed based on the corner grid, which enables high efficient calculation of the transmissibility between the embedded fractures and matrix grids, and calculation of the permeability of each polygon in the embedded fractures by the lattice data of the artificial fracture aperture. On this basis, a coupling method of local grid refinement(LGR) and embedded discrete fracture model is designed, which is verified by comparing the calculation results with the Discrete Fracture Network(DFN) method and fitting the actual production data of the first hydraulically fractured well in Iraq. By using this method and orthogonal experimental design, the optimization of the parameters of the first multi-stage fractured horizontal well in the same block is completed. The results show the proposed method has theoretical and practical significance for improving the adaptability of EDFM and the accuracy of productivity prediction of fractured wells, and enables the coupling of fracture modeling and numerical productivity simulation at reservoir scale.
文摘The holomorphic embedding method(HEM)stands as a mathematical technique renowned for its favorable convergence properties when resolving algebraic systems involving complex variables.The key idea behind the HEM is to convert the task of solving complex algebraic equations into a series expansion involving one or multiple embedded complex variables.This transformation empowers the utilization of complex analysis tools to tackle the original problem effectively.Since the 2010s,the HEM has been applied to steady-state and dynamic problems in power systems and has shown superior convergence and robustness compared to traditional numerical methods.This paper provides a comprehensive review on the diverse applications of the HEM and its variants reported by the literature in the past decade.The paper discusses both the strengths and limitations of these HEMs and provides guidelines for practical applications.It also outlines the challenges and potential directions for future research in this field.
基金supported by the National Natural Science Foundation of China (52071055)the Fundamental Research Funds for the Central Universities (Grant No.DUT22QN237).
文摘Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform,traditional mechanical models cannot be used.In this study,relying on the seabed soil data of an offshore wind farm,the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters.An approach to determine the equivalent pile length is also proposed accordingly.The results provide evidence for the effectiveness and reliability of the model based on the equivalent embedded method.
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
基金financially supported by the National Key Research and Development Program of China(Grant Nos.2017YFB0701502 and 2017YFB0702901)the National Nature Science Foundation of China(Grant No.91641128)
文摘To understand the atomistic mechanisms of tension failure of Ni-based superalloy,in this study,the classical molecular dynamics(MD)simulations were used to study the uniaxial tension processes of both the Ni/Ni3 Al interface systems and the pure Ni and Ni3 Al systems.To examine the effects of interatomic potentials,we adopted embedded atom method(EAM)and reactive force field(ReaxFF)in the MD simulations.The results of EAM simulations showed that the amorphous structures and voids formed near the interface,facilitating further crack propagation within Ni matrix.The EAM potentials also predicted that dislocations were generated and annihilated alternatively,leading to the oscillation of yielding stress during the tension process.The ReaxFF simulations predicted more amorphous formation and larger tensile strength.The atomistic understanding of the defect initiation and propagation during tension process may help to develop the strengthening strategy for controlling the defect evolution under loading.
基金supported by the National Natural Science Foundation of China-Yunnan United Foundation (No. U0837604)
文摘Molecular dynamics simulation was used to simulate the thermodynamic properties of three binary alloys,Pb-Ag (1:1),Pb-Ag (4:1),and Pb-Ag (9:1).The energy functions,such as excess free energy,cohesive energy,and formation energy,were calculated.The calculated values agree well with the experimental ones.The atomic interactions were analyzed in macroscopic and microcosmic views and both are consistent well.
基金the National Natural Science Foundation of China.
文摘The modified embedded atom method (MEAM) is an empirical extension of the embedded atom method (EAM) that includes angular forces. By fitted to the lattice constants, the cohesive energy, the APE (anti-phase boundary) energy, and the vacancy formation energy of TiAl, an accurate MEAM potential is obtained for the TiAl system with L10 structure. The calculation results of the properties of TiAl are in good agreement with experiments and the results of first principle (F.P.) calculations.